机器人的雅可比矩阵
机器人雅可比矩阵知识讲解

x6 f6(q1,q2, ,q6)
注意,如果函数 f1(q) 到 f6(q) 是非线性的,则 f q 是q的 函数,写成 xJ(q)q ,式子两边同除以时间的微分,
上式中,66的偏导数x矩阵J(Jq(q)q)叫做雅可比矩阵。其中
Jijq xiqq j
雅可比矩阵
机器人关节数
*雅可比矩阵的行数取决于机器人的类型
雅可比矩阵在机器人中的应用
可以把雅可比矩阵看作是关节的速度 q 变换到 操作速度V的变换矩阵
在任何特定时刻,q具有某一特定值,J(q)就是一个 线性变换。在每一新的时刻,q已改变,线性变换 也因之改变,所以雅可比矩阵是一个时变的线性变 换矩阵。
在机器人学领域内,通常谈到的雅可比矩阵是 把关节角速度和操作臂末端的直角坐标速度联 系在一起的。
假设矢量yRm为uRn的函数
y= y(u)
y1(u) y2(u)
yy12((uu11,,uu22,, ,,uunn))
ym(u) ym(u1,u2,,un)
对于m=1, (标量对矢量的导数)
u y u y1 1
y1 u2
u y1 n
y相对于u的偏导数定义为
u y u u uyyym 1 2(((u u u))) yu yu u ym 1 1 2 1 1
约束函数C(x),
单位圆上的质点位置约束为 C (x ) xx 1
一般情况下,采用位姿矢量q聚合表达n个粒子的位置。在3D 空间,矢量长度为3n。考虑位置约束C是一个关于位姿矢量q 的未知函数,则速度约束
C C q q
矩阵 C/q 被称作C的雅可比矩阵,记作J。为了进行物理
仿真,求微分 C JqJq,根据力学关系,建立微分约束方
机器人雅可比矩阵

两自由度机器人
对于一个两自由度的机器人,其 雅可比矩阵是一个2x2矩阵,其 中包含了机器人的两个关节角度 和两个关节速度之间的线性关系
。
矩阵形式
雅可比矩阵的矩阵形式为:J = [[a, b], [c, d]],其中a、b、c、d 是机器人关节角度和关节速度之
间的线性关系系数。
计算方法
对于两自由度机器人,可以通过 已知的关节角度和关节速度,以 及机器人运动学方程,计算得到
解析机器人模型
计算偏导数
雅可比矩阵描述了机器人末端与控制输入 之间的关系,通过直接计算机器人关节变 量对末端位置和姿态的偏导数得到。
根据机器人的几何模型和关节类型,解析 机器人的运动学模型,得到末端位置和姿 态与关节变量的关系。
利用解析得到的运动学模型,计算机器人 末端位置和姿态对关节变量的偏导数,得 到雅可比矩阵的元素。
参数优化
调整雅可比矩阵的参数
通过对雅可比矩阵的参数进行调整,如增加或减少矩阵的行 或列,能够优化矩阵的计算过程,提高计算效率。
优化迭代算法的参数
对于使用迭代算法计算雅可比矩阵的情形,通过调整迭代算 法的参数,如增加迭代次数、改变收敛准则等,能够提高计 算精度和速度。
控制策略改进
引入新的控制策略
针对具体应用场景,引入新的控制策略,如采用模糊控制、神经网络等,能够更好地解决机器人控制问题,进而 改进雅可比矩阵的计算效果。
计算方法
对于四自由度机器人,可以通过 已知的关节角度和关节速度,以 及机器人运动学方程,计算得到 雅可比矩阵。
05
雅可比矩阵的优化与改进
优化算法选择
选用高效算法
对于雅可比矩阵的计算,选用高效的算法能够显著提升计算速度和精度,例如采 用数值差分法、有限元法等。
简述机器人雅可比矩阵的概念

简述机器人雅可比矩阵的概念机器人雅可比矩阵是机器人控制理论中的一个重要概念,它描述了机器人末端执行器在关节空间和笛卡尔空间中的运动学关系。
本文将从机器人运动学的基本概念入手,介绍雅可比矩阵的定义、性质和应用,以及在机器人控制中的重要作用。
一、机器人运动学基本概念机器人运动学是研究机器人运动规律和运动参数的学科,它是机器人控制理论的重要组成部分。
机器人运动学主要分为正运动学和逆运动学两个部分。
正运动学是指通过机器人关节角度计算机器人末端执行器的位置和姿态,即把关节空间的运动状态转换为笛卡尔空间的运动状态。
逆运动学则是指通过机器人末端执行器的位置和姿态计算机器人关节角度,即把笛卡尔空间的运动状态转换为关节空间的运动状态。
正逆运动学是机器人控制中的基本问题,也是机器人实际应用中必须解决的问题。
机器人运动学中的基本概念包括机器人坐标系、机器人关节角度、机器人末端执行器的位置和姿态等。
机器人坐标系是机器人运动学中的一个基本概念,它是描述机器人运动状态的基础。
机器人坐标系可以分为基座坐标系和工具坐标系两种类型。
基座坐标系是机器人的固定参考系,通常与机器人底座相对应。
工具坐标系则是机器人末端执行器的参考系,通常与机器人末端执行器的位置和姿态相对应。
机器人关节角度是机器人运动学中的另一个基本概念,它是描述机器人关节运动状态的参数。
机器人关节角度通常用关节角度向量表示,例如q=[q1, q2, ..., qn]T,其中n是机器人关节数量。
机器人关节角度向量是机器人控制中的重要参数,它可以用来控制机器人的关节运动状态。
机器人末端执行器的位置和姿态是机器人运动学中的另一个基本概念,它是描述机器人末端执行器运动状态的参数。
机器人末端执行器的位置通常用位置向量表示,例如p=[x, y, z]T,其中x、y、z 是机器人末端执行器在笛卡尔空间中的位置坐标。
机器人末端执行器的姿态通常用姿态矩阵或欧拉角表示,例如R=[r11, r12, r13; r21, r22, r23; r31, r32, r33],其中r11、r12、r13、r21、r22、r23、r31、r32、r33是姿态矩阵的元素。
机器人运动学雅可比矩阵

05 雅可比矩阵的优化与改进
雅可比矩阵的稳定性分析
稳定性分析的重要性
在机器人运动控制中,雅可比矩阵的稳定性对机器人的运动性能 和动态响应具有重要影响。
稳定性判据
通过分析雅可比矩阵的特征值和特征向量,可以确定机器人的运动 稳定性,并为其运动控制提供依据。
通常使用齐次变换矩阵来表示机器人的位姿,该矩阵包含 了平移和旋转信息,能够完整地描述机器人在空间中的位 置和方向。
坐标系与变换
01
坐标系是用来描述物体在空间中位置和姿态的参照框架。
02
在机器人学中,通常使用固连于机器人基座的坐标系作为全局 参考坐标系,以及固连于机器人末端执行器的坐标系作为局部
参考坐标系。
THANKS FOR WATCHING
感谢您的观看
雅可比矩阵的物理意义
雅可比矩阵描述了机械臂末端执行器 的位置和姿态随关节变量变化的规律, 是机械臂运动学分析中的重要概念。
通过雅可比矩阵,可以分析机械臂的 可达工作空间、奇异性、运动速度和 加速度等运动学性能。
雅可比矩阵的计算方法
雅可比矩阵可以通过正向运动学和逆 向运动学两种方法计算得到。
在计算雅可比矩阵时,需要使用到线 性代数、微分方程等数学工具。
正向运动学是根据关节变量求解末端 执行器在参考坐标系中的位置和姿态; 逆向运动学是根据末端执行器的位置 和姿态求解关节变量。
04 雅可比矩阵在机器人运动 学中的应用
机器人的关节与连杆
关节
机器人的每个关节都有一个自由 度,决定了机器人的运动方式。 常见的关节类型包括旋转关节和 移动关节。
连杆
机器人运动学雅可比矩阵

机器人的雅可比矩阵
微分运动与速度
1、
微分运动指机构的微小运动,可用来推导不 同部件之间的速度关系。 机器人每个关节坐标系的微分运动,导致机 器人手部坐标系的微分运动,包括微分平移与微 分旋转运动。将讨论指尖运动速度与各关节运动 速度的关系。 前面介绍过机器人运动学正问题
r f ( )
一般情况:
nm6
r f ( )
对位置方程进行求微分得:
dr d J J r dt dt
两边乘以dt,可得到微小位移之间的关系式
dr Jd
J 表示了手爪的速度与关节速度之间关系, 称之为雅克比矩阵。
f1 1 f J T f m 1
ze
z0
P e
xe
Oe
ye
O0
x0
y0
指尖的平移速度为: dPe df dq dq v JL J Lq dt dq dt dt J L : 与平移速度相关的雅可比矩阵
0 0 Pe T f (q ) 0 1
以2自由度平面关节型机器人为例:
J J1 J2
f1 n m n R f m n
2、与平移速度有关的雅可比矩阵
相对于指尖坐标系的平移速度,是通过把坐标 原点固定在指尖上,指尖坐标系相对于基准坐 标系的平移速度来描述
O0 x0 y0 z0 Oe xe ye ze
:基准坐标系
:指尖坐标系
r f ( )
T m1 n1
r r1 , r2 , , rm R
1 , 2 , , n R
rj f j (1,2 ,,n )
(完整版)机器人学_机器人雅可比矩阵

dy
,
dz
)Rot(k, d)
I 44
k z d
k y d
0
kzd
0
k x d
0
k y d kxd
0
0
dx
dy
dz
0
四. 微分旋转的无序性 当θ→0 时,有sinθ→dθ,cosθ→1.若令δx=dθx,δy=dθy,
δz=dθz,则绕三个坐标轴(p16)的微分旋转矩阵分别为
1 0 0 0
例 :如图3-18所示的平面2R机械手,手爪端点与外界接触,手爪
作用于外界环境的力为
ቤተ መጻሕፍቲ ባይዱ
,若关节无摩擦
力存在,求力 的等效关节力矩
。
解:由前面的推导知
0F [Fx , Fy ]T
所以得:
y0
2
1
x0
图3-18 关节力和操作力关系
例:如图所示的机械手夹扳手拧螺丝,在腕部({Os})装有力/力矩
传感器,若已测出传感器上的力和力矩
只要知道机械手的雅可比J是满秩的方阵,相应的关节速度即
可求出,即
。
上例平面2R机械手的逆雅可比
J
1
1 l1l2s2
l2c12 l1c1 l2c12
l2s12
l1s1
l2s12
于是得到与末端速度
相应的关节速度:
显然,当θ2趋于0°(或180°)时,机械手接近奇异形位,相应的 关节速度将趋于无穷大。
解:因为已知
,可以根据前面的公式求得dA和δA。也可
根据与它一样的另一组表达式(写法不同)求解,即
求得
,
4.2 机器人的静力学
v F
[
v f,
机器人雅可比矩阵

机器人雅可比矩阵简介机器人雅可比矩阵(Robot Jacobian Matrix)是机器人运动学中的重要概念之一。
它描述了机器人末端执行器的速度与关节速度之间的关系,是机器人运动方程求解、运动规划和控制的基础。
本文将详细介绍机器人雅可比矩阵的定义、性质以及它在机器人学中的应用。
定义在介绍机器人雅可比矩阵之前,我们先回顾一下机器人运动学的基本概念。
假设有一个机器人系统,它由n个自由度的关节组成,每个关节的转动由关节角度表示。
而机器人的末端执行器的位置和姿态可以通过正向运动学求解得到,位置用笛卡尔坐标表示,姿态用旋转矩阵或四元数表示。
机器人雅可比矩阵描述了机器人末端执行器的速度与关节速度之间的关系。
具体来说,设机器人关节速度为q_dot,末端执行器速度为x_dot,机器人雅可比矩阵为J,那么雅可比矩阵满足以下关系:x_dot = J * q_dot性质机器人雅可比矩阵具有以下几个重要的性质:1.雅可比矩阵的维度为6×n,其中6表示笛卡尔坐标的维度,n表示机器人的自由度数。
2.雅可比矩阵是一个矩阵函数,它的元素可以表示为:J_ij = ∂f_i / ∂q_j其中,f_i表示末端执行器的第i个度量值,q_j表示第j个关节角度。
3.雅可比矩阵的每一列表示末端执行器在各个关节速度方向上的运动灵敏度。
如果某列的元素值较大,说明在该关节角度变化时,末端执行器的运动会更加敏感。
4.雅可比矩阵的秩决定了机器人在不同姿态下所能达到的运动自由度。
如果雅可比矩阵的秩小于n,那么机器人在某些姿态下会出现奇异配置,并且无法实现所需的末端执行器速度。
应用机器人雅可比矩阵在机器人学中有着广泛的应用。
下面介绍几个常见的应用场景:逆运动学求解在机器人学中,逆运动学是指已知末端执行器的位置和姿态,求解机器人关节角度的过程。
雅可比矩阵在逆运动学求解中起到了关键作用。
通过雅可比矩阵的逆矩阵,可以将末端执行器的速度映射到关节速度空间中,进而求解出关节速度。
机器人雅可比矩阵

根据机器人运动状态和任务需求,动态调整雅可比矩阵的维度, 以适应不同情况下的计算需求。
雅可比矩阵的奇异性问题
1 2
奇异值分解
利用奇异值分解(SVD)等技术处理雅可比矩阵 的奇异性问题,提高矩阵的稳定性和可靠性。
冗余自由度
合理配置机器人的冗余自由度,避免产生奇异位 姿,提高机器人的运动能力和灵活性。
。
逆向运动学
03
已知机器人在笛卡尔空间中的位姿,求解关节空间的运动变量
,进而得到雅可比矩阵。
03
雅可比矩阵的应用
机器人的运动学正解与逆解
01
02
03
运动学正解
通过给定的关节角度,计 算机器人末端执行器的位 置和姿态。
运动学逆解
已知末端执行器的位置和 姿态,反推出各关节角度 。
求解方法
通过几何学和线性代数的 方法,建立机器人运动学 模型,并使用数值计算方 法求解正解和逆解。
3
动态调整
根据机器人运动状态和任务需求,动态调整雅可 比矩阵的结构,以避免奇异性问题。
雅可比矩阵的实时计算优化
并行计算
采用并行计算技术,将雅可比矩阵的计算任务分解为多个子任务, 提高计算效率。
预计算和缓存
对雅可比矩阵进行预计算和缓存,减少实时计算量,提高计算速度 。
自适应算法
采用自适应算法优化雅可比矩阵的计算过程,根据机器人运动状态和 任务需求动态调整计算参数,提高计算精度和响应速度。
力矩控制
通过调节施加在机器人关节上的力矩,实现对机器人运动的精确控 制。
控制方法
基于反馈的力/力矩控制方法,如PID控制器、模糊控制器等。
04
雅可比矩阵的优化与改进
雅可比矩阵的降维处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人学院
机器人学技术基础
——雅可比矩阵
LOGO
机器人学院
一、引入
Tn T1T2 Tn
运动学方程只限于静态位 置问题的讨论,未涉及机 器人运动的速度、加速度 和力等动态过程。
nx ox ax px
Tn
ny n0z
oy oz 0
ay az 0
p
y
pz 1
动力学主要研究运动和 力的关系。
Tq F T D
机器人学院
假定关节无摩擦,并忽略各杆件的重力,则广义关节力矩τ与机器 人手部端点力F的关系可用下式描述:
τ = JTF
式中: JT为n*6阶机器人力雅可 比矩阵,并且是机器人 速度雅可比J的转置矩阵。
它表示静态平衡状态下,操作力 向关节力映射的线性关系。
思考与速度雅可比有什么不同
机器人学院
机器人学院
• 上述计算中,当θ2趋于0°或180°时,机械手的雅可比行列式 为0,其逆不存在,此时机械手处于奇异状态,相应关节速度 将趋于无穷大。
• 从几何上看,机械手完全伸直或完全缩回时,机械手末端丧失 了径向自由度,仅能沿切向运动。在奇异形位时,机械手在操 作空间的自由度将减少。
机器人学院
)
速度雅可比矩阵反映了关节空间的微小 运动dθ与手部空间(操作空间)微小位 移dX的关系。
dX
X
1
d1
X
2
d2
dY
Y
1
d1
Y
2
d2
X
dX dY
1
Y
1
X
2
Y
2
•机器人末端在操作空间的位置和方位可用末端手爪的位姿X表示, 它是关节变量的函数,X=X(q),并且是一个6维列矢量。
dX=[dX,dY,dZ,φX,φY,φZ] T反映了操作空间的微小运动,它由 机器人末端微小线位移和微小角位移(微小转动)组成.
重点
dX=J(q)dq
J(q)称为n自由度机器人 速度雅可比矩阵。
机器人学院
雅可比矩阵的含义:
(1)每一列表示其他关节不动而某 一关节运动的端点速度;
(2)前三行代表手部线速度与关节 速度传递比;后三行代表手部角 速度与关节速度传递比。
X
J
1
Y
1
X
2
Y
2
机器人学院
雅可比矩阵的第i行第j列元素为
J ij
J
l1s1 l2s12
l1c1
l2c12
l2s12
l2c12
从J中元素组成可见,J矩阵的值是θ1和θ2的函数。
机器人学院
推而广之,对于n自由度机器人,关节变量可用广义关节变量q 表示
q= [q1, q2, …, qn] T 当关节为转动关节时qi=θi; 当关节为移动关节时qi=di, dq= [dq1,dq2, … , dqn]T,反映了关节空间的微小运动。
图示为二自由度平面关节型机器人(2R机器人), •端点位置X、Y与关节θ1、θ2的关系为
X l1c1 l2c12
Y
l1s1 l2s12
X Y
X (1,2 Y (1,2 )
)
机器人学院
将其微分得
X Y
X (1,2 Y (1,2 )
xi (q) q j
,i
1,2,,6;
j
1,2,, n
雅可比矩阵——研究操作空间速度与关节空间速度线性映射 关系,同时也用来表示空间之间力的传递关系 。
数学上,雅可比矩阵是一个多元函数的偏导矩阵。
机器人学中,雅可比是一个把关节速度向量变换为手爪相对 基坐标的广义速度向量v的变换矩阵。
雅可比矩阵
机器人学院
1.X=X(q)的运动方程式
nx ox ax px
Tn
ny n0z
oy oz 0
ay az 0
p
y
pz 1
可否用3个参数简便描 述手部姿态?
角度设定法
“角度设定法”就是 采用相对参考坐标系或相对运动坐标系作三次连续转动来规
定姿态的方法,。
手部位姿可用一个6维列矢量来表示
(l1s2 l2s12 )1
(l1c1 l2c12
l2s122 )1
机器人学院
例 如图所示的二自由度机械手,手部沿固定坐标系X0轴正向以1.0 m/s的速度移动,杆长l1=l2=0.5 m。设在某瞬时θ1=30°,θ2=60°, 求相应瞬时的关节速度。
在机器人速度分析和静力分析中都将用到雅可比。
机器人学院
(1)工业机器人的速度分析
dX=J(q)dq
两边同除以dt得
dX J (q) dq
dt
dt
或写为
v X J (q)q
式中:
v为机器人末端在操作空间中的广义速度; q为机器人关节在关节空间中的关节速度; J(q)为确定关节空间速度与操作空间速度v之间关系的雅可 比矩阵。
机器人学院
对该二自由度机器人来说,J(q)是一个2*2的矩阵。
J
l1s1 l2s12
l1c1
l2c12
l2s12
l2c12
V
vx vy Fra bibliotek l1s2 l2s12
l1c1 l2c12
l2s12 l2c12
12
机器人学院
虚功原理(虚位移原理):对于任何可能的虚位移,作用于刚 体系的所有外力所做的虚功之和为零。 各关节所做虚功之和为: W Tq 1q1 2q2 nqn 末端执行器所做虚功为: W F T D f T d nT 两者所做虚功应相等,总的虚功为零:即,
X [ px py pz x y z ]T
机器人学院
设q为广义关节变量 q [q1 q2 ... qn ]T
则:
x x(q1,q2,..., qn ) x(q)
y y(q1,q2,..., qn ) y(q)
z z(q1,q2,..., qn ) z(q)
x x (q1,q2,..., qn ) x (q)
机器人学院
机器人静力计算的两类问题 (1) 已知外界环境对机器人手部的作用力F,求相应的满足 静力平衡条件的关节驱动力矩τ。 (2) 已知关节驱动力矩τ,确定机器人手部对外界环境的作 用力或负载的质量。
第二类问题是第一类问题的 逆解。逆解的关系式为
F =(JT)–1τ
机器人学院
机器人学院
• 当机构处于奇异位形时其Jacobian矩阵为奇异阵,行列式值为 零,此时机构速度反解不存在,存在某些不可控的自由度。另 外当机构处于奇异位形附近时,关节速度将趋于无穷大,从而 造成机器人的损坏,因此在设计和应用机器人时应避开奇异位 形。
机器人学院
(2)力雅可比与静力计算
机器人在工作状态下会与环境之间引起相互作用的力和力矩。 机器人各关节的驱动装置提供关节力和力矩,通过连杆传递到 末端执行器,克服外界作用力和力矩。
机器人的奇异形位分为两类: (1) 边界奇异形位:当机器人臂全部伸展开或全部折回时,使
手部处于机器人工作空间的边界上或边界附近,出现雅可比矩 阵奇异,机器人运动受到物理结构的约束。这时相应的机器人 形位叫做边界奇异形位。 (2) 内部奇异形位:两个或两个以上关节轴线重合时引起的奇 异。当出现奇异形位时,会产生退化现象。
关节驱动力和力矩与末端执行器施加的力和力矩之间的关系是 机器人力控制的基础。
机器人与外界环境相互作用时,在接触的地方要产生力f和力矩n, 统称为末端广义力矢量。记为:
f
F
n
在静止状态下,广义操作力F应与各关节的驱动力相平衡。
n个关节的驱动力组成的n维矢量
1 2 n
y y (q1,q2,..., qn ) y (q)
z z (q1,q2,..., qn ) z (q)
故用角度设定法表示手部姿态时机器人的运动学方程可写成
X [x y z x y z ]T X(q)
表示了手部位姿X与关节变量q之间的关系。
机器人学院
二、机器人的雅可比矩阵
d1 d2
X
J
1
Y
1
X
2
Y
2
dX=Jdθ
J称为二自由度平面关节型机器人的速度雅可比矩阵。
机器人学院
对该二自由度机器人运动方程进行计算,则其雅可比可写为
X l1c1 l2c12
Y l1s1 l2s12