高中物理 牛顿第二定律复习学案 新人教版必修
最新人教版必修1高中物理4.3《牛顿第二定律》导学案

第3节牛顿第二定律汽车启动时,要用较大的牵引力,这时加速度很大,但速度并不大;而启动之后,开车人就要换挡,牵引力减小,这时加速度减小,而速度很大.加速度的大小取决于哪些因素呢?它们之间满足什么定量关系呢?牛顿第二定律的几个特性1.因果性力是产生加速度的原因,反之不对,没有力也就没有加速度.2.矢量性公式F=是矢量式,任一瞬时,的方向均与F合方向相同,当F合方向变时,的方向同时变.3.瞬时性牛顿第二定律表明了物体的加速度与物体所受合外力的瞬时对应关系,为某一时刻的加速度,F为该时刻物体所受合外力.4.同一性有两层意思:一是指加速度相对同一惯性系(一般指地球),二是指F=中F、、必须对应同一物体或同一个系统.5.独立性作用于物体上的每一个力各自产生的加速度都遵从牛顿第二定律,而物体的实际加速度则是每个力产生的加速度的矢量和,分力和加速度在各个方向上的分量关系也遵从牛顿第二定律,即:F=,Fy =y6.相对性物体的加速度必须是对相对于地球静止或匀速直线运动的参考系而言的.牛顿第二定律的应用1.应用牛顿第二定律解题的步骤(1)明确研究对象.根据问题的需要和解题的方便,选出被研究的物体.可以是一个整体或进行隔离,由具体情况而定.(2)进行受力分析和运动状态分析,画好受力分析图,明确物体的运动性质和运动过程.(3)选取正方向或建立坐标系,通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向.(4)求合外力F合.(5)根据牛顿第二定律F合=列方程求解,必要时还要对结果进行讨论.2.运用牛顿第二定律结合力的正交分解法解题(1)正交分解法是把一个矢量分解在两个互相垂直的坐标轴上的方法,其实质是将复杂的矢量运算转为简单的代运算.表示方法:错误!(2)为减少矢量的分解,建立坐标系时,确定轴正方向有两种方法:①分解力而不分解加速度通常以加速度的方向为轴正方向,把力分解到坐标轴上,分别求合力:F=,Fy=0②分解加速度而不分解力若分解的力太多,比较繁锁,可根据物体受力情况,使尽可能多的力位于两坐标轴上而分解加速度,得和y ,根据牛顿第二定律得方程组F=,Fy=y力、加速度和速度的关系1.物体所受合力的方向决定其加速度的方向,合外力与加速度的大小关系是F=,只要有合力,不管速度是大还是小,或是零,都有加速度,只有合力为零,加速度才能为零.一般情况下,合力与速度无必然的联系,只有速度变才与合力有必然的联系.2.合力与速度同向时,物体加速,反之减速.加速度→加速度→速度变(运动状态变).物体所受到的合外力决定了物体当时加速度的大小,而加速度的大小决定了单位时间内速度变量的大小.加速度大小与速度大小无必然的联系.4.区别加速度的定义式与决定式定义式:=ΔvΔ,即加速度定义为速度变量与所用时间的比值,而=F/则揭示了加速度决定于物体所受的合外力与物体的质量一、力和运动的关系例1 下列关于力和运动关系的几种说法,正确的是( )A.物体所受合力的方向,就是物体运动的方向B.物体所受合力不为零时,其速度不可能为零.物体所受合力不为零,则其加速度一定不为零D.物体所受合力变小时,物体一定作减速运动解析由牛顿第二定律F=可知,物体所受合力的方向与加速度的方向是一致的,但不能说就是物体的运动方向,可以与物体的运动方向相同(匀加速直线运动),也可以与物体的运动方向相反(匀减速直线运动),还可以和物体的运动方向不在一条直线上(曲线运动),故A错.物体所受的合力不为零时,其加速度一定不为零,但其速度可能为零,如竖直上抛运动中,加速度大小为g,物体受重力作用,但最高点处速度为零,故B错,正确.当物体所受的合力变小时,其加速度也变小.但如果此时合力的方向仍与物体的运动方向相同,物体作加速度运动,具体说是作加速度逐渐减小的加速运动,故D错.综上所析,选项正确.答案讨论力和运动关系的问题,注意牢记加速度与力有对应关系(矢量性、瞬时性、同体性、独立性等),力与运动的快慢没有直接联系二、牛顿第二定律的应用图4-3-1例2 质量为的木块,以一定的初速度沿倾角为θ的斜面向上滑动,斜面静止不动,木块与斜面间的动摩因为μ,如图4-3-1所示,求:(1)木块向上滑动的加速度;(2)若此木块滑到最大高度后,能沿斜面下滑,下滑时的加速度多大?解析(1)以木块为研究对象,在上滑时受力如图右所示.根据题意,加速度方向沿斜面向下.将各力沿斜面和垂直斜面方向正交分解.由牛顿第二定律有g θ+Ff=,FN-gc θ=0 且Ff=μFN解得=g( θ+μc θ),方向沿斜面向下.(2)当木块沿斜面下滑时,木块受力如右图所示,由题意知,木块加速度方向沿斜面向下.由牛顿第二定律有 g θ-Ff=′, FN-gc θ=0, 且Ff=μFN解得′=g( θ-μc θ),方向沿斜面向下. 答案 (1)g( θ+μc θ),方向沿斜面向下 (2)g( θ-μc θ),方向沿斜面向下在牛顿第二定律的应用中,常采用正交分解法,在受力分析后,建立直角坐标系是关键.坐标系的建立原则上是任意的,但常常使加速度在某一坐标轴上,另一坐标轴上的合力为零;或在坐标轴上的力最多三、连接体问题图4-3-2例3 两个物体A 和B ,质量分别为1和2,互相接触放在光滑水平面上,如图4-3-2所示,对物体A 施以水平的推力F ,则物体A 对B 的作用力等于( )A .F B21+2F12F D11+2F解析 首先确定研究对象,先选整体,求出A 、B 共同的加速度,再单独研究B ,B 在A 施加的弹力作用下加速运动,根据牛顿第二定律列方程求解.将1、2看做一个整体,其合外力为F,由牛顿第二定律知,F=(1+2),再以2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=2,以上两式联立可得:F12=,B正确.答案 B(1)几个物体间彼此有力的相互作用而相对静止,这几个物体所组成的系统称为连接体.(2)可以把这几个相对静止的物体当做一个整体处,分析其受力,并应用牛顿第二定律解决求解力或加速度的问题.(3)求物体之间的相互作用力时,一般先取整体为研究对象求共同运动的加速度,然后采用隔离法求物体间的相互作用力1对静止在光滑水平面上的物体施加一水平拉力F,当力刚开始作用瞬间( )A.物体立即获得速度B.物体立即获得加速度.物体同时获得速度和加速度D.由于物体没有得及运动,所以速度和加速度都为零答案 B解析物体受重力、支持力与水平拉力F三个力的作用,重力和支持力合为零,因此物体所受的合力即水平拉力F由牛顿第二定律可知,力F作用的同时物体立即获得了加速度,但是速度还是零,因为合力F与速度无关而且速度只能渐变不能突变.因此B正确,A、、D错误.2.下列对牛顿第二定律的表达式F=及其变形公式的解,正确的是( )①由F=可知,物体受到的合力与物体的质量成正比,与物体的加速度成反比;②由=F/可知,物体的质量与其所受的合力成正比,与其运动的加速度成反比;③由=F/可知,物体的加速度与其所受的合力成正比,与其质量成反比;④由=F/可知,物体的质量可以通过测量它的加速度和它所受的合力而求得.A.①② B.②③ .③④ D.①④答案解析物体的质量与物体本身所含物质的多少有关,与物体所受的合外力F 和加速度无关,故②错;物体受到的合力的大小由施力物体决定,故①错.3.下面四个图象分别表示四个物体的位移、速度、加速度和摩擦力随时间变的规律.其中反映物体受力不可能...平衡的是( )答案 B解析物体是否处于平衡状态可根据物体的加速度进行判断,若物体的加速度为零,物体处于平衡状态,若加速度不为零,物体不可能处于平衡状态.从图A 可知,物体做匀速直线运动,处于平衡状态;从图B可知,物体的速度不断变,加速度不为零,不可能处于平衡状态;从图可知,物体的加速度不为零,不可能处于平衡状态;从图D可知,物体所受的摩擦力不断减小,若物体所受的合力始终为零,物体处于平衡状态;若物体所受的合力不为零,物体处于非平衡状态,即合外力的情况不能确定.4.下面说法中正确的是( )A.同一物体的运动速度越大,受到的合力越大B.同一物体的运动速度变率越小,受到的合力也越小.物体的质量与它所受的合力成正比D.同一物体的运动速度变越大,受到的合力也越大答案B解析速度大小与合力大小无直接联系,A错;由=ΔvΔ,运动速度变率小,说明物体的加速度小,也就是说物体受到的合力小,B对;物体的质量与合力无关,错;速度的变量的大小与物体所受合力大小无关,D错.图4-3-35.一质量为=1 g的物体在水平恒力F作用下水平运动,1 末撤去恒力F,其v-图象如图4-3-3所示,则恒力F和物体所受阻力F f的大小是( ) A.F=8 N B.F=9 N.Ff=2 N D.F f=3 N答案BD解析撤去恒力F后,物体在阻力作用下运动,由v-图象可知,1~3 内物体的加速度为3 /2,由牛顿第二定律F f=可知,阻力F f=3 N;由图象可知在0~1 内其加速度为6 /2,由牛顿第二定律F-F f=′,可求得F=9 N,B、D正确.6.一个小孩从滑梯上滑下的运动可看做匀加速直线运动.第一次小孩单独从滑梯上滑下,加速度为1第二次小孩抱上一只小狗后再从滑梯上滑下(小狗不与滑梯接触),加速度为2则( )A.1=2B.1<2.1>2D.无法判断答案A解析以滑梯上孩子为研究对象受力分析并正交分解重力如右图所示.方向:g α-Ff=y方向:FN-gc α=0Ff=μFN由以上三式得=g( α-μc α)由表达式知,与质量无关,A对.7.某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量=80 g,他从静止开始匀加速下滑,在时间=5 内沿斜面滑下的位移=50 .(不计空气阻力,取g=10 /2,结果保留2位有效字)问(1)游客连同滑草装置在下滑过程中受到的摩擦力F为多大?(2)滑草装置与草皮之间的动摩擦因μ为多大? 答案 (1)80 N (2)012 解析 (1)由位移公式=122沿斜面方向,由牛顿第二定律得:g θ-F = 联立并代入值后,得F =(g θ-22)=80 N (2)在垂直斜面方向上,F N -g c θ=0,又F =μF N 联立并代入值后,得μ=Fg c θ=012 8.水平面上有一质量为1 g 的木块,在水平向右、大小为5 N 的力作用下,由静止开始运动.若木块与水平面间的动摩擦因为02(1)画出木块的受力示意图; (2)求木块运动的加速度;(3)求出木块4 内的位移.(g 取10 /2) 答案 (1)如图所示 (2)3 /2 (3)24解析 (1)木块的受力示意图如右图所示 (2)根据题意知F -F f =,F N =G ,F f =μF N ,=3 /2 (3)=122=12×3×42 =24力与速度和加速度的关系例1 关于速度、加速度和合力之间的关系,下述说法正确的是( )A .做匀变速直线运动的物体,它所受合力是恒定不变的B .做匀变速直线运动的物体,它的速度、加速度、合力三者总是在同一方向上.物体受到的合力增大时,物体的运动速度一定加快D .物体所受合力为零时,一定处于静止状态答案 A解析 匀变速直线运动就是加速度恒定不变的直线运动,所以做匀变直线运动的物体的合力是恒定不变的,选项A 正确;做匀变速直线运动的物体,它的加速度与合力的方向一定相同,但加速度与速度的方向就不一定相同了.加速度与速度的方向相同时做匀加速运动,加速度与速度的方向相反时做匀减速运动,B 选项错误;物体所受的合力增大时,它的加速度一定增大,但速度不一定增大,选项错误;物体所受合力为零时,加速度为零,但物体不一定处于静止状态,也可以处于匀速运动状态,选项D 错误.1.由牛顿第二定律可知,合力与加速度之间具有瞬时对应的关系,合力与加速度可同时发生突变,但速度不能.2.合力增大,加速度一定增大,但速度不一定增大.3.加速度的方向与物体所受合力方向一致,但速度方向与加速度和合力的方向不一定共线应用牛顿第二定律分析瞬时问题图4-3-1例2 如图4-3-1所示,质量分别为A 和B 的A 和B 两球用轻弹簧连接,A 球用细绳悬挂起,两球均处于静止状态.如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬时加速度各是多少?答案 A =(A +B )gA,方向竖直向下B=0解析 物体在某一瞬间的加速度,由这一时刻的合外力决定,分析绳断瞬间两球的受力情况是关键.由于轻弹簧两端连着物体,物体要发生一段位移,需要一定时间,故剪断细线瞬间,弹簧的弹力与剪断前相同.先分析细线未剪断时,A 和B 的受力情况,如图所示,A 球受重力、弹簧弹力F1及细线的拉力F2;B 球受重力、弹力F1′,且F1′=F1=Bg剪断细线瞬间,F2消失,但弹簧尚未收缩,仍保持原的形变,即:F1、F 1′不变,故B 球所受的力不变,此时B=0,而A 球的加速度为:A==,方向竖直向下.拓展探究 (1)例题中将A 、B 间的弹簧换成弹性橡皮条,如图4-3-2甲所示,剪断悬挂A 球的细线的瞬间,A 、B 的加速度分别为多大?(2)在例题中,将A 、B 之间的轻弹簧与悬挂A 球的细绳交换位置,如图4-3-2乙所示,如果把A 、B 之间的细绳剪断则A 、B 两球的瞬时加速度各是多少?图4-3-2答案 (1)A =A+BAg ,方向竖直向下 B =0(2)A =B Ag ,方向竖直向上 B =g ,方向竖直向下解析 (1)由于弹性橡皮条与弹簧伸长时受力特点完全相同,所以剪断悬挂A 球的细线的瞬间,A=(A +B )Ag ,方向竖直向下,B =0(2)当两球均静止时受力分析如图示 由物体的平衡条件可得F1′=BgF2=F1+Ag而F1=F1′故F2=(A+B)g当剪断A、B之间的细线时F1、F1′变为0,F2不变所以A==g,方向竖直向上B==g,方向竖直向下在应用牛顿第二定律求解物体的瞬时加速度时,经常会遇到轻绳、轻杆、轻弹簧和橡皮绳这些常见的力模型.全面准确地解它们的特点,可帮助我们灵活正确地分析问题.1.这些模型的共同点:都是质量可忽略的想模型,都会发生形变而产生弹力,同一时刻内部弹力处处相等且与运动状态无关.2.这些模型的不同点:(1)轻绳:只能产生拉力,且方向一定沿着绳子背离受力物体,不能承受压力;认为绳子不可伸长,即无论绳子所受拉力多大,长度不变(只要不被拉断);绳子的弹力可以发生突变——瞬时产生,瞬时改变,瞬时消失.(2)轻杆:既能承受拉力,又可承受压力,施力或受力方向不一定沿着杆;认为杆既不可伸长,也不可缩短,杆的弹力也可以发生突变.(3)轻弹簧:既能承受拉力,也可承受压力,力的方向沿弹簧的轴线,受力后发生较大形变,弹簧的长度既可变长,又可变短,遵循胡克定律;因形变量较大,产生形变或使形变消失都有一个过程,故弹簧的弹力不能突变,在极短时间内可认为弹力不变.(4)橡皮条:只能受拉力,不能承受压力;其长度只能变长,不能变短,同样遵循胡克定律;因形变量较大,产生形变或使形变消失都有一个过程,故橡皮条的弹力同样不能突变牛顿第二定律和正交分解法例3 质量=1 g的球穿在斜杆上,斜杆与水平方向夹角α=30°,球与杆之间的动摩擦因μ=36,球受到竖直向上的拉力F=20 N,求球运动的加速度.(g=10 /2)答案25 /2解析对小球受力分析,由于竖直向上的拉力F大于小球的重力,故小球沿杆向上运动.以沿杆向上为轴正方向,垂直于杆向上为y轴正方向建立平面直角坐标系.在、y方向分别应用牛顿第二定律列方程,即可求出小球的加速度.以小球为研究对象进行受力分析,如右图所示,建立坐标系,根据牛顿第二定律ΣF==F α-g α-Ff=ΣFy=y=Fc α-gc α-FN=0又Ff=μFN,解得= ( α-μc α)-g( α-μc α)=25 /2拓展探究图4-3-3如图4-3-3所示,自动扶梯与水平面夹角为θ,上面站着质量为的人,当自动扶梯以加速度加速向上运动时,求扶梯对人的弹力F N和扶梯对人的摩擦力F f 答案见解析解析解法一:建立如下图所示的直角坐标系,人的加速度方向正好沿轴正方向,由题意可得轴方向:Ffc θ+FN θ-g θ=y轴方向:FNc θ-Ff θ-gc θ=0解得FN=g+ θ,Ff=c θ解法二:建立如右图所示的直角坐标系(水平向右为轴正方向,竖直向上为y 轴正方向).由于人的加速度方向是沿扶梯向上的,这样建立直角坐标系后,在轴方向和y轴方向上各有一个加速度的分量,其中轴方向的加速度分量=c θ,y轴方向的加速度分量y= θ,根据牛顿第二定律有轴方向:Ff=;y轴方向:FN-g=y解得FN=g+ θ,Ff=c θ比较以上两种解法,很显然,两种解法都得到了同样的结果,但是,第二种解法较简便.1.从上面的例题中可以看到,解题过程的简便与否,和如何建立直角坐标系有着直接的关系.那么,究竟怎样建立直角坐标系可使解题方便呢?这还得先看这类问题的一般解题步骤:(1)确定研究对象,对其进行受力分析;(2)建立恰当的直角坐标系,再把不在坐标轴上的量(包括力和加速度)进行分解;(3)根据平衡条件或牛顿第二定律列出方程并求解.2.采用正交分解法解题时,不管选取哪个方向为轴的正向,所得的最后结果都是一样的.在选取坐标轴时,为使解题方便,应考虑尽量减少矢量的分解.若已知加速度方向一般以加速度方向为正方向1关于速度、加速度、合力的关系,下列说法中不正确...的是( ) A.不为零的合力作用于原静止物体的瞬间,物体立刻获得加速度B.加速度的方向与合力的方向总是一致的,但与速度的方向可能相同,也可能不同.在初速度为零的匀加速直线运动中,速度、加速度与合力的方向总是一致的D.合力变小,物体的速度一定变小答案D2.一个质量为2 g的物体同时受到两个力的作用,这两个力的大小分别为2 N 和6 N,当两个力的方向发生变时,物体的加速度大小可能为( )A.1 /2B.2 /2.3 /2D.4 /2答案 BD图4-3-43.如图4-3-4所示向东的力F 1单独作用在物体上,产生的加速度为1;向北的力F 2单独作用在同一个物体上,产生的加速度为2则F 1和F 2同时作用在该物体上,产生的加速度( )A .大小为1-2B .大小为1+2 .方向为东偏北rc 21D .方向为与较大的力同向 答案4.关于牛顿第二定律,下列说法中正确的是( )A .公式F =中,各量的单位可以任意选取B .某一瞬间的加速度只取决于这一瞬间物体所受的合力,而与这之前或之后的受力无关.公式F =中,实际上是作用于物体上的每一个力所产生的加速度的矢量和D .物体的运动方向一定与它所受合力的方向一致 答案 B解析 F 、、必须选取国际单位制中的单位,才可写成F =的形式,否则比例系≠1,所以选项A 错误;牛顿第二定律表述的是某一时刻合外力与加速度的对应关系,它既表明F 、、三者在值上的对应关系,同时也表明合外力的方向与加速度的方向是一致的,即矢量对应关系,而与速度方向不一定相同,所以选项B 正确,D 错误;由力的独立作用原,作用在物体上的每个力都将各自产生一个加速度,与其他力的作用无关,物体的加速度是每个力所产生的加速度的矢量和,故选项正确.图4-3-55.如图4-3-5所示,在一粗糙水平面上有两个质量分别为1和2的木块1和2,中间用一原长为L、劲度系为的轻弹簧连接起,木块与地面间的动摩擦因为μ现用一水平力向右拉木块2,当两木块一起匀速运动时,两木块之间的距离是( )A.L+μ1gB.L+μ(1+2)g.L+μ2gD.L+μ12g(1+2)答案A解析由于两木块一起匀速运动,故每个木块均受力平衡.对木块1进行受力分析,弹簧弹力与木块1所受的摩擦力平衡,即Δ=μ1g,所以Δ=μ1g,因此两木块间的距离是L+Δ=L+μ1g图4-3-66.如图4-3-6所示,用手提一轻弹簧,弹簧下端挂一金属球.在将整个装置匀加速上提的过程中,手突然停止不动,则在此后一小段时间内( ) A.小球立即停止运动B.小球继续向上做减速运动.小球的速度与弹簧的形变量都要减小D.小球的加速度减小答案D解析手突然停止不动,此后一小段时间内,弹力大于重力,合力向上,小球加速度方向与速度方向相同,因此球做加速运动,随着形变量减小,由=-g知,球的加速度减小.7.跳伞运动员在下落的过程中,假定伞所受空气阻力的大小跟下落速度的平方成正比,即F=v2,比例系=20 N·2/2,跳伞运动员与伞的总质量为72 g,起跳高度足够高,则:(1)跳伞运动员在空中做什么运动?收尾速度是多大?(2)当速度达到4 /时,下落加速度是多大? 答案 (1)加速度减小的加速运动最后匀速 594 / (2)54 /2解析 (1)以伞和运动员作为研究对象,开始时速度较小,空气阻力F 小于重力G ,v 增大,F 随之增大,合力F 合减小,做加速度逐渐减小的加速运动;当v 足够大,使F =G 时,F 合=0,=0,开始做匀速运动,此时的速度为收尾速度,设为v 由F =v\(2,)=G 得:v =G =g≈594 /(2)当v =4 /<v 时,合力F 合=g -F ,由牛顿第二定律F 合=,得=g -F=(98-20×4272) /2≈54 /2图4-3-78.如图4-3-7所示,在海滨游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B 点后,沿水平的滑道再滑行一段距离到点停下.如果人和滑板的总质量=60 g ,滑板与斜坡滑道和水平滑道间的动摩擦因均为μ=05,斜坡的倾角θ=37°( 37°=06,c 37°=08),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g 取10 /2求:(1)人从斜坡上滑下的加速度为多大?(2)若由于场地的限制,水平滑道的最大距离B 为L =200 ,则人在斜坡上滑下的距离AB 应不超过多少?答案 (1)2 /2 (2)50解析 (1)人在斜坡上受力如右图所示,建立图示坐标系,设人在斜坡上滑下的加速度为1,由牛顿第二定律得g θ-Ff1=1,FN1-gc θ=0,由摩擦力计算公式得Ff1=μFN1,联立解得人滑下的加速度为1=g( θ-μc θ)=10×(06-05×08)=2/2(2)人在水平滑道上受力如下图所示,由牛顿第二定律得Ff2=2,FN2-g=0由摩擦力计算公式得Ff2=μFN2,联立解得人在水平滑道上运动的加速度大小为2=μg=5 /2设从斜坡上滑下的距离为LAB,对AB段和B段分别由匀变速运动的公式得v-0=21LAB,0-v=-22L联立解得LAB=509.在高速公路上以v=108 /速度行驶的汽车,急刹车后车轮迅速停止转动,与地面间的动摩擦因μ=08乘客如果系上安全带,人和车同时停止.如果没有系安全带,由于惯性乘客将以原速度向前冲出,与座位前方硬物碰撞.设碰后人的速度变为反向,大小变为02v,碰撞时间为003 ,求系了安全带后可使乘客受到的力减小为不系安全带时撞击力的多少分之一?答案1 150解析以v方向为正方向,设乘客的质量为,乘客与车的总质量为M,汽车的速度v0=108 /=30 /,急刹车后汽车的加速度为1由牛顿第二定律知μMg=M1,得1=μg=8 /2乘客如果系上安全带,将和汽车一起减速,受到的作用力为F1由牛顿第二定律得F1=1=8如果没有系安全带,乘客受到硬物的撞击力为F2,乘客的加速度为2,则2的大小为2=v2-(-v)Δ=1 200 /2,方向为运动的反方向.得F2=2=1 200,故F2F1=150,即乘客不系安全带时受到硬物的撞击力是系了安全带后受到的作用力的150倍.。
高中物理4.3牛顿第二定律导学案 新人教版必修

高中物理4.3牛顿第二定律导学案新人教版必修4、3牛顿第二定律导学案新人教版必修1教学目标1、掌握牛顿第二定律的文字内容和数学公式2、理解公式中各物理量的意义及相互关系3、知道在国际单位制中力的单位“牛顿”是怎样定义的4、会用牛顿第二定律的公式进行有关的计算一、牛顿第二定律:【定义】XXXXX:物体加速度的大小跟合外力成正比,跟物体的质量成反比,加速度的方向与合外力的方向相同。
比例式:或。
等式:其中k是比例系数。
(公式中的F是合外力,而ma是作用效果,不要看成力,它们只是大小相等)力的单位K是比例常数,那k 应该是多少呢?力的单位是kg*m/s2,后来为了纪念牛顿,把kg*m/s2称做“牛顿”,用N表示。
公式:【牢记】XXXXX:1、F与a的同向性。
2、F与a的瞬时性。
3、力的独立性原理。
4、F可以突变,a可以突变,但v不能突变。
5、牛二只适用于惯性参考系6、牛二适用于宏观低速运动的物体7、是定义式、度量式;是决定式。
两个加速度公式,一个是纯粹从运动学(现象)角度来研究运动;一个从本质内因进行研究。
就像农民看云识天气,掌握天气规律,但并不知道云是如何形成的,为什么不同的云代表不同的天气。
就像知道有加速度却不知道为何会有。
8、不能认为牛一是牛二在合外力为0时的特例。
二、用牛顿第二定律解题的方法和步骤1、明确研究对象(隔离或整体)2、进行受力分析和运动状态分析,画出示意图3、规定正方向或建立直角坐标系,求合力F合4、列方程求解①物体受两个力:合成法②物体受多个力:正交分解法(沿运动方向和垂直于运动方向分解)(运动方向)(垂直于运动方向)例1、从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度。
可是我们用力提一个很重的物体时却提不动它,这跟牛顿第二定律有无矛盾?为什么?答:没有矛盾,从角度来看,因为提不动,所以静止,则合外力为0,所以加速度也为0;从角度来看,物体受三个力,支持力、重力、向上提的力。
高中物理 牛顿第二定律学案 新人教版必修1

§4.3牛顿第二定律一、学习目标1. 能说出牛顿第二定律的文字内容和数学公式。
2. 能熟练理解公式中各物理量的意义及相互关系。
3. 能熟练说出在国际单位制中力的单位“牛顿”是怎样定义的。
4、能熟练运用牛顿第二定律的公式进行有关的计算。
二、重点难点1、牛顿第二定律的内容,公式的矢量性2、牛顿第二定律的应用 三、课前预习1、牛顿第二定律内容: 。
公式:2、牛顿第二定律反映了加速度与力的关系A 、因果关系:公式F=ma 表明,只要物体所受合力不为零,物体就产生加速度,即力是产生加速度的 。
B 、矢量关系:加速度与合力的方向 。
C 、瞬时对应关系:表达式F=ma 是对运动过程的每一瞬间都成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。
D 、独立对应关系:当物体受到几个力的作用时,各力将独立产生与其对应的加速度。
但物体实际表现出来的加速度是物体各力产生的加速度 的结果。
E 、同体关系:加速度和合外力(还有质量)是同属一个物体的,所以解题时一定把研究对象确定好,把研究对象全过程的受力情况都搞清楚。
3、力的国际单位是 ,根据 定义的。
当物体的质量为m=1kg ,在某力的作用下获得的加速度为21/a m s =,由牛顿第二定律可得,F ma ==,我们就把它定义为1牛顿。
4、F (可以或不可以)突变,a 突变,v 突变。
5、牛顿第二只定律只适用于惯性参考系,惯性参考系是指相对于地面静止或匀速的参考系;牛顿第二定律只适用于宏观低速运动的物体。
6、t v a ∆∆=是定义式、度量式;mF a =是决定式。
两个加速度公式,一个是纯粹从运动学(现象)角度来研究运动;一个从本质内因进行研究。
四、经典例题例1、一物体质量为1kg 的物体静置在光滑水平面上,0时刻开始,用一水平向右的大小为2N 的力F1拉物体,则(1) 物体产生的加速度是多大?2S 后物体的速度是多少?(2) 若在3秒末给物体加上一个大小也是2N 水平向左的拉力F2,则物体的加速度是多少?4秒末物体的速度是多少?(3) 3S 内物体的加速度2m/s 2是由力F1产生的,3S 后物体的加速度为0,那是说3S 后F1不再产生加速度了?例2:光滑水面上,一物体质量为1kg ,初速度为0,从0时刻开始受到一水平向右的接力F ,F 随时间变化图如下,要求作出速度时间图象。
高一物理新人教版必修1全册导学案:4.3 牛顿第二定律.doc

第四章牛顿运动定律
§4.3-2 牛顿第二定律
1、认真阅读教材《牛顿第二定律》,完成《练习册》自主预习。
【问题探究】
一、复习回顾
问题1:回忆与加速度相关的知识(包括公式)?
问题2:物体的加速度由什么决定?列举生活中物体作加速运动的事例,分析它为什么能作加速运动,加速度由哪些因素决定?
问题3:a与f、m三个物理之间是什么关系,三个物理间的关系用什么方法来探究?
问题4:你能否设计一个实验来探究a与f、m之间的关系并得出结论?(给器材)
问题5:牛顿第二定律的内容是什么,对牛顿第二定律的理解我们应注意些什么问题?
问题6:说一说用牛顿第二定律解题的一般方法和步骤?
【课堂巩固】
例1 下面说法正确的是()
A.物体速度为零时,合外力一定为零
B.物体合外力为零时,速度一定为零
C.物体合外力减小时,速度一定减小
D.物体合外力减小时,加速度一定减小
例2 一个质量为2kg的物体同时受到两个力的作用,这两个力的大小分别为2N和6N,当两个力的方向发生变化时,物体的加速度大小可能为:()
A.1m/s2
B.2m/s2
C.3m/s2
D.4m/s2
【课堂小结】(通过本节课的学习,你有什么收获与疑问?)
【课后作业】
课后P784、5题。
人教版物理必修一4.3 牛顿第二定律学案

学案牛顿第二定律[学习目标]1.知道牛顿第二定律的内容、表达式的确切含义.2.知道国际单位制中力的单位“牛顿”是怎样定义的.3.能应用牛顿第二定律解决简单的实际问题.[自主学习]一、牛顿第二定律1.内容:物体加速度的大小跟它受到的作用力成,跟它的质量成,加速度的方向跟作用力的方向.2.表达式:F=,式中k是比例系数,F是物体所受的,当物理量的单位都使用国际单位时F=.二、力的单位1.力的国际单位是,简称牛,符号为.2.“牛顿”的定义:使质量为1 kg的物体产生1 m/s2的加速度的力叫做1 N,即1N= .[课堂探究]一、牛顿第二定律[问题设计]由上一节的探究我们已经知道当小车的质量不变时,小车的加速度与它所受的力成正,那么小比,即a∝F,当小车所受的力不变时,小车的加速度与它的质量成反比,即a∝1m车的加速度a、小车的质量m以及小车所受的力F的关系是怎样的?小结:[延伸思考]在地面上,停着一辆卡车,你使出全部力气也不能使卡车做加速运动,这与牛顿第二定律矛盾吗?为什么?二、牛顿第二定律的简单应用例1:看书本75页《例题1》和《例题2》及《科学漫步》。
例2:如图1所示,一质量为8 kg的物体静止在粗糙的水平地面上,物体与地面间的动摩擦因数为0.2,用一水平力F=20 N拉物体由A 点开始运动,经过8 s后撤去拉力F,再经过一段时间物体到达B点停止.图1求:(g=10 m/s2)(1)在拉力F作用下物体运动的加速度大小;(2)撤去拉力时物体的速度大小;(3)撤去拉力F后物体运动的距离.例3如图2所示,质量为1 kg的物体静止在水平面上,物体与水平面间的动摩擦因数μ=0.5,物体受到大小为20 N、与水平方向成37°角斜向下的推力F作用时,沿水平方向做匀加速直线运动,求物体加速度的大小.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8) 图2小结:[当堂训练]1.关于牛顿第二定律,以下说法中正确的是()A.由牛顿第二定律可知,加速度大的物体,所受的合外力一定大B.牛顿第二定律说明了,质量大的物体,其加速度一定小C.由F=ma可知,物体所受到的合外力与物体的质量成正比D.对同一物体而言,物体的加速度与物体所受到的合外力成正比,而且在任何情况下,加速度的方向,始终与物体所受的合外力方向一致2.初始时静止在光滑水平面上的物体,受到一个逐渐减小的水平力的作用,则这个物体运动情况为()A.速度不断增大,但增大得越来越慢B.加速度不断增大,速度不断减小C.加速度不断减小,速度不断增大D.加速度不变,速度先减小后增大3.如图3所示,两个人同时用大小分别为F1=120 N、F2=80 N的水平力拉放在水平光滑地面的小车,如果小车的质量m=20 kg,则小车的加速度() 图3 A.方向向左,大小为10 m/s2B.方向向左,大小为2 m/s2C.方向向右,大小为10 m/s2D.方向向右,大小为2 m/s24.书本78页《问题与练习》4、5题5、如图4所示,质量为4 kg的物体静止于水平面上.现用大小为40 N,与水平方向夹角为37°的斜向上的力拉物体,使物体沿水平面做匀加速运动(g取10 m/s2,sin 37°=0.6,cos 37°=0.8).(1)若水平面光滑,物体的加速度是多大?图4(2)若物体与水平面间的动摩擦因数为0.5,物体的加速度是多大?[课后练习]1.根据牛顿第二定律,下列叙述正确的是()A.物体加速度的大小跟它的质量、受到的合力无关B.物体所受合外力必须达到一定值时,才能使物体产生加速度C.物体加速度的大小跟它所受的作用力中的任一个的大小成正比D.当物体质量改变但其所受合外力的水平分力不变时,物体水平加速度大小与其质量成反比2.(多选)在牛顿第二定律的表达式F=kma中,有关比例系数k的下列说法中正确的是()A.k的数值由质量、加速度和力的数值决定B.k的数值由质量、加速度和力的单位决定C.在国际单位制中,k等于1D.在任何情况下k都等于13.由牛顿第二定律F=ma可知,无论怎样小的力都可以使物体产生加速度,可是当用很小的力去推很重的桌子时,却推不动,这是因为()A .牛顿第二定律不适用于静止的物体B .桌子加速度很小,速度增量也很小,眼睛观察不到C .推力小于桌子所受到的静摩擦力,加速度为负值D .桌子所受的合力为零,加速度为零4.对静止在光滑水平面上的物体施加一水平拉力F ,当力刚开始作用的瞬间( )A .物体立即获得速度B .物体立即获得加速度C .物体同时获得速度和加速度D .由于物体没有来得及运动,所以速度和加速度都为零5.如图1所示,长木板A 的右端与桌边相齐,木板与桌面间的动摩擦因数为μ,今用一水平恒力F 将A 推出桌边,在长木板开始翻转之前,木板的加速度大小将会( )A .逐渐减小B .逐渐增大C .不变D .先减小后增大图16.如图2所示,位于水平地面上的质量为M 的小木块,在大小为F 、方向与水平方向成α角的拉力作用下沿地面做加速运动.若木块与地面之间的动摩擦因数为μ,则木块的加速度为( ) 图2A.F MB.F cos αMC.F cos α-μMg MD.F cos α-μ(Mg -F sin α)M7. (多选)在平直轨道上运动的车厢中的光滑水平桌面上用弹簧拴着一个小球,弹簧处于自然长度,如图3所示,当旅客看到弹簧的长度变长时,对车厢运动状态的判断可能的是( )A .车厢向右运动,速度在增大 图3B .车厢向右运动,速度在减小C .车厢向左运动,速度在增大D .车厢向左运动,速度在减小8.如图4所示,在沿平直轨道行驶的车厢内,有一轻绳的上端固定在车厢的顶部,下端拴一小球,当小球相对车厢静止时,悬线与竖直方向夹角为θ,则下列关于车厢的运动情况正确的是()A.车厢加速度大小为g tan θ,方向沿水平向左图4B.车厢加速度大小为g tan θ,方向沿水平向右C.车厢加速度大小为g sin θ,方向沿水平向左D.车厢加速度大小为g sin θ,方向沿水平向右9.一物块位于光滑水平桌面上,用一大小为F、方向如图5所示的力去推它,使它以加速度a向右运动.若保持力的方向不变而增大力的大小,则() 图5 A.a变大B.a不变C.a变小D.因为物块的质量未知,故不能确定a变化的趋势10.如图6所示,一小球从空中自由落下,当它与正下方的轻弹簧刚开始接触时,它将()A.立即被反弹上来B.立即开始做减速运动图6 C.立即停止运动D.继续做加速运动11.质量为m的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块,其加速度为a.当拉力方向不变,大小变为2F时,木块的加速度为a′,则() A.a′=a B.a′<2aC.a′>2a D.a′=2a12.如图7所示,有一辆汽车满载西瓜在水平路面上匀速前进.突然发现意外情况,紧急刹车做匀减速运动,加速度大小为a,则中间一质量为m的西瓜A受到其他西瓜对它的作用力的大小是()A.m g2-a2B.ma 图7 C.m g2+a2D.m(g+a)13.将质量为0.5 kg的小球,以30 m/s的速度竖直上抛,经过2.5 s小球到达最高点(取g=10 m/s2).求:(1)小球在上升过程中受到的空气的平均阻力;(2)小球在最高点时的加速度大小;(3)若空气阻力不变,小球下落时的加速度为多大?14.(1)如图8所示,一个物体从光滑斜面的顶端由静止开始下滑,倾角θ=30°,斜面静止不动,重力加速度g=10 m/s2.求物体下滑过程的加速度有多大?(2)若斜面不光滑,物体与斜面间的动摩擦因数μ=36,物体下滑过程的加速度又是多大?图8。
新人教版高中物理必修第一册学案1:4.3牛顿第二定律

4.3 牛顿第二定律学习目标1.理解牛顿第二定律的内容、表达式的确切含义.(重点+难点) 2.知道国际单位制中力的单位“牛顿”是怎样定义的. 3.会应用牛顿第二定律解决简单的动力学问题.(重点+难点)[课前预习]一、牛顿第二定律的表达式1.内容:物体加速度的大小跟它受到的作用力成、跟它的质量成,加速度的方向跟作用力的方向.2.表达式F =,其中力F 为物体受到的. 二、力的单位1.力的国际单位:牛顿,简称,符号为.2.“牛顿”的定义:使质量为1 kg 的物体产生1 m /s 2的加速度的力叫作1 N ,即1 N =.[基础自测] 1.判断(1)由F =ma 可知,物体所受的合外力与物体的质量成正比,与物体的加速度成反比.( )(2)公式F =ma 中,各量的单位可以任意选取.( ) (3)加速度的方向决定了合外力的方向.( )(4)任何情况下,物体的加速度的方向始终与它所受的合外力方向一致.( ) (5)使质量是1 kg 的物体产生1 m/s 2的加速度的力叫作1 N .( ) (6)公式F =ma 中,a 是物体上每一个力所产生的加速度的矢量和.( ) 2.思考甲、乙两同学对加速度有如下认识,甲说:“由a =ΔvΔt 可知物体的加速度a 与Δv 成正比,与Δt 成反比.”乙说:“由a =Fm 知物体的加速度a 与F 成正比,与m 成反比.”你认为哪一种说法是正确的?[课堂探究]探究点一 对牛顿第二定律的理解(1)静止在光滑水平面上的物体,受到一个水平拉力,在拉力刚开始作用的瞬间,物体是否立即获得加速度,是否立即有了速度?(2)物体的合外力增大,加速度是否一定增大?速度是否一定增大?[知识剖析]1.表达式F =ma 的理解(1)单位统一:表达式中F 、m 、a 三个物理量的单位都必须是国际单位.(2)F 的含义:F 是合力时,加速度a 指的是合加速度,即物体的加速度;F 是某个力时,加速度a 是该力产生的加速度.2.牛顿第二定律的五个性质) A .由F =ma 可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比 B .由m =Fa 可知,物体的质量与其所受的合力成正比,与其运动的加速度成反比C .由a =Fm 可知,物体的加速度与其所受的合力成正比,与其质量成反比D .由m =Fa 可知,物体的质量可以通过测量它的加速度和它所受的合力而求出注意:(1)a =Δv Δt 与a =Fm 意义不同:a =Δv Δt 是加速度的定义式,不能决定a 的大小,a 与v 、Δv 、Δt 均无关;a =Fm是加速度的决定式:加速度由物体受到的合外力和质量决定.(2)不能根据m =F a 得出m ∝F 、m ∝1a 的结论,物体的质量m 是由自身决定的,与物体所受的合力和运动的加速度无关,但物体的质量可以通过测量它的加速度和它所受到的合力而求得;(3)不能由F =ma 得出F ∝m 、F ∝a 的结论,物体所受合力的大小是由物体的受力情况决定的,与物体的质量和加速度无关.跟踪训练1 (多选)对牛顿第二定律的理解正确的是( ) A .牛顿第二定律说明当物体有加速度时,物体才受到外力的作用B .合力产生的加速度,可认为作用于物体上的每个力所产生的加速度的矢量和C .加速度的方向总跟合外力的方向一致D .当外力停止作用时,加速度随之消失 探究点二 牛顿第二定律的简单应用 [知识剖析]1.应用牛顿第二定律解题的一般步骤2.求加速度的两种常用方法(1)合成法:当物体仅受两个力作用处于加速状态时,首先确定研究对象,画出受力分析图,将两个力根据力的平行四边形定则沿着加速度的方向合成,直接求出合力,再根据牛顿第二定律列式求加速度.(2)正交分解法:当物体受多个力作用处于加速状态时,常用正交分解法求物体所受的合力,再应用牛顿第二定律求加速度.为减少矢量的分解以简化运算,建立坐标系时,可有如下两种方法:①分解力:通常以加速度a 的方向为x 轴正方向,建立直角坐标系,将物体所受的各个力分解在x 轴和y 轴上,分别得x 轴和y 轴的合力F x 和F y ,得方程:⎩⎪⎨⎪⎧F x =ma ,F y =0.②分解加速度:若物体所受各力都在互相垂直的方向上,但加速度却不在这两个方向上,这时可以力的方向为x 轴、y 轴正方向,分解的力太多,只需分解加速度a ,得a x 和a y ,根据牛顿第二定律得方程:⎩⎪⎨⎪⎧F x =ma x ,F y =ma y. 例2 如图所示,质量为1 kg 的物体静止在水平面上,物体与水平面间的动摩擦因数μ=0.5,物体受到大小为20 N 、与水平方向成37°角斜向下的推力F 作用时,沿水平方向做匀加速直线运动,求物体加速度的大小.(g 取10 m/s 2,sin 37°取0.6,cos 37°取0.8)跟踪训练2 一个质量为m 的物体被竖直向上抛出,在空中运动过程所受的空气阻力大小为F f ,求该物体在上升和下降过程中的加速度.探究点三 瞬时加速度问题如图所示,天花板上用细绳吊起两个用轻弹簧相连的质量相同的小球,两小球均保持静止.现在突然剪断细绳:(1)剪断细绳前,A、B各受几个力的作用?(2)剪断细绳瞬间,绳的拉力消失吗?弹簧的弹力呢?[知识剖析]1.瞬时加速度问题:牛顿第二定律是力的瞬时作用规律,加速度和力同时产生、同时变化、同时消失.分析物体在某一时刻的瞬时加速度,关键是分析该时刻前后物体的受力情况及其变化.2.两种基本模型(1)刚性绳模型(细钢丝、细线、轻杆等):此类形变属于微小形变,其发生和变化过程时间极短,在物体的受力情况改变(如某个力消失)的瞬间,其形变可随之突变,弹力可以突变.(2)轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此类形变属于明显形变,其发生改变需要的一段时间,在瞬时问题中,其弹力的大小不能突变,可看成是不变的.例3 如图所示,天花板上用细绳吊起两个用轻弹簧相连的质量相同的小球,两小球均保持静止.当突然剪断细绳时,上面的小球A与下面的小球B的加速度为()A.a A=g,a B=g B.a A=g,a B=0C.a A=2g,a B=0D.a A=0,a B=g[归纳总结]解决瞬时加速度问题的基本思路(1)分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态,则利用牛顿运动定律).(2)分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物体接触面上的弹力都立即消失).(3)求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度.跟踪练习3 (多选)光滑斜面上,当系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,A、B质量相等.在突然撤去挡板的瞬间()甲 乙A .两图中两球加速度均为g sin θB .两图中A 球的加速度均为零C .图甲中B 球的加速度为2g sin θD .图乙中B 球的加速度为g sin θ[课堂达标]1.(对牛顿第二定律的理解)下列说法正确的是( ) A .物体所受合外力为零时,物体的加速度可以不为零 B .物体所受合外力越大,速度越大C .速度方向、加速度方向、合外力方向总是相同的D .速度方向可与加速度方向成任意夹角,但加速度方向总是与合外力方向相同 2.(牛顿第二定律的应用)(多选)一个质量为2 kg 的物体,放在光滑水平面上,受到两个水平方向的大小为5 N 和7 N 的共点力作用,则物体的加速度可能是( )A .1 m/s 2B .4 m/s 2C .7 m/s 2D .10 m/s 23.(瞬时加速度问题)如图所示,用手提一轻弹簧,弹簧下端挂一金属球.在将整个装置匀加速上提的过程中,手突然停止不动,则在此后一小段时间内( )A .小球立即停止运动B .小球继续向上做减速运动C .小球的速度与弹簧的形变量都要减小D .小球的加速度减小4.如图所示,电梯与水平面夹角为30°,当电梯加速向上运动时,人对梯面压力是其重力的65,则人与梯面间的摩擦力是其重力的多少倍?--☆ 参 考 答 案 ☆--[课前预习]正比反比相同ma 合外力牛N 1_kg·m/s 21.判断(1) ×(2)× (3)× (4)√ (5)√ (6)√ 2.思考[[答案]]乙的说法正确.物体的加速度的大小是由物体所受合力的大小和物体的质量共同决定的,与速度的变化量及所用时间无关.其中a =Δv Δt 描述了加速度的大小,而a =Fm 则揭示了加速度取决于物体所受合力与物体的质量.探究点一 对牛顿第二定律的理解 [[答案]](1)立即获得加速度,但速度为零. (2)物体的加速度一定增大,速度不一定增大. 例1 [[答案]]CD[[解析]]牛顿第二定律的表达式F =ma 表明了各物理量之间的数量关系,即已知两个量,可以求第三个量;物体的质量由物体本身决定,与受力无关;物体所受的合力,是由物体和与它相互作用的物体共同产生的,与物体的质量和加速度无关;由a =Fm 可知,物体的加速度与所受合外力成正比,与其质量成反比.综上分析知,选项A 、B 错误,C 、D 正确.跟踪训练1 [[答案]]BCD[[解析]]力是产生加速度的原因,A 项因果关系颠倒,故A 错误;合力产生的加速度与每个分力产生的加速度的合加速度是相同的,只是矢量合成的先后差别,故B 正确;a 与F 的方向时时刻刻都相同,故C 正确;加速度与外力是瞬时对应关系,外力停止作用,加速度同时消失,故D 正确.例2 [[答案]]5 m/s 2[[解析]]取物体为研究对象,受力分析如图所示,建立直角坐标系.水平方向上:F cos 37°-F f =ma ① 竖直方向上:F N =mg +F sin 37°② 又因为:F f =μF N③联立①②③解得:a =5 m/s 2.跟踪训练2 [[答案]]由牛顿第二定律知:物体上升过程的加速度: a 1=F f +mg m =g +F f m ,方向竖直向下.物体下降过程的加速度:a 2=mg -F f m =g -F fm ,方向竖直向下.探究点三 瞬时加速度问题[[答案]](1)A 受细绳的拉力、重力、弹力三个力的作用.B 受重力、弹力两个力的作用. (2)绳的拉力消失,弹簧的弹力不变. 例3 [[答案]]C[[解析]]先分析整体平衡(细绳未剪断)时,A 和B 的受力情况.如图所示,A 球受重力、弹簧弹力F 1及绳子拉力F 2;B 球受重力、弹簧弹力F 1′,且F 1′=mg ,F 1=F 1′.剪断细绳瞬间,F 2消失,但弹簧尚未收缩,仍保持原来的形态,F 1不变,故B 球所受的力不变,此时a B =0,而A 球的加速度为a A =mg +F 1m =m +mmg =2g ,方向竖直向下.跟踪练习3 [[答案]]CD[[解析]]撤去挡板前,对整体分析,挡板对B 球的弹力大小为2mg sin θ,因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,图甲中A 球所受合力为零,加速度为零,B 球所受合力为2mg sin θ,加速度为2g sin θ.图乙中杆的弹力突变为零,A 、B 球所受合力均为mg sin θ,加速度均为g sin θ,故C 、D 正确,A 、B 错误.[课堂达标]1.[[答案]]D[[解析]]由牛顿第二定律:F =ma 知,F 合为0,加速度为零;当F 合越大,a 也越大,由a =Δv Δt知,a 大只能说明速度变化率大,速度不一定大,故A 、B 项错误;F 合,a ,Δv 三者方向一定相同,而速度方向与这三者方向不一定相同,C 项错误.2.[[答案]]AB[[解析]]两个水平方向的大小为5 N 和7 N 的共点力作用,合力的范围为2 N≤F ≤12 N ,再由牛顿第二定律知加速度的范围为:1 m/s 2≤a ≤6 m/s 2,A 、B 正确.3.[[答案]]D[[解析]]以球为研究对象,小球只受到重力G 和弹簧对它的拉力F T ,由题可知小球向上做匀加速运动,即G <F T .当手突然停止不动时,在一小段时间内弹簧缩短一点,即F T 减小,且F T 仍然大于G ,由牛顿第二定律可得F T -G =ma ,a =F T -G m,即在一小段时间内小球加速度减小,故D 正确.4.[[答案]]35[[解析]]本题分解加速度比分解力更简便.对人进行受力分析:重力mg 、支持力F N 、摩擦为F f (摩擦力的方向一定与接触面平行,由加速度的方向可推知F f水平向右).建立直角坐标系:取水平向右(即F方向)为x轴正方向,此时只需分解加速度,其中a x =a cos 30°,a y=a sin 30°(如图所示).建立方程并求解,由牛顿第二定律x方向:F f=ma cos 30°,y方向:F N-mg=ma sin 30°.所以F fmg=3 5.。
高中物理 4.3牛顿第二定律学案 新人教版必修
高中物理 4.3牛顿第二定律学案新人教版必修1、理解牛顿第二定律,知道牛顿第二定律表达式的确切含义、2、知道在国际单位制中力的单位“牛顿”是怎样定义的、3、会用牛顿第二定律的公式进行计算和处理有关问题、自主探究1、内容:物体的加速度的大小跟它受到的作用力成、跟它的质量成,加速度的方向跟作用力的方向、2、表达式:、3、1N=1m/s2,意义是、合作探究一、牛顿第二定律问题:(1)比较汽车启动、飞机起飞、火箭发射的速度变化快慢(加速度)由哪些因素决定?(2)1N是如何规定的?k等于多少?(3)各符号表示什么意思?各物理量的单位是什么?1、牛顿第二定律揭示了力与运动的关系,即,其中k为、2、在国际单位制中,力的单位,叫做、此时,k=,表达式为、二、牛顿第二定律的理解问题:(1)向右的水平力F产生的加速度方向向哪?(2)从牛顿第二定律可知,无论怎样小的力都可以使物体产生加速度,可是,我们用力提一个很重的箱子,却提不动它、这跟牛顿第二定律有没有矛盾?应该怎样解释这个现象?(3)力F1单独作用于某物体时产生的加速度是3m/s2,力F2单独作用于此物体时产生的加速度是4m/s2,两力同时作用于此物体时产生的加速度可能是多大?是非判断:判断以下说法是否正确(1)加速度与力方向相同、(2)先有力再有加速度、(3)只有物体受到力的作用,才会产生加速度、(4)恒定的合力产生恒定的加速度,变化的合力产生变化的加速度、(5)力一旦停止作用,加速度也会为零,物体将静止、(6)当合外力减小时,加速度也随之减小,物体将做减速运动、1、矢量性:F=ma是一个矢量方程,公式不但表示了关系,还表示了关系、2、瞬时性:a与F产生、变化、消失、3、独立性:当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就像其他力不存在一样,这个性质叫力的独立作用原理、物体受到的每个力都会产生加速度,而最终表现出来的加速度是所有加速度的、4、同体性:F=ma中,F、m、a各量必须对应物体、三、牛顿第二定律的应用【例1】某质量为1100kg的汽车在平直路面试车,当达到100km/h的速度时关闭发动机,经过70s停下来,汽车受到的阻力是多大?重新起步加速时牵引力为2000N,产生的加速度应为多大?【例2】一个物体,质量是2kg,受到互成120角的两个力F1和F2的作用、这两个力的大小都是10N,这两个力产生的加速度是多大?1、用牛顿第二定律解题的受力分析方法:(1)、(2)、(3)、2、用牛顿第二定律解题的一般步骤:(1) 、(2) 、(3) 、(4) 、课堂检测1、下列对于牛顿第二定律的表达式F=ma及其变形公式的理解中,正确的是()A、由F=ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成反比B、由m=可知,物体的质量与其所受的合外力成正比,与其运动的加速度成反比C、由a=可知,物体的加速度与其所受的合外力成正比,与其质量成反比D、由m=可知,物体的质量可以通过测量它所受的合外力和它的加速度而求得2、静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是()A、物体立即获得加速度和速度B、物体立即获得加速度,但速度仍为零C、物体立即获得速度,但加速度仍为零D、物体的速度和加速度均为零3、物体在与其初速度始终共线的合外力F的作用下运动、取v0方向为正,合外力F随时间t的变化情况如图所示,则在0~t1这段时间内()A、物体的加速度先减小后增大,速度也是先减小后增大B、物体的加速度先增大后减小,速度也是先增大后减小C、物体的加速度先减小后增大,速度一直在增大D、物体的加速度先减小后增大,速度一直在减小4、搬运工人沿粗糙斜面把一个物体拉上卡车,当力沿斜面向上,大小为F时,物体的加速度为a1;若保持力的方向不变,大小变为2F时,物体的加速度为a2,则()A、a1=a2B、a1<a2<2a1C、a2=2a1D、a2>2a15、一物体做直线运动的vt图象如图所示,则下列图中能正确反映物体所受合力F随时间变化情况的是()6、如图所示,底板光滑的小车上用两个量程为20N的完全相同的弹簧测力计甲和乙系住一个质量为1kg的物块、在水平地面上当小车做匀速直线运动时,两弹簧测力计的示数均为10N、当小车做匀加速直线运动时,弹簧测力计甲的示数变为8N、这时小车运动的加速度大小是()A、2m/s2B、4m/s2C、6m/s2D、8m/s27、A、B两球的质量均为m,两球之间用轻弹簧相连,放在光滑的水平地面上,A球左侧靠墙、用力F向左推B球将弹簧压缩,如图所示、然后突然将力F撤去,在撤去力F的瞬间,A、B两球的加速度分别为()A、0,0B、C、0,D、8、在牛顿第二定律的数学表达式F=kma中,有关比例系数k的说法,正确的是()A、k的数值由F、m、a的数值决定B、k的数值由F、m、a的单位决定C、在国际单位制中,k=1D、在任何情况下k都等于19、在水平地面上有一质量为2kg的物体,物体在水平拉力F 的作用下由静止开始运动,10s后拉力大小减为,该物体的速度随时间t的变化规律如图所示、g取10m/s2,求:(1)物体受到的拉力F 的大小;(2)物体与地面之间的动摩擦因数、10、如图所示,水平恒力F=20N,把质量m=0、6kg的木块压在竖直墙上,木块离地面的高度h=6m、木块从静止开始向下做匀加速运动,经过2s到达地面、(g取10m/s2)求:(1)木块下滑的加速度a 的大小;(2)画出木块的受力示意图;(3)木块与墙壁之间的滑动摩擦因数、参考答案自主探究1、正比反比相同2、F=kma3、使质量为1kg的物体产生1m/s2的加速度的力的大小为1N 合作探究一、牛顿第二定律1、定量F=kma 比例系数2、 kgm/s2 牛顿 1 F=ma二、牛顿第二定律的理解1、大小方向2、同时3、矢量和4、同一个三、牛顿第二定律的应用1、合成法分解法正交分解法2、选取研究对象分析所选对象在某状态或某过程中的受力情况、运动情况明确研究对象受到的合力和具有的加速度的表达式根据牛顿第二定律列出方程F=ma,解方程得到答案课堂检测1、CD 解析:a、m、F三个物理量的决定关系是:力F和质量m决定了加速度a,而加速度a不能决定力的大小或质量的大小、若知道物体的受力大小和加速度大小,由m=可求得物体的质量、2、B 解析:由牛顿第二定律的同时性可知,力作用的瞬时即可获得加速度,但速度仍为零、3、C 解析:由a=知,物体的加速度先减小后增大,因加速度与速度方向始终相同,因此物体的速度一直在增大、4、D 解析:a1=,a2==2a1+,可知a2>2a1、5、B 解析:在0~2s内,物体做匀加速直线运动,2~4s内物体做匀减速直线运动,4~6s内物体做反方向的匀加速直线运动,且2~6s内物体的加速度相同,6~8s内物体做反方向的匀减速直线运动,综上可知B正确、6、B 解析:因弹簧的弹力与其形变量成正比,当弹簧测力计甲的示数由10N变为8N时,其形变量减少,则弹簧测力计乙的形变量必增大,且甲、乙两弹簧测力计形变量变化的大小相等,所以弹簧测力计乙的示数应为12N、物体在水平方向所受到的合外力为F=F乙-F甲=4N、根据牛顿第二定律得,物块的加速度大小为a=m/s2=4m/s2、7、C 解析:弹簧处于压缩状态时,B球受到力F和弹簧的弹力F1的作用而静止,有F=F1,A球受到弹簧的弹力F1和墙壁的弹力F2的作用而静止,且F1=F2、撤去力F的瞬间,A球仍受到弹簧的弹力F1和墙壁的弹力F2的作用,加速度a1=0;B球只受到弹力F1的作用,加速度a2=、8、BC 解析:物理公式在确定物理量数量关系的同时,也确定了物理量的单位、在F=kma中,只有“m”的单位取kg,“a”的单位取m/s2,“F”的单位取N时,才有k=1,故排除选项A、D,选项B、C正确、9、解析:0~10s间物体加速度大小a1==0、8m/s210~14s间物体加速度大小a2==2m/s2根据牛顿第二定律有F-μmg=ma1μmg-=ma2,可得μ=0、48,F=11、2N、答案:(1)11、2N (2)0、4810、解析:(1)由h=at2得a==3m/s2、(2)如图所示、(3)由牛顿第二定律a=得μ==0、21、答案:(1)3m/s2 (2)见解析(3)0、21。
高一物理第四章《牛顿第二定律》学案(新人教版必修1)
海南省海口市第十四中学高中物理必修一学案第四章 3. 牛顿第二定律教学方法:学案导学一、自主学习效果检测(一)牛顿第二定律1.内容物体加速度的大小跟它受到的作用力成正比,跟它的质量成______,加速度的方向跟作用力的方向__ ___。
2.表达式__ _____,其中F为物体所受的__ ___。
3.适用范围(二)力的单位1.公式F=ma成立的条件单位必须统一为___ __单位制中相应的单位。
2.力的国际单位国际单位制中,力的单位是__ ___,符号是_ __,使质量为1 kg的物体产生1 m/s2的加速度的力,称为1 N,即1 N=___________。
【判一判】(1)物体加速度的大小由物体的质量和物体所受合外力大小决定,与物体的速度大小无关。
( )(2)物体加速度的方向只由它所受合力的方向决定,与速度方向无关。
( )(3)在牛顿第二定律的数学表达式F=kma中,比例系数k在任何情况下都等于1。
( )(4)力是使物体产生加速度的原因。
( )二、课堂导学,小组合作探究主题一:牛顿第二定律的理解1.物体所受的合外力F、加速度a、速度v三者在大小和方向上有什么关系?2.2.试结合下表探究牛顿第二定律的六性。
【知识点拨】牛顿第一定律与牛顿第二定律的关系(1)牛顿第一定律以伽利略的理想实验为基础,得出了物体不受力时遵循的运动规律,即物体不受力时,物体保持静止或匀速直线运动状态,牛顿第一定律又叫“惯性定律”。
(2)牛顿第一定律指出了力和运动的关系——力是改变物体运动状态的原因,在此基础上人们才能准确地研究物体受力时的运动规律,所以牛顿第一定律是牛顿第二定律的基础,而不是牛顿第二定律的特例。
(3)牛顿第二定律定量地给出力与物体加速度的关系,指出力是产生加速度的原因。
在相同的外力作用下,质量越大的物体加速度越小,说明物体的质量越大,运动状态越难以改变。
质量相同的物体,受合外力越大时产生的加速度越大,运动状态改变越明显。
最新高中物理 牛顿运动定律 第2节 牛顿第二定律学案 新人教版必修1
第1节牛顿第二定律(实验定律)◎知识梳理1. 定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比。
2. 公式:F ma合理解要点:①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失;②方向性:a与F合都是矢量,,方向严格相同;③瞬时性和对应性:a为某时刻物体的加速度,F合是该时刻作用在该物体上的合外力。
错误!牛顿第二定律适用于宏观, 低速运动的情况.◎例题评析【例2】如图,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度、合外力的变化情况是怎样的?【分析与解答】因为速度变大或变小取决于加速度和速度方向的关系,当a与v同向时,v增大;当a与v反向时,v减小;而a由合外力决定,所以此题要分析v,a的大小变化,必须先分析小球的受力情况。
小球接触弹簧时受两个力的作用:向下的重力和向上的弹力。
在接触的头一阶段,重力大于弹力,小球合力向下,且不断变小(因为F合=mg—kx,而x增大),因而加速度减小(因为a=F/m),由于v方向与a同向,因此速度继续变大。
当弹力增大到大小等于重力时,合外力为零,加速度为零,速度达到最大。
之后,小球由于惯性继续向下运动,但弹力大于重力,合力向上,逐渐变大(因为F=kx—mg=ma),因而加速度向上且变大,因此速度逐渐减小至零。
小球不会静止在最低点,以后将被弹簧上推向上运动。
综上分析得:小球向下压弹簧过程,F方向先向下后向上,先变小后交大;a方向先向下后向上,大小先变小后变大;v方向向下,大小先变大后变小.【注意】在分析物体某一运动过程时,要养成一个科学分析习惯,即:这一过程可否划分为两个或两个以上的不同的小过程,中间是否存在转折点,如上题中弹力等于重力这一位置是一个转折点,以这个转折点分为两个阶段分析。
【例3】如图所示,一质量为m的物体系于长度分别为L1L2的两根细线上.,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态,现将L2线剪断,求剪断瞬时物体的加速度。
高考物理 牛顿第二定律高考复习学案 新人教版
第二单元牛顿第二定律及应用【预习学案】学习目标细解考纲:1.理解牛顿第二定律的内容,知道牛顿第二定律表达式的确切含义2. 会应用牛顿运动定律处理两类问题:(1)能够从物体的受力情况确定物体的运动情况(2)能够从物体的运动情况确定物体的受力情况3.通过实验认识超重和失重现象,理解产生超重、失重现象的条件和实质。
4.进一步熟练掌握应用牛顿运动定律解决问题的方法和步骤。
学习重点与难点:1.应用牛顿运动定律处理两类问题2.认识超重和失重现象,理解产生超重、失重现象的条件和实质。
自主学习:一、牛顿第二定律1.牛顿第二定律的内容,物体的加速度跟成正比,跟成反比,加速度的方向跟方向相同。
2.公式:3.理解要点:(1)F=ma这种形式只是在国际单位制中才适用一般地说F=kma,k是比例常数,它的数值与F、m、a各量的单位有关。
在国际单位制中,即F、m、a分别用N、kg、m/s2作单位,k=1,才能写为F=ma.二、两类动力学问题1.已知物体的受力情况求物体的运动情况根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
2.已知物体的运动情况求物体的受力情况求解以上两类动力学问题的思路,可用如下所示的框图来表示:第一类第二类在匀变速直线运动的公式中有五个物理量,其中有四个矢量v0、v1、a、s,一个标量t。
在动力学公式中有三个物理量,其中有两个矢量F、a,一个标量m。
运动学和动力学中公共的物理量是加速度a。
在处理力和运动的两类基本问题时,不论由力确定运动还是由运动确定力,关键在于加速度a,a是联结运动学公式和牛顿第二定律的桥梁。
【探究学案】问题情境1:关于运动和力,正确的说法是()A、物体速度为零时,合外力一定为零B、物体作曲线运动,合外力一定是变力C、物体作直线运动,合外力一定是恒力D、物体作匀速运动,合外力一定为零基础达标1:静止在光滑水平面上的物体,受到一个水平拉力的作用,当力刚开始作用的瞬间,下列说法正确的是 ( )A.物体同时获得速度和加速度B.物体立即获得加速度,但速度仍为零C.物体立即获得速度,但加速度仍为零D.物体的速度和加速度都仍为零问题情境2:一个物体放在光滑水平面上,初速为零,先对物体施加一向东的恒力F,历时1秒,随即把此力改变为向西,大小不变,历时1秒钟,接着又把此力改为向东,大小不变,历时1秒钟,如此反复只改变力的方向,共历时1分钟,在此1分钟内()A.物体时而向东运动,时而向西运动,在1分钟末静止于初始位置之东B.物体时而向东运动,时而向西运动,在1分钟末静止于初始位置C.物体时而向东运动,时而向西运动,在1分钟末继续向东运动D.物体一直向东运动,从不向西运动,在1分钟末静止于初始位置之东小结与提示:从受力确定运动情况:如果已知物体的受力情况,可以由牛顿第二定律求出物体的 ,再通过就可以确定物体的运动情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理牛顿第二定律复习学案新人教版必修【学习目标】1、理解牛顿第二定律的内容,知道牛顿第二定律表达式的确切含义2、会用牛顿第二定律处理两类动力学问题【自主学习】一、牛顿第二定律1、牛顿第二定律的内容,物体的加速度跟成正比,跟成反比,加速度的方向跟方向相同。
2、公式:3、理解要点:(1)F=ma这种形式只是在国际单位制中才适用一般地说F=kma,k是比例常数,它的数值与F、m、a各量的单位有关。
在国际单位制中,即F、m、a分别用N、kg、m/s2作单位,k=1,才能写为F=ma、(2)牛顿第二定律具有“四性”①矢量性:物体加速度的方向与物体所受的方向始终相同。
②瞬时性:牛顿第二定律说明力的瞬时效应能产生加速度,物体的加速度和物体所受的合外力总是同生、同灭、同时变化,所以它适合解决物体在某一时刻或某一位置时的力和加速度的关系问题。
③独立性:作用于物体上的每一个力各自产生的加速度都遵从牛顿第二定律,而物体的实际加速度则是每个力产生的加速度的矢量和,分力和加速度的各个方向上的分量关系Fx=max也遵从牛顿第二定律,即:Fy=may④相对性:物体的加速度必须是对相对于地球静止或匀速直线运动的参考系而言的。
4、牛顿第二定律的适用范围(1)牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系。
)(2)牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。
二、两类动力学问题1、已知物体的受力情况求物体的运动情况根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
2、已知物体的运动情况求物体的受力情况根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。
求解以上两类动力学问题的思路,可用如下所示的框图来表示:第一类第二类物体的加速度a物体的运动情况物体的受力情况在匀变速直线运动的公式中有五个物理量,其中有四个矢量v0、v1、a、s,一个标量t。
在动力学公式中有三个物理量,其中有两个矢量F、a,一个标量m。
运动学和动力学中公共的物理量是加速度a。
在处理力和运动的两类基本问题时,不论由力确定运动还是由运动确定力,关键在于加速度a,a是联结运动学公式和牛顿第二定律的桥梁。
【典型例题】a例1、质量为m的物体放在倾角为α的斜面上,物体和斜面间的动摩擦系数为μ,如沿水平方向加一个力F,使物体沿斜面向上以加速度a做匀加速直线运动,如下图甲,则F多大?Fv例2、如图所示,质量为m的人站在自动扶梯上,a扶梯正以加速度a向上减速运动,a与水平方向的夹角为θ,求人受的支持力和摩擦力。
θ例3、风洞实验室中可产生水平方向的、大小可调节的风力,现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径。
(如图)(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上匀速运动。
这时小球所受的风力为小球所受重力的0、5倍,求小球与杆间的动摩擦因数。
(2)保持小球所受风力不变,使杆与水平方向间夹角为37并固定,则小球从静止出发在细杆上滑下距离s所需时间为多少?(sin37=0、6,cos37=0、8)37例4、如图所示,物体从斜坡上的A点由静止开始滑到斜坡底部B处,又沿水平地面滑行到C处停下,已知斜坡倾角为θ,A点高为h,物体与斜坡和地面间的动摩擦因数都是μ,物体由斜坡底部转到水平地面运动时速度大小不变,求B、C间的距离。
θACBh【针对训练】1、一个木块沿倾角为α的斜面刚好能匀速下滑,若这个斜面倾角增大到β(α<β<90),则木块下滑加速度大小为()A、gsinβB、gsin(β-α)C、g(sinβ-tanαcosβ)D、g(sinβ-tanα)v2、一支架固定于放于水平地面上的小车上,细线上一端系着质量为m的小球,另一端系在支架上,当小车向左做直线运动时,细线与竖直方向的夹角为θ,此时放在小车上质量M的A物体跟小车相对静止,如图所示,则A受到的摩擦力大小和方向是()A、Mgsinθ,向左AθB、Mgtanθ,向右C、Mgcosθ,向右D、Mgtanθ,向左3、重物A和小车B的重分别为GA和GB,用跨过定滑轮的细线将它们连接起来,如图所示。
已知GA>GB,不计一切摩擦,则细线对小车B的拉力F的大小是()BA、F=GAB、GA>F≥GBAC、F<GBD、GA、GB的大小未知,F不好确定4、以24、5m/s的速度沿水平面行驶的汽车上固定Aθ一个光滑的斜面,如图所示,汽车刹车后,经2、5s停下来,欲使在刹车过程中物体A与斜面保持相对静止,则此斜面的倾角应为,车的行驶方向应向。
(g取9、8m/s2)5、如图所示,一倾角为θ的斜面上放着一小车,小车上吊着小球m,小车在斜面上下滑时,小球与车相对静止共同运动,当悬线处于下列状态时,分别求出小车下滑的加速度及悬线的拉力。
321(1)悬线沿竖直方向。
θ(2)悬线与斜面方向垂直。
(3)悬线沿水平方向。
【能力训练】一、选择题1、A、B、C三球大小相同,A为实心木球,B为实心铁球,C是质量与A一样的空心铁球,三球同时从同一高度由静止落下,若受到的阻力相同,则()A、B球下落的加速度最大B、C球下落的加速度最大C、A球下落的加速度最大D、B球落地时间最短,A、C球同落地2、如图所示,物体m原以加速度a沿斜面匀加速下滑,现在物体上方施一竖直向下的恒力F,则下列说法正确的是()FA、物体m受到的摩擦力不变B、物体m下滑的加速度增大C、物体m下滑的加速度变小αD、物体m下滑的加速度不变3、如图所示,两个质量相同的物体1和2,紧靠在一起放在光滑的水平面上,如果它们分别受到水平推力F1和F2的作用,而且F1>F2,则1施于2的作用力的大小为()12F1F2A、F1B、F2C、(F1+F2)/2D、(F1-F2)/2BFOaA4、如图所示,A、B两条直线是在A、B两地分别用竖直向上的力F拉质量分别为mA、mB的物体得出的两个加速度a与力F的关系图线,由图线分析可知()A、两地的重力加速度gA>gBB、mA<mBC、两地的重力加速度gA<gBD、mA>mBvF5、如图所示,质量m=10kg的物体在水平面上向左运动,物体与水平面间的动摩擦因数为0、2,与此同时物体受到一个水平向右的推力F=20N的作用,则物体产生的加速度是(g取为10m/s2)A、0B、4m/s2,水平向右C、2m/s2,水平向左D、2m/s2,水平向右6、如图所示,质量为60kg的运动员的两脚各用750N的水平力蹬着两竖直墙壁匀速下滑,若他从离地12m高处无初速匀加速下滑2s可落地,则此过程中他的两脚蹬墙的水平力均应等于(g=10m/s2)A、150NB、300NC、450ND、600N7、如图所示,传送带保持1m/s的速度运动,现将一质量为0、5kg的小物体从传送带左端放上,设物体与皮带间动摩擦因数为0、1,传送带两端水平距离为2、5m,则物体从左端运动到右端所经历的时间为()A、B、C、3sD、5sAθ8、如图所示,一物体从竖直平面内圆环的最高点A处由静止开始沿光滑弦轨道AB下滑至B点,那么()①只要知道弦长,就能求出运动时间θ②只要知道圆半径,就能求出运动时间③只要知道倾角θ,就能求出运动时间④只要知道弦长和倾角就能求出运动时间BθA、只有①B、只有②C、①③D、②④t/sv/(ms-1)011-9129、将物体竖直上抛,假设运动过程中空气阻力不变,其速度–时间图象如图所示,则物体所受的重力和空气阻力之比为()A、1:10B、10:1C、9:1D、8:110、如图所示,带斜面的小车各面都光滑,车上放一均匀球,当小车向右匀速运动时,斜面对球的支持力为FN1,平板对球的支持力FN2,当小车以加速度a匀加速运动时,球的位置不变,下列说法正确的是()A、FN1由无到有,FN2变大B、FN1由无到有,FN2变小C、FN1由小到大,FN2不变D、FN1由小到大,FN2变大二、非选择题v/(m/s)10501020304050t/sαβAαBα11、汽车在两站间行驶的v-t图象如图所示,车所受阻力恒定,在BC段,汽车关闭了发动机,汽车质量为4t,由图可知,汽车在BC段的加速度大小为m/s2,在AB 段的牵引力大小为N。
在OA段汽车的牵引力大小为N。
v2v112、物体的质量除了用天平等计量仪器直接测量外,还可以根据动力学的方法测量,1966年曾在地球的上空完成了以牛顿第二定律为基础的测定地球卫星及其它飞行物的质量的实验,在实验时,用双子星号宇宙飞船(其质量m1已在地面上测量了)去接触正在轨道上运行的卫星(其质量m2未知的),接触后开动飞船尾部的推进器,使宇宙飞船和卫星共同加速如图所示,已知推进器产生的m2平均推力F,在开动推进器时间△t的过程中,v3m1测得宇宙飞船和地球卫星的速度改变△v,试写出m1+m2实验测定地球卫星质量m2的表达式。
(须用上述给定已知物理量)13、如图所示,将金属块用压缩轻弹簧卡在一个矩形箱中,在箱的上顶板和下底板上安有压力传感器,箱可以沿竖直轨道运动,当箱以a=2m/s2的加速度做竖直向上的匀减速直线运动时,上顶板的传感器显示的压力为6、0N,下底板的传感器显示的压力为10、0N,取g=10m/s2(1)若上顶板的传感器的示数是下底板传感器示数的一半,试判断箱的运动情况。
(2)要使上顶板传感器的示数为零,箱沿竖直方向的运动可能是怎样的?14、某航空公司的一架客机,在正常航线上做水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降了1700m,造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动,取g=10m/s2,试计算:(1)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力才能使乘客不脱离座椅?(2)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位?θ=37ABA15、传送带与水平面夹角37,皮带以10m/s的速率运动,皮带轮沿顺时针方向转动,如图所示,今在传送带上端A处无初速地放上一个质量为m=0、5kg的小物块,它与传送带间的动摩擦因数为0、5,若传送带A到B的长度为16m,g取10m/s2,则物体从A运动到B的时间为多少?【课后反思】_____________________________________________________ _________________________________________________________ _________________________________________________________ _________________________。