红外分析
红外光谱分析测试

红外光谱分析测试红外光谱分析测试是一种广泛应用于化学、生物、材料科学等领域的分析技术。
本文将介绍红外光谱分析测试的原理、应用以及分析结果的解读。
一、原理红外光谱分析测试基于物质在红外光区的吸收特征,通过测量物质在不同波长的红外光下的吸收强度,来获得物质的红外光谱。
红外光谱图由红外光吸收与波数之间的关系所构成,每个特定的物质都有其独特的红外光谱特征。
二、应用1. 化学分析:红外光谱分析可以用于鉴定化学物质的结构和组成。
通过与已知物质的红外光谱进行对比,可以确定未知物质的成分和结构特征。
2. 生物医药:红外光谱分析在生物医药领域有着广泛应用。
例如,通过检测人体组织、体液中的红外光谱特征,可以实现疾病的早期诊断和治疗效果的评估。
3. 材料科学:红外光谱分析可用于表征材料的组成和结构,研究材料的光学性质、导电性质以及材料的热学性质等。
这对于新材料的开发和性能改良具有重要意义。
三、分析结果解读红外光谱图包含多个峰,每个峰代表了不同化学官能团的振动模式。
通过峰的位置、形状和强度,可以分析物质的成分和结构特征。
1. 峰的位置:不同官能团的振动模式对应不同的峰位。
通过查阅红外光谱数据库或已知物质的红外光谱图,可以确定特定峰位所代表的官能团。
2. 峰的形状:峰的形状可以提供关于官能团的对称性和键的强度信息。
对称性越高,峰的形状越尖锐;键的强度越强,峰的形状越宽。
3. 峰的强度:峰的强度与物质中特定官能团的含量有关。
峰的强度越高,表示特定官能团的含量越多。
根据红外光谱分析测试的结果,可以得出结论并作出相应的应用决策。
但需要注意的是,红外光谱分析只是一种辅助手段,综合其他分析方法和实验结果来进行综合分析是更可靠的。
综上所述,红外光谱分析测试是一种重要的化学分析技术,广泛应用于各个领域。
通过分析红外光谱图的峰位、形状和强度,可以确定物质的成分和结构特征,为相关领域的科研和应用提供有力的支持。
红外吸收光谱分析

基团频率区旳划分
分区根据:因为有机物数目庞大,而构成有
机物旳基团有限;基团旳振动频率取决于K 和
m,同种基团旳频率相近。
划分措施
氢键区 ❖基团特征频率区 叁键区和累积双键区
双键区
❖指纹区
单键区
区域名称 频率范围
基团及振动形式
氢键区 4000~2500cm-1 O-H、C-H、N-H
等旳伸缩振动
叁键和
溶剂效应,极性基团旳伸缩振动频率随溶剂旳极性增 大而降低,但其吸收峰强度往往增强,一般是因为极 性基团和极性溶剂之间形成氢键旳缘故,形成氢键旳 能力越强吸收带旳频率就越低。如丙酮在环己烷中νC=O 为1727cm-1 ,在四氯化碳中为1720cm-1 ,在氯仿中为 1705cm-1 。
分子振动旳自由度
• 电子效应
①诱导效应 ②共轭效应
• 空间效应
①空间位阻 ②环张力
• 氢键
• 二.外部原因
• ①物态效应 • ②溶剂效应
❖电子效应
(1)诱导效应 经过静电诱导作用使分子中 电子云分布发生变化引起K旳变化,从而影 响振动频率。 如 C=O
吸电子诱导效应使羰基双键性增长,振动频 率增大。
(2)共轭效应 共轭效应使共轭体系中
Varian 680-IR
• 日本岛津: • 傅立叶变换红外光谱仪 IRAffinity-1 • 高信噪比:30,000:1 以上;配置自动除湿装
置,易于维护;外形小巧,占地面积小;标配 杂质分析程序;多种附件能够选择。 • 傅立叶变换红外光谱仪 IRPrestige-21 • 研究级傅立叶红外光谱仪。 • 岛津红外显微镜系统 AIM-8800 • 具有AIM VIEW先进控制系统;具有高敏捷度 旳不需维护旳MCT检测器;多种附件使应用范 围进一步扩展。
红外光谱图分析

红外光谱图分析简介红外光谱图分析是一种常见的分析方法,广泛应用于化学、生物、材料等领域。
通过测量样品在红外光谱范围内的光吸收,可以获得关于样品中分子结构和化学键的信息。
本文将简要介绍红外光谱图的基本原理、数据处理和常见应用。
基本原理红外光谱图是由红外光谱仪测量得到的,其原理基于分子吸收特性。
在红外光谱范围内,分子会吸收特定波长的红外光,这些波长对应于分子振动和转动。
通常,红外光谱图的横坐标为波数(cm^-1),纵坐标为吸光度或透射率。
数据处理对于红外光谱图的数据处理,通常需要进行以下几个步骤:1.基线校正:红外光谱中可能存在噪声或基线漂移,需要通过基线校正来消除这些干扰。
一种常见的方法是使用多项式函数拟合基线。
import numpy as npimport matplotlib.pyplot as plt# 生成示例数据x = np.linspace(4000, 400, 1000)y = np.random.normal(0, 0.1, size=1000) + np.exp (-0.01 * x)# 多项式拟合coefficients = np.polyfit(x, y, 3)baseline = np.polyval(coefficients, x)# 绘制结果plt.plot(x, y, label='Original Spectrum')plt.plot(x, baseline, label='Baseline')plt.legend()plt.xlabel('Wavenumber (cm$^{-1}$)')plt.ylabel('Absorbance')plt.title('Baseline Correction')plt.show()2.峰提取:在光谱图中,各个峰代表了样品中不同的化学键和功能团。
通过峰提取可以定量分析样品中的各个成分。
红外光谱分析

红外光谱分析红外光谱分析是一种用于物质表征和分析的重要技术方法。
它利用红外光波与物质相互作用的特性,通过测量物质对不同波长红外光的吸收、散射或透射行为,来了解物质的结构、组成和特性。
红外光谱分析在化学、生物、医药、农业、环保等领域得到广泛应用。
红外光谱分析是一种非破坏性的分析技术,可以对样品进行快速、准确的分析,而无需对样品进行特殊处理。
这使得红外光谱分析在实际应用中非常方便,特别适用于对大多数无机和有机化合物的分析。
在红外光谱分析中,主要利用了物质与红外光的相互作用。
红外光的频率范围通常被分为近红外区、中红外区和远红外区。
这些不同区域的红外光与样品分子之间的相互作用方式也不相同,因而可以提供不同的信息。
近红外区主要用于有机物的结构表征和定性分析,中红外区则用于有机物和无机物的定性和定量分析,而远红外区则常用于无机物的分析。
红外光谱仪是进行红外光谱分析的主要工具。
红外光谱仪的核心部分是一个光学系统,用于将红外光进行分光和检测。
光谱仪通过扫描不同波长的红外光,得到样品在不同波长下的吸收、散射或透射光强度的变化。
这些光谱数据可以表示为一个光谱图,通常是以波数(cm-1)作为横坐标,吸光度或透射率作为纵坐标。
红外光谱图是红外光谱分析的结果,它可以提供有关样品组成和结构的信息。
根据不同波数下的吸收峰位置和强度,可以推断样品中的官能团、键合情况、分子构型等信息。
通过与已知物质的红外光谱进行比对,还可以对未知物质进行鉴定和定性分析。
红外光谱分析在化学研究和工业实践中具有广泛的应用。
它可以用于药物开发中的药物结构表征和质量控制,可用于环境监测中的水质和空气质量分析,也可以用于食品和农产品的质量安全检测。
此外,红外光谱分析还可以用于病理学、生物学和生物医药等领域的研究。
红外光谱分析作为一种重要的分析方法,不仅可以为科学研究提供强有力的技术支持,也为工业生产和品质管理提供了有效的工具。
它不仅具有分析速度快、结果准确、操作简便的特点,还能够将样品准备工作降到最低,减少了对环境和样品的破坏。
红外光谱分析法

例题: 由表中查知C=C键旳k=9.5 9.9 ,令其为 9.6, 计算波数值。
v 1 1 k 1307 k 1307 9.6 1650cm1
2c
12 / 2
正己烯中C=C键伸缩振动频率实测值为1652 cm-1
只合用于双原子分子和影响原因小旳多原子分子,实 际旳分子构造中,基团与基团间、基团旳化学键之间 都会有影响而造成振动波数旳变化
例:计算C-C、C=C、C≡C旳振动波数? 已知键旳力常数分别为5、10、15N·cm-1
某些键旳伸缩力常数(毫达因/埃)
键类型 力常数 峰位
—CC — > —C =C — > —C — C —
15 17 9.5 9.9
4.5 5.6
4.5m
6.0 m
7.0 m
化学键键强越强(即键旳力常数K越大)原子折合质量 越小,化学键旳振动频率越大,吸收峰将出目前高波数区。
1、红外光谱旳区域划分 常见旳化学基团在4000-670 cm-1范围内有
特征吸收。常将该波数范围提成四个区域 (1)X-H伸缩振动区 4000-2500 cm-1 (2)叁键和积累双键区 2500-1900 cm-1 (3)双键伸缩振动区 1900-1200 cm-1 (4)X-Y伸缩振动及X-H变形振动区
特征吸收:指基团在特定旳区域有吸收,且其他 部分对此吸收位置旳影响较小,并有较强旳吸收谱带。
最有分析价值旳基团频率在4000 cm-1 ~ 1300 cm-1 之间, 这一区域称为基团频率区、官能团区或特征区。区内旳峰是由 伸缩振动产生旳吸收带,比较稀疏,轻易辨认,常用于鉴定官 能团。
在1300 cm-1 ~600 cm-1 区域内,除单键旳伸缩振动外,还 有多数基团因变形振动产生旳谱带。这种振动与整个分子旳构 造有关。当分子构造稍有不同步,该区旳吸收就有细微旳差别, 并显示出分子特征,称为指纹区。
红外光谱的分析实验报告

一、实验目的1. 了解红外光谱的基本原理和实验方法。
2. 掌握红外光谱仪的操作技能。
3. 通过红外光谱分析,鉴定样品的化学成分。
二、实验原理红外光谱分析是一种基于分子振动和转动能级跃迁的光谱分析方法。
当分子吸收红外光时,分子中的化学键发生振动和转动,从而产生特征的红外光谱。
红外光谱具有特征性强、灵敏度高、样品用量少等优点,广泛应用于化学、化工、生物、医药等领域。
三、实验仪器与试剂1. 仪器:傅里叶变换红外光谱仪、样品制备仪、样品瓶、玻璃棒、酒精、丙酮等。
2. 试剂:待测样品、KBr、压片机、滤纸等。
四、实验步骤1. 样品制备:将待测样品研磨成粉末,用玻璃棒搅拌均匀,然后将粉末与KBr按一定比例混合,压制成薄片。
将薄片放置在样品室中。
2. 红外光谱扫描:打开红外光谱仪,预热仪器至规定温度。
将样品薄片放入样品室,进行红外光谱扫描。
扫描范围为4000~400cm-1,分辨率为4cm-1。
3. 数据处理:将扫描得到的数据输入计算机,进行数据处理和峰位定位。
4. 结果分析:根据红外光谱的特征峰,对照标准光谱图,对样品进行定性分析。
五、实验结果与分析1. 样品A:在红外光谱图中,出现以下特征峰:(1)3340cm-1:O-H伸缩振动峰,表明样品中含有羟基;(2)2920cm-1:C-H伸缩振动峰,表明样品中含有烷烃基;(3)1730cm-1:C=O伸缩振动峰,表明样品中含有羰基;(4)1450cm-1:C-H弯曲振动峰,表明样品中含有烷烃基。
综合以上特征峰,样品A为醇类化合物。
2. 样品B:在红外光谱图中,出现以下特征峰:(1)3420cm-1:N-H伸缩振动峰,表明样品中含有氨基;(2)2920cm-1:C-H伸缩振动峰,表明样品中含有烷烃基;(3)1730cm-1:C=O伸缩振动峰,表明样品中含有羰基;(4)1050cm-1:C-O伸缩振动峰,表明样品中含有醚键。
综合以上特征峰,样品B为酰胺类化合物。
六、实验讨论1. 实验过程中,样品制备是关键步骤,需确保样品均匀、无气泡。
5红外光谱分析

伸缩
3700-3500 3600-3000 1420-1350 1500-1340 1500-1200 1200-1010 1100-800
弯曲
1200-600 1650-1600 900-800 900-700 800-600 680-580 560-420
42
红外-拉曼
5 典型红外图谱(7)
化学键 -CH3 -CH-
16
红外-拉曼
4 红外分析方法(3)
17
4 红外分析方法(5)
红外光谱测定中的样品处理技术 1
液体样品 固体样品 气体样品
液膜法 溶液法 水溶液测定
压片法 调糊法(或重烃油法,Nujol法) 薄膜法 ATR法、显微红外、DR、PAS、RAS 气体池
18
红外光谱测定中的样品处理技术 2
1液膜法
用组合窗板进行测定
(KBr从4000-250cm-1都是透明的,即 不产生红外吸收)
34
红外-拉曼
5 典型红外图谱(1)
3500 cm-1: O-H stretching vibrations. 1600 cm-1 :O-H bending vibration band.
~1100 cm-1:Si-O-Si fundamental vibration.
➢Examination of materials that are not amenable to the film analysis method
➢Analysis of extremely thin films applies on the top surfaces
➢Sample in solution
12
红外-拉曼
3 红外吸收产生的原理(8)
红外光谱测试分析

红外光谱测试分析引言:红外光谱测试是一种常用的实验技术,用于分析样品的化学结构、官能团及其化学环境。
它是通过观察和记录样品在红外区域(4000至400 cm^-1)的吸收、散射或透射红外辐射而得到的。
红外光谱测试广泛应用于有机、无机、生物、聚合物等领域。
本文将介绍红外光谱测试的原理、仪器、样品制备以及数据分析等内容。
一、红外光谱测试原理红外光谱测试基于物质与红外辐射的相互作用。
红外光谱仪将红外辐射通过样品,然后测量样品吸收、散射或透射的光强。
红外辐射包含许多波长,在红外区域中的每种波长都与特定的分子振动模式相对应。
当样品中的分子振动发生时,它们会吸收特定波长的红外光,从而产生特征峰。
根据这些特征峰的位置和强度可以推断样品的化学组成和结构。
二、红外光谱测试仪器红外光谱测试仪器主要由光源、样品盒、分光器和探测器等组成。
常见的红外光谱仪有傅里叶变换红外光谱仪(FTIR)和色散红外光谱仪(dispersive IR)。
其中,FTIR光谱仪具有高分辨率、高灵敏度和快速测量的优点,被广泛应用于科研和工业领域。
三、样品制备样品制备是红外光谱测试的关键步骤之一、样品可以是固体、液体或气体。
对于固体样品,常用的方法是将样品与适合的红外吸收剂混合,然后挤压成适当的片状样品。
对于液体样品,可以使用液态电池夹持装置保持样品在红外光束中。
对于气体样品,需要将气体置于透明的气室中,并对室内气体进行红外光谱的测量。
四、红外光谱数据分析红外光谱数据分析是针对测得的吸收谱进行的。
常见的红外光谱数据分析包括鉴定功能性团、质谱相关性分析和量子化学计算等。
鉴定功能性团是通过对比样品的吸收峰位置和精确峰位表进行的。
质谱相关性分析是利用红外光谱和质谱数据之间的相关性,为红外光谱的解释提供重要信息。
量子化学计算是通过计算得到的理论红外光谱与实际测量的红外光谱进行比对,以验证实验结果的准确性。
结论:红外光谱测试是一种重要的化学分析技术,广泛应用于化学、材料、药物和环境等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变换红外光谱
漫反射傅立叶变换红外光谱(DRIFTS)是近年来发展起来的一项原位(in situ)技术,通过对催化剂上现场反应吸附态的跟踪表征以获得一些很有价值的表面反应信息,进而对反应机理进行剖析,已在催化表征中日益受到重视。
该表征技术适合于固体粉末样品的直接测定以及材料的表面分析。
将漫反射方法,红外光谱与原位红外技术结合,试样处理简单,无需压片,并且不改变样品原有形态,所以较之其他原位红外方法更容易实现在各种温度,压力和气氛下的原位分析。
1实验原理与装置
原位漫反射红外光谱的实验系统一般由漫反射附件、原位池、真空系统、气源、净化与压力装置,加热与温度控制装置、FTIR光谱仪组成。
在红外光谱仪样品室加装一个漫反射装置,将装好样品的原位池置于其中,调整漫反射装置,使样品上的漫反射光与主机的光路匹配,以实现漫反射测量。
原位池可在高温、高压,高真空状态下工作。
图1所示为漫反射红外装置的光路图。
光谱仪光源发出的红外辐射光束经一椭圆镜会聚在样品表面并在内部进行折射、散射、反射和吸收,当这部分辐射再次穿出样品表面时,即是被样品吸收所衰减了的漫反射光。
如图2所示。
图3为漫反射原位池结构示意图,图4为热电公司红外的漫反射附件实物图
图1 图2
图3
图4
目前原位红外漫反射方面国内做的最好是大连化物所的辛勤老师,自行设计出一套漫反射红外装置。
利用该装置在催化反应机理推导方面研究出很多有意义的结果。
2.实验操作
开机前需要更换干燥剂,装好液氮先对检测器冷却,依次打开电脑、仪器、软件并检查各项参数是否在指定范围内,根据需要设置扫描次数、分辨率、纵坐标。
对于智能型有的参数一般是不需要更改设置的。
调节样品池高度使探测器接收到的能量最大(粗调),然后将所测固体粉末样品装入样品池中,刮平样品表面,装上窗体,再调节样品池高度(细调),保证光正好打在样品上。
样品颗粒越细越好,这样得出的谱图会更精细。
对于深色样品不利于测样可以掺入溴化钾稀释。
一般样品,比如我们制的的催化剂要进行预处理,即在惰性气体氛围中高温加热一两个小时,一来可以除去催化剂上的水分和二氧化碳气体,二来也是对催化剂的活化。
注意,气速不能开的太大否则会吹散样品粉末堵塞气体管路对后续实验造成影响或是把样品表面吹不平整也会影响谱图质量。
如果做探针分子的选择化学吸附,一般步骤是降温并在设定的温度段采集背景,然后在特定的温度下关闭惰性气体通入探针气体直到达到吸附饱和再改吹惰性气体吹扫,不断采集样品信息,然后升温,在开始采集背景时设定的温度段继续采样,背景和采样温度应一致。
如果特定需要还可以抽真空或加到一定压力。
我们所测的固体催化剂样品一般分辨率都选择4cm-1,扫描次数则常选择32、64。
对于漫反射最好选择设置纵坐标以Kubelka-Munk表示,以便可以在需要定量时使用。
实验气路则是根据实验需要自行设计,没有一定的模式,切不同设计方法气路也有所不同。
现举一例我们实验室常用来测样品酸性的气路图5如下
图5
1气体干燥装置,2气速控制装置,3阀门,4探针,5原位池
3.在催化中的应用
红外光谱法用于催化研究领域已有几十年的历史。
1964年,Delfs等最先尝试用漫反射红外光谱探测HCN和C2H4在贵金属氧化物上的表面吸附行为,由于漫反射信号衰减相当大以及当时仪器条件下难以发展其为具有实用价值的技术。
随着傅立叶变换技术的发展,高灵敏度检测器的出现从而解决了漫反射信号弱给红外测量带来的问题,才使得这一技术真正实际应用于红外光谱分析。
将漫反射红外技术引入催化研究的应是美国的光谱分析Griffiths 等人。
他们于1978年开发了一种椭球式漫反射辐射收集装置,展示出在催化研究中的应用前景。
这不仅对研究催化反应过程中吸附与脱附。
活性中心和活性物种的结构以及表面反应机理等方面提供了一种快捷有效的方法。
而且能在各种反应温度、压力和气氛接近实际反应条件下真实地原位追踪反应过程,为人们从分子水平上认识催化反应机理和活性中心的本质提供有力的实验依据。
在多相催化的表征和催化反应的研究中得到了广泛的应用,尤其在表面羟基的鉴别、金属和氧化物表面吸附态研究、表面酸碱性的表征、金属—载体相互作用等方面极大丰富了催化表面的科学知识。
下面简单介绍种在催化剂上最常用的表征应用例子
a酸性测定
固体酸催化过程中,催化剂及其载体表面中心的酸碱性质会直接决定催化剂的催化性能。
因此,在研究催化剂的作用原理、改进现有的和研制新型的固体酸催化剂、以及在研究新型酸催化材料酸位的性质、来源及结构等方面,都离不开对表面酸性的表征。
通常,对固体酸表面酸性的表征包括酸位的类型、酸强度、酸量三个方面。
通常与催化作用相关的酸中心分为B酸和L酸。
漫反射原位红外很适合做这个表征,不仅可以得出酸性还可以对酸量半定量分析,升温时可以分析酸强度。
一般选用吡啶或氨分子作为探针分子,选择吡啶还是氨作为探针分子一般需考虑样品特点和探针分子的特性,吡啶较氨热稳定性好,效果明显但分子直径比氨大,无法完全进入一些小孔的催化剂内部,所以对一些小孔的催化剂选择氨更适合些。
测定时一般是将样品惰性气体氛围下高温预处理降温采集完背景后通过探针分子如吡啶(可通过各种方法引入如我们这里最常用的鼓泡法)吸附至饱和后,惰性气体吹扫,采样升温后继续采样。
吡啶为强碱性分子,其氮原子上的电子对可以与不同类型的酸作用生成吡啶阳离子或配位络合物。
吡啶与B酸作用形成PyH+(BPy)在1540 cm-1左右出现特征吸收峰,与L酸作用形成Py-L配位络合物(LPy)在1450 cm-1左右出现特征吸收峰,1490 cm-1出现两种酸中心的总合峰。
同样NH3 吸附在B酸中心的IR特征峰为3120cm-1或1450 cm-1,而吸附在L酸中心的IR特征峰为3330cm-1或1640cm-1左右。
例如图6即为一用吡啶表征催化剂谱图。
Fig.6 FTIR-pyridine adsorption for the reference titania and sulfated titanias
annealed at 400 ◦C: (a) [TiO2/SO42-–(NH4)2SO4-I], (b) [TiO2/SO42-–(NH4)2SO4-IS],(c)
[TiO2/SO42-–H2SO4-IS] and (d) [TiO2–HNO3].
b多相催化催化剂活性位的表征
对于多相催化来说,催化剂表面吸附态的研究是非常关键的一步,通过表面吸附态的研
究加上其他表征方法可以得到催化剂表面的活性位。
结合原位可以观察到反应过程中中间产物的变化对反应机理的推导极为有利。
基于探针分子的选择化学吸附原理以及其特征红外光谱可利用吸附探针分子的红外光谱来考察催化剂表面不同活性中心。
通过吸附的探针分子的红外光谱特征谱带变化来考察表面的化学性质对特定的探针分子,根据其在表面上的吸附行为来区别不同类型的活性中心,吸附分子光谱上的变化(包括谱带数目,位置,强度等)则反映出吸附中心的环境和配位状态。
如下图为一张催化剂上吸附CO的谱图结合其他表征手段和一氧化碳的吸附峰位可以判断催化剂的活性中心是铜离子。