【典型题】高考数学试题(带答案)
2023年全国统一高考数学试卷(新高考II)(解析版)

2023年全国统一高考数学试卷(新高考Ⅱ)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共计40分。
每小题给出的四个选项中,只有一个选项是正确的。
请把正确的选项填涂在答题卡相应的位置上。
1.(5分)在复平面内,(1+3i)(3﹣i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解答】解:(1+3i)(3﹣i)=3﹣i+9i+3=6+8i,则在复平面内,(1+3i)(3﹣i)对应的点的坐标为(6,8),位于第一象限.故选:A.2.(5分)设集合A={0,﹣a},B={1,a﹣2,2a﹣2},若A⊆B,则a=( )A.2B.1C.D.﹣1【答案】B【解答】解:依题意,a﹣2=0或2a﹣2=0,当a﹣2=0时,解得a=2,此时A={0,﹣2},B={1,0,2},不符合题意;当2a﹣2=0时,解得a=1,此时A={0,﹣1},B={1,﹣1,0},符合题意.故选:B.3.(5分)某学校为了了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( )A.种B.种C.种D.种【答案】D【解答】解:∵初中部和高中部分别有400和200名学生,∴人数比例为400:200=2:1,则需要从初中部抽取40人,高中部取20人即可,则有种.故选:D.4.(5分)若f(x)=(x+a)为偶函数,则a=( )A.﹣1B.0C.D.1【答案】B【解答】解:由>0,得x>或x<﹣,由f(x)是偶函数,∴f(﹣x)=f(x),得(﹣x+a)ln=(x+a),即(﹣x+a)ln=(﹣x+a)ln()﹣1=(x﹣a)ln=(x+a),∴x﹣a=x+a,得﹣a=a,得a=0.故选:B.5.(5分)已知椭圆C:的左焦点和右焦点分别为F1和F2,直线y=x+m与C交于点A,B两点,若△F1AB面积是△F2AB面积的两倍,则m=( )A.B.C.D.【答案】C【解答】解:记直线y=x+m与x轴交于M(﹣m,0),椭圆C:的左,右焦点分别为F1(﹣,0),F2(,0),由△F1AB面积是△F2AB的2倍,可得|F1M|=2|F2M|,∴|﹣﹣x M|=2|﹣x M|,解得x M=或x M=3,∴﹣m=或﹣m=3,∴m=﹣或m=﹣3,联立可得,4x2+6mx+3m2﹣3=0,∵直线y=x+m与C相交,所以Δ>0,解得m2<4,∴m=﹣3不符合题意,故m=.故选:C.6.(5分)已知函数f(x)=ae x﹣lnx在区间(1,2)上单调递增,则a的最小值为( )A.e2B.e C.e﹣1D.e﹣2【答案】C【解答】解:对函数f(x)求导可得,,依题意,在(1,2)上恒成立,即在(1,2)上恒成立,设,则,易知当x∈(1,2)时,g′(x)<0,则函数g(x)在(1,2)上单调递减,则.故选:C.7.(5分)已知α为锐角,cosα=,则sin=( )A.B.C.D.【答案】D【解答】解:cosα=,则cosα=,故=1﹣cosα=,即==,∵α为锐角,∴,∴sin=.故选:D.8.(5分)记S n为等比数列{a n}的前n项和,若S4=﹣5,S6=21S2,则S8=( )A.120B.85C.﹣85D.﹣120【答案】C【解答】解:等比数列{a n}中,S4=﹣5,S6=21S2,显然公比q≠1,设首项为a1,则=﹣5①,=②,化简②得q4+q2﹣20=0,解得q2=4或q2=﹣5(不合题意,舍去),代入①得=,所以S8==(1﹣q4)(1+q4)=×(﹣15)×(1+16)=﹣85.故选:C.二、选择题:本大题共小4题,每小题5分,共计20分。
2023年全国统一高考数学试卷(理科)(甲卷)(解析版)

2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。
高考数学历年真题及答案详解

高考数学历年真题及答案详解一、选择题1. 题目描述:在平面直角坐标系中,点A(-3, 4)关于y轴的对称点是()。
A. (3, -4)B. (-3, -4)C. (-3, 4)D. (3, 4)答案解析:点关于y轴对称即x取相反数,所以答案为A.(3, -4)。
2. 题目描述:已知函数 f(x) = 2^(2x-3),则当 x = 1 时,f(x) 的值是()。
A. 1B. 2C. 4D. 8答案解析:将x=1代入函数中,即f(1) = 2^(2*1-3),化简得f(1)= 2^(-1) = 1/2,所以答案为A. 1。
二、填空题1. 题目描述:已知三角形ABC中,∠B = 90°,AC = 5 cm,BC =12 cm,求AB的长度。
答案解析:根据勾股定理,AB^2 + BC^2 = AC^2,代入已知数据得AB^2 + 12^2 = 5^2,化简得AB^2 = 25 - 144 = -119,由于长度不能为负数,所以不存在满足要求的三角形ABC。
2. 题目描述:若a1, a2, a3为等差数列的前三项,且满足a1 + a3 = 18,a2 - a3 = 4,求a1, a2和a3的值。
答案解析:由等差数列的性质可知,a2 = (a1 + a3) / 2,代入已知数据得a2 = 9.5,将a2带入a2 - a3 = 4解得a3 = 5.5,再将a3带入a1 +a3 = 18解得a1 = 12.5,所以a1 = 12.5,a2 = 9.5,a3 = 5.5。
三、解答题1. 题目描述:设函数f(x) = cos(x + 1) - sin(x - 1),求f(x)的单调递增区间。
答案解析:对f(x)求导得f'(x) = -sin(x + 1) - cos(x - 1),令f'(x) = 0,解方程得x = 1/4 (4πn + 3π/2) - 1,其中n为整数。
通过二阶导数的符号判断可知,当x < -1或x > -3/4 + 4πn,f(x)单调递增;当-3/4 + 4πn < x< -1,f(x)单调递减。
数学高考真题答案及解析版

数学高考真题答案及解析版一、选择题1. 本题考查函数的性质和应用。
设函数f(x) = 2^x - 3,若f(x) = 5,则x = 2。
因为f(x)在R上是增函数,所以f(x) > 5 当 x > 2。
因此,选项A正确。
2. 根据题目,我们需要求解不等式。
首先,将不等式整理为标准形式:3x - 2 > 7。
解得x > 3,所以选项C是正确答案。
3. 题目涉及三角函数的图像和性质。
正弦函数y = sin(x)在区间[0,2π]内的最大值为1,最小值为-1。
因此,选项B描述正确。
4. 这是一个关于复数的问题。
设复数z = a + bi,其中a和b是实数。
根据题目条件,z的模长为5,即√(a^2 + b^2) = 5。
又因为z的实部为3,即a = 3。
代入模长公式,解得b = 4。
所以,复数z = 3 +4i,选项D正确。
5. 本题要求我们利用概率的基本原理计算事件的概率。
根据古典概型,事件A的概率P(A) = 事件A的基本事件数 / 总的基本事件数。
这里,事件A是抽取到红色球,有3个红色球和5个蓝色球,总共8个球。
所以,P(A) = 3/8。
选项B是正确答案。
二、填空题1. 题目要求求解几何级数的和。
根据等比数列求和公式,S = a(1 -r^n) / (1 - r),其中a是首项,r是公比,n是项数。
将题目中的数值代入公式,得到S = 1(1 - 2^5) / (1 - 2) = 31/(-1) = -31。
2. 本题考查圆的方程和直线与圆的位置关系。
设圆心为O(0,0),半径r = 3。
直线方程为y = x + 1。
圆心到直线的距离d = |0 - 0 + 1|/ √2 = 1/√2。
因为 d < r,所以直线与圆相交。
根据相交弦的性质,弦长l = 2√(r^2 - d^2) = 2√(9 - 1/2) = √34。
三、解答题1. 首先,我们需要证明函数f(x) = x^3 - 3x^2 + 2x在区间[0,3]上是单调递增的。
2023年全国统一高考数学试卷(理科)(乙卷)(解析版)

2023年全国统一高考数学试卷(理科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则=( )A.1﹣2i B.1+2i C.2﹣i D.2+i【答案】B【解答】解:∵i2=﹣1,i5=i,∴z===1﹣2i,∴=1+2i.故选:B.2.(5分)设集合U=R,集合M={x|x<1},N={x|﹣1<x<2},则{x|x≥2}=( )A.∁U(M∪N)B.N∪∁U M C.∁U(M∩N)D.M∪∁U N【答案】A【解答】解:由题意:M∪N={x|x<2},又U=R,∴∁U(M∪N)={x|x≥2}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.5.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.6.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.7.(5分)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种【答案】C【解答】解:根据题意可得满足题意的选法种数为:=120.故选:C.8.(5分)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,∠AOB =120°,若△PAB的面积等于,则该圆锥的体积为( )A.πB.πC.3πD.3π【答案】B【解答】解:根据题意,设该圆锥的高为h,即PO=h,取AB的中点E,连接PE、OE,由于圆锥PO的底面半径为,即OA=OB=,而∠AOB=120°,故AB===3,同时OE=OA×sin30°=,△PAB中,PA=PB,E为AB的中点,则有PE⊥AB,又由△PAB的面积等于,即PE•AB=,变形可得PE=,而PE=,则有h2+=,解可得h=,故该圆锥的体积V=π×()2h=π.故选:B.9.(5分)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C﹣AB﹣D为150°,则直线CD与平面ABC所成角的正切值为( )A.B.C.D.【答案】C【解答】解:如图,取AB的中点E,连接CE,DE,则根据题意易得AB⊥CE,AB⊥DE,∴二面角C﹣AB﹣D的平面角为∠CED=150°,∵AB⊥CE,AB⊥DE,且CE∩DE=E,∴AB⊥平面CED,又AB⊂平面ABC,∴平面CED⊥平面ABC,∴CD在平面ABC内的射影为CE,∴直线CD与平面ABC所成角为∠DCE,过D作DH垂直CE所在直线,垂足点为H,设等腰直角三角形ABC的斜边长为2,则可易得CE=1,DE=,又∠DEH=30°,∴DH=,EH=,∴CH=1+=,∴tan∠DCE===.故选:C.10.(5分)已知等差数列{a n}的公差为,集合S={cos a n|n∈N*},若S={a,b},则ab=( )A.﹣1B.﹣C.0D.【答案】B【解答】解:设等差数列{a n}的首项为a1,又公差为,∴,∴,其周期为=3,又根据题意可知S集合中仅有两个元素,∴可利用对称性,对a n取特值,如a1=0,,,•,或,,a3=π,•,代入集合S中计算易得:ab=.故选:B.11.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.12.(5分)已知⊙O的半径为1,直线PA与⊙O相切于点A,直线PB与⊙O交于B,C两点,D为BC的中点,若|PO|=,则•的最大值为( )A.B.C.1+D.2+【答案】A【解答】解:如图,设∠OPC=α,则,根据题意可得:∠APO=45°,∴==cos2α﹣sinαcosα==,又,∴当,α=,cos()=1时,取得最大值.故选:A.二、填空题:本题共4小题,每小题5分,共20分。
高考真题数学试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = x^3 - 3x,则f'(x) = ()A. 3x^2 - 3B. 3x^2 + 3C. x^2 - 3D. x^2 + 3答案:A2. 下列各数中,不是无理数的是()A. √2B. πC. 0.1010010001...D. √(9/16)答案:D3. 已知等差数列{an}的前三项分别为1,2,3,则该数列的公差d = ()A. 1B. 2C. 3D. 0答案:B4. 已知复数z = 1 + 2i,则|z| = ()A. 1B. 2C. √5D. 3答案:C5. 若等比数列{an}的首项为a1,公比为q,则S3 = a1 + a2 + a3 = ()A. a1q^2B. a1(1 + q + q^2)C. a1(1 - q^3) / (1 - q)D. a1(1 - q^2)答案:B6. 下列函数中,为奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^4答案:C7. 若直角三角形ABC中,∠C = 90°,a = 3,b = 4,则斜边c的长度为()A. 5B. 6C. 7D. 8答案:A8. 已知圆C:x^2 + y^2 - 4x - 6y + 9 = 0,则圆心C的坐标为()A. (2, 3)B. (2, -3)C. (-2, 3)D. (-2, -3)答案:A9. 若直线l的斜率为k,且直线l与x轴的交点为(1, 0),则直线l的方程为()A. y = kx + kB. y = kx - kC. y = -kx + kD. y = -kx - k答案:A10. 已知函数f(x) = e^x - x,则f'(x) = ()A. e^x - 1B. e^x + 1C. e^x - xD. e^x + x答案:A二、填空题(本大题共5小题,每小题5分,共25分。
高考数学试卷真题及答案
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = 2x - 3的图像是:A. 抛物线B. 双曲线C. 直线D. 椭圆答案:C2. 若复数z满足|z - 1| = 2,则复数z的取值范围是:A. z = 1 ± 2iB. z = 1 ± √2iC. z = 1 ± 2D. z = 1 ± √3i答案:B3. 已知等差数列{an}的前n项和为Sn,若S5 = 20,a1 = 2,则公差d为:A. 2B. 4C. 6D. 8答案:A4. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 3,b = 4,c = 5,则sinA的值为:A. 3/5B. 4/5D. 5/3答案:A5. 函数y = log2(x - 1)的图像是:A. 抛物线B. 双曲线C. 直线D. 椭圆答案:B6. 已知等比数列{an}的前n项和为Sn,若S5 = 32,a1 = 2,则公比q为:A. 2B. 4C. 8D. 16答案:B7. 在直角坐标系中,点P(2, 3)关于直线y = x的对称点为:A. (3, 2)B. (2, 3)C. (-3, -2)D. (-2, -3)答案:A8. 若函数f(x) = x^2 - 4x + 4在区间[1, 3]上单调递增,则a的值为:A. 1C. 3D. 4答案:B9. 已知函数f(x) = x^3 - 3x + 2,则f(x)的图像是:A. 抛物线B. 双曲线C. 直线D. 椭圆答案:A10. 在等差数列{an}中,若a1 = 1,d = 2,则第10项an为:A. 19B. 20C. 21D. 22答案:C二、填空题(本大题共5小题,每小题5分,共25分。
)11. 函数f(x) = x^2 - 2x + 1的顶点坐标为__________。
答案: (1, 0)12. 若复数z满足|z - 1| = 2,则z的取值范围是__________。
2024年高考数学试题(新课标I卷)解析版
2024年高考数学试题(新课标I 卷)一、选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.1.已知集合A =x |-5<x 3<5 ,B ={-3,-1,0,2,3},则A ∩B =A.{-1,0} B.{2,3}C.{-3,-1,0}D.{-1,0,2}【答案】A【解析】A =(-35,35)⇒A ∩B ={-1,0},选A.2.若zz -1=1+i ,则z =A.-1-i B.-1+iC.1-iD.1+i【答案】C【解析】z z -1=1+i ⇒z =1+i i =1-i ,选C.3.已知向量a =0,1 ,b =2,x ,若b ⊥b -4a ,则x =A.-2 B.-1C.1D.2【答案】D【解析】b ⊥b -4a ⇒2×2+x (x -4)=0⇒x =2,选D.4.已知cos α+β =m ,tan αtan β=2,则cos α-β =A.-3m B.-m3C.m 3D.3m【答案】A【解析】αcos βcos -αsin βsin =m ,αsin βsin =2αcos βcos ⇒αcos βcos =-m ,αsin βsin =-2m ,所以cos α-β =αcos βcos +αsin βsin =-3m ,选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23π B.33πC.63πD.93π【答案】B【解析】如图所示,h =3,圆锥母线长l =r 2+3,h h rrl由题知23πr =πr r 2+3⇒r =3⇒V 锥=13×π×32×3=33π.选B.6.已知函数f x =-x 2-2ax -a ,x <0,e x +ln x +1 ,x ≥0 在R 上单调递增,则实数a 的取值范围是A.(-∞,0]B.-1,0C.-1,1D.[0,+∞)【答案】B 【解析】由题知-a ≥0,-a ≤1⇒-1≤a ≤0,选B.7.当x ∈0,2π 时,曲线y =sin x 与y =2sin (3x -π6)的交点个数为A.3 B.4C.6D.8【答案】C【解析】作出两个函数的图象,2π3π2ππ2Oxy 由图知,两个函数的交点个数为6,选C.【总结】五点作图法,处理作图,好像没有其他解法.8.已知函数f x 的定义域为R ,f x >f x -1 +f x -2 ,且当x <3时,f x =x ,则下列结论中一定正确的是A.f 10 >100 B.f 20 >1000C.f 10 <1000D.f 20 <10000【答案】B【解析】由已知得f (1)=1,f (2)=2,思路一:常规推理+计算因为f x >f x -1 +f x -2 ,所以f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,f (11)>144,f (12)>233,f (13)>377,f (14)>610,f (15)>987,f (16)>1597,f (17)>2584,f (18)>4181,f (19)>6765,f (20)>10946,⋯,所以f (20)>f (19)>⋯>f (16)>1000,选B.思路二:推理+估算由题知,当x >3时,f (x )上不封顶,C ,D 错误;f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,当x >4时,f (x )>f x -1 +f x -2 >2f (x -2),所以f (20)>2f (18)>22f (16)>⋯>25f (10)>1000,A 错误,B 正确;故选B.【总结】需要耐心的计算.二、多选题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x=2.1,样本方差s 2=0.01,已知该种植区以往的亩收入X 服从正态分布N 1.8,0.12 ,假设推动出口后的亩收入Y 服从正态分布x ,s 2,则(若随机变量Z 服从正态分布N μ,σ2 ,则P Z <μ+σ ≈0.8413)A.P X >2 >0.2 B.P X >2 <0.5C.P Y >2 >0.5 D.P Y >2 <0.8【答案】BC【解析】画个图,对于X :μ=1.8,σ=0.1;对于Y :μ=2.1,σ=0.1,1.81.7 1.92.12.0 2.22.0由题知P (X <1.9)=0.8413,所以P (X >2)<P (x >1.9)=0.1587<0.2<0.5,A 错误,B 正确;因为P (Y <2.2)=0.8413,所以P Y >2 =P Y <2.2 =0.8413>0.8>0.5,C 正确,D 错误;故选BC.10.设函数f x =x -1 2x -4 ,则A.x =3是f x 的极小值点B.当0<x <1时,f x <f x 2C.当1<x <2时,-4<f 2x -1 <0D.当-1<x <0时,f 2-x >f x【答案】ACD【解析】f '(x )=2(x -1)(x -4)+(x -1)2=3(x -1)(x -3),作出f (x )的图象如图所示,x =1x =3所以x =1是f x 的极大值点,x =3是f x 的极小值点,A 正确;当0<x <1时,f (x )在(0,1)↗,因为x >x 2,所以f (x )>f (x 2),B 错误;当1<x <2时,t =2x -1∈(1,3),因为f (t )在(1,3)↘,所以f (t )∈(-4,0),即-4<f 2x -1 <0,C 正确;当-1<x <0时,x -1<0,f 2-x -f x =(x -1)2(-2-x )-x -1 2x -4 =-2(x -1)3>0,所以f 2-x >f x ,D 正确;综上,选ACD.【总结】选项B 用了单调性法,选项C 转化为值域,选项D 用了最常见的作差法.11.造型Ժ可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点F 2,0 的距离与到定直线x =a a <0 的距离之积为4,则OxyFA.a =-2B.点22,0 在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD 【解析】如图所示,OxyFx =aP对于A ,由题知,O 到点F 的距离等于与到定直线x =a a <0 的距离之积为4,所以(-a )∙2=4,解得a =-2,A 正确;对于B ,设点P (x ,y )是曲线C 上任意一点,则(x +2)(x -2)2+y 2=4,即(x -2)2+y 2=(4x +2)2,因为(22-2)2=(422+2)2,所以点22,0 在C 上,B 正确;对于C ,因为y 2=(4x +2)2-(x -2)2,记f (x )=(4x +2)2-(x -2)2,x >0,所以f '(x )=-32(x +2)3-2(x -2)=2[-16(x +2)3+2-x ],发现f (2)=1,f '(2)=-12<0,所以存在0<x 1<2,使得当x ∈(x 1,2)时,f '(x )<0,所以f (x )在(x 1,2)↘,所以f (x )>f (2)=1,即f (x )的最大值一定大于1,C 错误;对于D ,y 02=(4x 0+2)2-(x 0-2)2≤(4x 0+2)2,所以y 0≤4x 0+2,D 正确;综上,选ABD.【总结】本题相对要难一点,选出来一个答案不难.三、填空题:本大题共3小题,每小题5分,共计15分.12.设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2作平行于y 轴的直线交C 于A ,B两点,若F 1A =13,AB =10,则C 的离心率为.【答案】32【解析】由题知|F 1F 2|=2c =12,F 2A =b 2a =5,c 2=a 2+b2 ,解得a =4,b =25,c =6,所以C 的离心率e =c a =32.13.若曲线y =e x +x 在点0,1 处的切线也是曲线y =ln x +1 +a 的切线,则a =.【答案】2ln 【解析】设f (x )=e x +x ,g (x )=ln x +1 +a ,则f '(x )=e x +1,g '(x )=1x +1,即f '(0)=2,所以f (x )在(0,1)处的切线方程为l :y -1=2(x -0),即y =2x +1,设l 与g (x )相切于点A (x 0,(x 0+1)ln +a ),则g '(x 0)=1x 0+1=2,解得x 0=-12,所以(-12+1)ln +a =0,解得a =2ln .14.甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上的数字大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于2的概率为.【答案】12【解析】因为甲出1一定输,要使甲的总分不小于2,则甲得3分或得2分.第一类:甲得3分只有一种可能:1-8,3-2,5-4,7-6.第二类:甲得2分(1)甲出3和出5赢,其余输,共1种:3-2,5-4,1-6,7-8;(2)甲出3和出7赢,其余输,共3种:3-2,7-6,1-4,5-8;3-2,7-4,1-6,5-8;3-2,7-4,1-8,5-6;(3)甲出5和出7赢,其余输,共7种:5-4,7-6,1-2,3-8;5-4,7-2,1-6,3-8;5-4,7-2,1-8,3-6;5-2,7-6,1-4,3-8;5-2,7-6,1-8,3-4;5-2,7-4,1-6,3-8;5-2,7-4,1-8,3-6;所以甲的总得分不小于2的共有12种可能,所以所求的概率p =12A 44=12.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos B ,a 2+b 2-c 2=2ab .(1)求B ;(2)若△ABC 的面积为3+3,求c .【答案】(1)B =π3;(2)2 2.【解析】(1)因为a 2+b 2-c 2=2ab ,所以C cos =a 2+b 2-c 22ab =2ab 2ab=22,因为0<C <π,所以C =π4,又sin C =2cos B ,所以22=2B cos ,即B cos =12,因为0<B <π,所以B =π3.(2)方法一:由(1)知A =π-B -C =5π12,所以A sin =(π6+π4)sin =6+24,因为a A sin =b B sin =cCsin =k >0,所以S =12ac B sin =12k 2A sin B sin C sin =12k 2∙6+24∙32∙22=3+3,所以k 2=16,即k =4,所以c =k C sin =4×22=2 2.16.(15分)已知A 0,3 和P (3,32)为椭圆C :x 2a 2+y 2b2=1a >b >0 上两点.(1)求椭圆C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求直线l 的方程.【答案】(1)12;(2)x -2y =0或3x -2y -6=0.【解析】(1)由题知b =3,9a 2+94b2=1,解得a =23,b =3 ,所以c =a 2-b 2=3,所以椭圆C的离心率e=ca=12.(2)由(1)知,椭圆C的方程为x212+y29=1.O xyPABD当直线l的斜率不存在时,B(3,-32),此时S=92,不满足题意;当直线l的斜率存在时,设l:y=k(x-3)+3 2,代入x212+y29=1,整理得(3+4k2)x2-8k(3k-32)x+36k2-36k-27=0,设B(x1,y1),由韦达定理得3+x1=8k(3k-32)3+4k2,3x1=36k2-36k-273+4k2所以|BP|=1+k2|x1-3|=1+k2(8k(3k-32)3+4k2)2-364k2-4k-33+4k2=43k2+13k2+9k+2744k2+3,点A到直线PB的距离h2=|3k+32|k2+1,所以△ABP的面积S=12|BP|∙h2=|3k+32|k2+1=9,解得k=12或32,所以直线l的方程为y=12x或y=32x-3.综上,直线l的方程为x-2y=0或3x-2y-6=0.17.(15分)如图,四棱锥P-ABCD中,P A⊥底面ABCD,P A=AC=2,BC=1,AB=3.(1)若AD⊥PB,证明:AD⎳平面PBC;(2)若AD⊥DC,且二面角A-CP-D的正弦值为427,求AD.AB CDP 【答案】(1)略;(2)3.【解析】(1)证明:因为P A ⊥底面ABCD ,BC ⊂底面ABCD ,所以P A ⊥BC ,P A ⊥AD ,因为AC =2,BC =1,AB =3,所以AB 2+BC 2=AC 2,即AB ⊥BC ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥平面P AB ,因为PB ⊥AD ,P A ∩PB =P ,P A ,PB ⊂平面P AB ,所以AD ⊥平面P AB ,所以AD ⎳BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以AD ⎳平面PBC .(2)过D 作DQ ⊥平面ABCD ,以DA ,DC ,DQ 分别为x ,y ,z 轴,建立空间直角坐标系D -xyz ,A BCDPz xyQ设DA =a ,DC =b ,则D (0,0,0),A (a ,0,0),C (0,b ,0),P (a ,0,2),且a 2+b 2=4,①所以AC =(-a ,b ,0),AP =(0,0,2),DC =(0,b ,0),DP =(a ,0,2),设平面APC 的一个法向量为n 1=(x 1,y 1,z 1),则AC∙n 1=0,AP ∙n 1=0 ,即-ax 1+by 1=0,2z 1=0 ,令x 1=b ,则n 1=(b ,a ,0),设平面PCD 的一个法向量为n 2=(x 2,y 2,z 2),则DC∙n 2=0,DP ∙n 2=0 ,即by 2=0,ax 1+2z 1=0 ,令x 1=2,则n 2=(2,0,-a ),所以‹n 1,n 2›cos =n 1∙n 2|n 1||n 2|=2ba 2+b 2a 2+4=ba 2+4,设二面角A -CP -D 的平面角为θ,则θsin =427,所以|θcos |=|‹n 1,n 2›cos |=b a 2+4=17,即7b 2=a 2+4,②由①②得a =3,b =1,所以AD =a = 3.【总结】本题建系可以设两个变量,也可以设一个变量,注意运算.18.(17分)已知函数f x =lnx2-x+ax +b x -1 3.(1)若b =0,且f x ≥0,求a 的最小值;(2)证明:曲线y =f x 是中心对称图形;(3)若f x >-2当且仅当1<x <2,求b 的取值范围.【答案】(1)-2;(2)略;(3)[-23,+∞).【解析】(1)由x2-x>0,得0<x <2,所以f (x )的定义域为(0,2),当b =0时,f (x )=ln x 2-x +ax ,f '(x )=1x +12-x +a ≥0,因为1x +12-x ≥(1+1)2x +2-x =2,当且仅当x =1时取等号,所以f '(x )min =2+a ≥0,解得a ≥-2,所以a 的最小值为-2;(2)发现f (1)=a ,猜测f (x )关于(1,a )对称,下面尝试证明此结论,因为f (1+x )+f (1-x )=ln 1+x 1-x +a (1+x )+bx 3+ln 1-x1+x+a (1-x )+b -x 3=2a ,所以f (x )关于(1,a )对称.(3)当且仅当1<x <2时f (x )>-2,则f (1)=a =-2,所以f (x )=ln x2-x-2x +b x -1 3,f '(x )=1x +12-x -2+3b (x -1)2=(x -1)22(2-x )+3b (x -1)2=(x -1)2[2x (2-x )+3b ]~2x (2-x )+3b ,发现f '(1)=2+3b ≥0,则b ≥-23,当b ≥-23时,2x (2-x )+3b ≥2x (2-x )-2=2(x -1)22(2-x )≥0,即f '(x )≥0,所以f (x )在(0,2)↗,因为f (1)=-2,所以f (x )>-2=f (1)⇔1<x <2,符合题意;当b <-23时,则2x (2-x )∈[2,+∞),f '(x )∈[3b +2,+∞),存在1<x 1<2,使得当x ∈(1,x 1)时,f '(x )<0,f (x )在(1,x 1)↘,所以f (x )<f (1)=-2,不符合题意;综上,实数b 的取值范围是[-23,+∞).19.(17分)设m 为正整数,数列a 1,a 2,⋯,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使得数列a 1,a 2,⋯,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,⋯,a 4m +2是2,13 -可分数列;(3)从1,2,⋯,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)(1,2),(5,6),(1,6);(2)略;(3)略.【解析】(1)对于特殊的情况,我们不难分析出来,要么一边删除2个,要么两边各删除1个,所以满足题意的(i ,j )为:(1,2),(5,6),(1,6).(2)下标和项是成等差的充要条件,即m ,n ,k 成等差⇔a m ,a n ,a k 成等差(证明略).首先我们证明,当m =3时成立,那么m ≥3时都会成立.当m =3时,4m +2=14,那么当m >3时,整个{a n }可以拆成两段,为1≤n ≤14和n >14,不管m 取值如何,都有4m -12个数,也就是可以分成m -3组,而这m -3组只要按照原来的顺序依次分组,显然都是等差数列.如:m =6,前面14个按照m =3分组,后面的按照顺序,每4个一组,显然这样分满足题意.下面证明m =3时成立,可以采用列举法,只要有一种方法成立就行,去掉i =2,j =13,可以分为{1,4,7,10},{5,8,11,14},{3,6,9,12}这三组,满足题意.(3)设在给定m 的情况下,(i ,j )的组数为b m ,当m 变成m +1时,数列就变成了a 1,a 2,a 3,a 4,a 5,⋯,a 4m +2,a 4m +3,a 4m +4,a 4m +5,a 4m +6,这里可以分成3组,前4个一组即{a 1,a 2,a 3,a 4},中间的一组,后4个一组即{a 4m +3,a 4m +4,a 4m +5,a 4m +6},此时我们要在这里面删除2个数,那么会有以下几种情况:一、两个都在中间中间有4m -2个数,且为等差数列,删除2个的话,总数为b m -1种;二、一个在第一组,一个在中间组或两个都在第一组第一组和中间组连起来,会变成4m +2个数的等差数列,这里面总共有b m 种方法,但是要去掉两个都在中间的情况,共有b m -b m -1种;三、一个在中间组,一个在最后一组,或者都在最后一组和上面一样,也是共有b m -b m -1种;四、一个在第一组,一个在最后一组此时,将a 1,a 4m +6同时删除是肯定可以的,这算一种;然后,从(2)的结果来看,把a 2,a 4m +5同时删除也是可以的,因为m =3成立之后,当m >3时,只是相当于往中间加了4个连续的等差数而已,其它是不变的,这也算一种.综上,就会有b m +1≥b m -1+2(b m -b m -1)+2=2b m -b m -1+2,因为b 0=0,b 1=3,所以b m ≥m 2+2m ,如果你是随便删除,总共有C 24m +2=8m 2+6m +1种,所以P m =b m C 24m +2≥m 2+2m 8m 2+6m +1>18.。
高考数学试题140道及答案
高考数学试题140道及答案一、选择题(本题共8小题,每小题5分,共40分)1. 若函数f(x) = x^2 - 4x + 3的零点为x1和x2,则x1 + x2的值为:A. 2B. 3C. 4D. 5答案:B2. 已知向量a = (3, -1),向量b = (2, 2),则向量a与向量b的点积为:A. 4B. 5C. 6D. 7答案:A3. 若sin(α) = 1/2,则cos(2α)的值为:A. 1/2B. -1/2C. 0D. -1答案:B4. 已知数列{an}为等差数列,且a1 = 2,a3 = 6,则数列的公差d为:A. 1B. 2C. 3D. 4答案:B5. 函数y = ln(x)的导数为:A. 1/xB. xC. x^2D. 1/x^2答案:A6. 已知抛物线y = x^2 - 4x + 4的顶点坐标为:A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A7. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且a = 2,则b的值为:A. 2B. 3C. 4D. 5答案:B8. 已知圆的方程为(x - 1)^2 + (y - 2)^2 = 9,圆心到直线x + y - 3 = 0的距离为:A. 1B. 2C. 3D. 4答案:C二、填空题(本题共6小题,每小题5分,共30分)9. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = _______。
答案:3x^2 - 6x10. 已知三角形ABC的边长分别为a = 3,b = 4,c = 5,求三角形的面积S = _______。
答案:611. 已知等比数列{bn}的首项b1 = 2,公比q = 3,求第n项bn = _______。
答案:2 * 3^(n-1)12. 已知直线l的方程为y = 2x + 1,求直线l与x轴的交点坐标为(_______,_______)。
2023年高考全国乙卷理科数学试题(带答案)
绝密★启用前2023年普通高等学校招生全国统一考试(全国乙卷∙理科)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设z =2+i1+i 2+i5,则z =()A.1-2iB.1+2iC.2-iD.2+i2.设集合U =R ,集合M ={x x <1 },N ={x -1<x <2 },则{x x ≥2 } =()A.C U (M ∪N )B.N ∪C U MC.C U (M ⋂N )D.M ∪C U N3.3、如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.304.已知f (x )=xe x e ax -1是偶函数,则a =()A.-2B.-1C.1D.25.设O 为平面坐标系的坐标原点,在区域{(x ,y )1≤x 2+y 2≤4 }内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.126.已知函数f (x )=sin (ωx +φ)在区间(π6,2π3)单调递增,直线x =π6和x =2π3为函数y =f (x )的图像的两条对称轴,则f (-5π12)=()A.-32B.-12C.12D.327.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种8.已知圆锥PO 的底面半径为3,O 为底面圆心,PA ,PB 为圆锥的母线,∠AOB =120∘,若△PAB的面积等于934,则该圆锥的体积为()A.πB.6πC.3πD.36π9.已知△ABC 为等腰三角形,AB 为斜边,△ABD 为等边三角形,若二面角C -AB -D 为150° ,则直线CD 与平面ABC 所成角的正切值为()A.15B.225C.35D.2510.已知等差数列{a n }的公差为2π3,集合S =cosa n n ∈ N * ,若S ={a b },则ab =()A.-1B.-12C.D.1211.设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.(-1,1)B.(-1,2)C.(1,3)D.(-1,-4)12.已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若|PO |=2,则PA ∙PD的最大值为()A.1+22B.1+222C.1+2D.2+2二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【典型题】高考数学试题(带答案)一、选择题1.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件3为“落地时向上的点数是偶数”,事件。
为“落地时向上的点数是3的倍数”,事件。
为“落地时向上的点 数是6或4” ,则下列每对事件是互斥事件但不是对立事件的是()c. A 与。
4 .已知平面向量石是非零向量,I] 1=2, £_L(£+26),则向量B 在向量£方向上的投影 为()A. 1B. -1C. 2D. -25 .设之£火,则“;1 = 一3” 是“直线2%r+(/l -1)),= 1 与直线6x+(l —2)y = 4平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件6 .对于不等式某同学应用数学归纳法的证明过程如下: (1)当n=1时,+ 1 <1+1,不等式成立.⑵假设当n 二k(k£N')时,不等式成立,即 那么当n=k+l 时,J(k + 1). +(k + l) = Jk2 + 3k +2 < Jk' + 3k + 2)+(k + 2) = J(k + 2)? = (k+l)+l, 所以当n=k+1时,不等式也成立.根据⑴和(2),可知对于任何nGN*,不等式均成立. 则上述证法()A.过程全部正确B. n=l 验得不正确C.归纳假设不正确D.从n=k 到n=k+1的证明过程不正确7 .己知2"=3'' = 6,则。
,不可能满足的关系是() A. a + b = abB. a + b>4C. <2D. a 2 +b 2 >88. 一个样本a, 3, 4, 5, 6的平均数是b,且不等式/-6才+。
<0的解集为(a, 6),则这个样 本的标准差是()A. 1B. y/22. 若满足 sin A cos B cos CA.等边三角形 C.等腰直角三角形B.有一个内角为30。
的直角三角形 D.有一个内角为30。
的等腰三角形3.在等比数列{q }中,% =4,则()A. 4B. 16C. 8D. 32D. 2c.9.函数/(X)的图象如图所示,/'(X)为函数/(X)的导函数,下列数值排序正确是A. o<r(2)<r(3)</(3)-/⑵B.0</(3)</(3)-/(2)</\2)C.0<r(3)<r(2)</(3)-/(2)D.0</(3)-/(2)</(2)</Z(3)10.已知当加,n e [-1, 1)时,sin券一sin手■<〃3则以下判断正确的是()A. m>nB. I m |<| n \c. rn<n D.加与〃的大小关系不确定11.设则随机变量X的分布列是X 0 a 11 1 1r>p 3 3 3则当。
在(0, 1)内增大时()A. O(X)增大B, O(x)减小c. O(X)先增大后减小 D. O(x)先减小后增大12.已知全集。
={—1,0,1,2,3},集合A = {0集2}, 5 = {-1,0,1},则QAn6=()A. {-1}B. {0,1}C. {-1,2,3}D. {-101,3}二、填空题13.如图,一辆汽车在一条水平的公路上向正西行驶,至段处时测得公路北侧一山顶。
在西偏北3。
°的方向上,行驶600m后到达B处,测得此山顶在西偏北75 °的方向上,仰角为3。
°,则此山的高度= m.14.函数= 1 ,-2["。
的零点个数是' 72x - 6 + /〃x,x>015.已知圆锥的侧面展开图是一个半径为如〃,圆心角为的扇形,则此圆锥的高为cm16.已知圆台的上、下底面都是球。
的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球。
的表面积为.17.已知复数Z=(1+i)(l+2i),其中i是虚数单位,则Z的模是18.已知点A(OJ),抛物线。
:寸=公(。
>0)的焦点为尸,连接£4,与抛物线。
相交于点M,延长E4,与抛物线C的准线相交于点N,若怛M|:|MN| = 1:3,则实数。
的值为._31Q(16 尸। 5 । 4以周年町+题干——•20•设等比数列{〃“}满足ai+a3=10,az+a4=5,则@迅2..d的最大值为.三、解答题21.已知椭圆二十==1(。
〉〃>0)的离心率为在,以椭圆的2个焦点与1个短轴端点a~ b~ 3为顶点的三角形的面积为2(1)求椭圆的方程;⑵ 如图,斜率为k的直线/过椭圆的右焦点F,且与椭圆交与48两点,以线段A8为直径的圆截直线x = 1所得的弦的长度为小,求直线/的方程.22.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1, 2, 3的人数分别为3, 3, 4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.23.已知2、<256且log?1之^,求函数/(x) = logq-ogw4的最大值和最小值.24.某公司培训员工某项技能,培训有如下两种方式:方式一:周一到周五每天培训1小时,周日测试方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:(1)用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0」),并据此判断哪种培训方式效率更高?(2)在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.25.已知函数/(x) = xlnx.(1)若函数且。
)=空一2,求g(x)的极值;x- X(2)证明:/(X)+ l<e x -x2.(参考数据:hi2 « 0.69 1113«1.10 1、4.48 片〜7.39 )【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:c【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可.详解:在A中,A与B是对立事件,故不正确;在B中,B与C能同时发生,不是互斥事件,所以不正确:在C中,A与D两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D中,C与D能同时发生,不是互斥事件,所以是错误的.综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.2.. C解析:C【解析】【分析】由正弦定理结合条件可得tan3 = tanC = l,从而得三角形的三个内角,进而得三角形的形状.【详解】十… sin A siiiB siiiC sin A cosB cosC由正弦定理可知------ =——■=-------- ,又 ------ =—■一 = ------- ,a b c a b c所以cos6 = sin B、cos C = smC,有tan6 = tanC = 1.所以6 = C = 45'.所以4 = 180°— 45 —45' = 90 .所以AA6C为等腰直角三角形.故选C.【点睛】本题主要考查了正弦定理解三角形,属于基础题.3.. B解析:B【解析】等比数列的性质可知a2 a6=a;= 16,故选B.4.B解析:B【解析】【分析】先根据向量垂直得到£・(£+2加),=0,化简得到£・坂二-2,再根据投影的定义即可求出.【详解】・・,平面向量二石是非零向量,I a l=2,a _L(a+2石),**• a•(1+2办=0,即产(夕+25) = 0即〃* /? = - 2@5 2,向量B在向量公方向上的投影为1 = 丁 = -1, 国2故选B.【点睛】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.5.A解析:A【解析】【分析】当之=-3时,两条直线是平行的,但是若两直线平行,则之=-3或;1 = 1,从而可得两者之间的关系. 【详解】当九=-3时,两条直线的方程分别为:6x + 4y+l = 0, 3x+2y-2 = 0,此时两条直线平行;若两条直线平行,则22x(l—4)= —6(l—/l),所以;1 = 一3或;1 = 1,经检验,两者均符合,综上,“丸=一3”是“直线24x+(>l —1)> = 1与直线6x+(l—4)),=4平行”的充分不必要条件,故选A.【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若〃则4”是真命题,“若4 则〃”是假命题,则〃是9的充分不必要条件;若“若〃则q”是真命题,“若q则是真命题,则〃是q的充分必要条件;若“若〃则q”是假命题,“若q则是真命题,则〃是q的必要不充分条件;若“若〃则q”是假命题,“若q则〃”是假命题,则p是q的既不充分也不必要条件.6.D解析:D【解析】【分析】【详解】题目中当1尸1^+1时不等式的证明没有用到n=k时的不等式,正确的证明过程如下:在(2)中假设〃二女时有Jk? +k <k + l 成立,即J(& + if + (& +1) <(% +1) + ]成立,即〃二女+ 1时成立,故选D.点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关健,两个步骤缺一不可.(2)在用数学归纳法证明问题的过程中,要注意从k到k+1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.7.C解析:C【解析】【分析】根据2“ =3" =6即可得出。
= l + log?3 , /? = l + log32 , log23-log32 = l,log32 + log32>2,即可判断出结果.【详解】•・• 2" = 3〃 = 6;a = log2 6 = l + log2 3 ,b = log3 6 = l + log3 2 ;/. (7 + /? = 2 + log,3 + log32 >4 , «/? = 2 + log23 + log32>4 ,故A,5正确:(«-1)2+(/?-1)2 = (log23)2+(log32y >2log,3-log32 = 2,故C错误;*.* cr +b2 =2 + 2(log2 3 +logs 2) + (log? 3)2+(log32)2> 2 + 4^1og2 3 - log3 2 + 2log2 3- log3 2 = 8 ,故D 正确故C.【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:〃 +〃之2。