高考数学解答题(新高考)数列求和(裂项相消法)(典型例题+题型归类练)(解析版)
高考数学解答题(新高考)数列求和(通项含绝对值,,取整,取小数,数列求和)(解析版)

专题09 数列求和(通项含绝对值数列求和)(典型例题+题型归类练)一、必备秘籍类型一:通项含绝对值 如:求|211|n a n =-的前n 项和n T类型二:通项含取整函数类型三:通项含自定义符号如:记x 〈〉表示x 的个位数字,如20222,20233〈〉=〈〉=二、典型例题类型一:通项含绝对值例题1.(2022·全国·高二)已知n S 是数列{}n a 的前n 项和,且210n S n n =-.(1)求n a ;(2)求数列{}n a 的前n 项和为n T .感悟升华(核心秘籍)对于通项含绝对值问题,如本例求{}n a 的前n 项和n S ,其核心技巧是考虑当n 取何值时0n a >,0n a <, 此时的n 就是讨论的临界值,找到临界值后再进行讨论.第(2)问解题思路点拨:由(1)知,代入即:,注意到当,,所以在求时,去绝对值,要添“”号,当时,,在求时,可直接去掉绝对值. 根据通项正负,去绝对值是否添“”号,进行分类讨论当时,当时,综上:【答案】(1)211n a n =-;(2)2210,151050,6n n n n T n n n ⎧-≤≤=⎨-+≥⎩.(1)由210n S n n =-,可得119a S ==-,2n ≥时,221 10(1)1010211n n n a S S n n n n n -=-=---+-=-,对1n =也成立,可得211n a n =-;(2)当15n ≤≤时,0n a <,即有()2121210n n n n T a a a a a a S n n =++⋯+=-++⋯+=-=-. 当6n ≥时,0n a >,()()21256551050n n n T a a a a a S S S n n =-++⋯+++⋯+=-+-=-+,即有2210,151050,6n n n n T n n n ⎧-≤≤=⎨-+≥⎩.类型二:通项含取整函数例题2.(2022·江苏连云港·模拟预测)已知数列{}n a 是递增的等差数列,{}n b 是各项均为正数的等比数列13a =,12b =,63a b =,528b a =. (1)求数列{}n a 和{}n b 的通项公式;(2)设3n n a c ⎡⎤=⎢⎥⎣⎦,求数列{}n n b c 的前9项的和9S .(注:[]x 表示不超过x 的最大整数)【答案】(1)2n a n =+,2nn b =(2)2926第(2)问解题思路点拨:由(1)知:,,可代入到第(2)问中,求出的通项公式:,再代入求解由于本例求解的是,而不是,故可直接列举,则有代入求解(1)设{}n a 的公差为d ,{}n b 的公比为q ,由113,2,a b == 得()21141158a d b q b q a d ⎧+=⎪⎨=+⎪⎩ ,而0d ≠,0q >,解得391,()25d d ==-舍,22(q q ==-,舍),于是得2n a n =+,2nn b =, 所以数列{}n a 和{}n b 的通项公式分别为2n a n =+,2nn b =;(2)由(1)知,2[][]33n n a n c +==,则有1234567981,2,3c c c c c c c c c =========, 依题意,234678995121212222222323232S =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=2926,综上,2n a n =+,2nn b =,92926S = .类型三:通项含自定义符号例题3.(2022·广东汕头·高二阶段练习)已知数列{}n a {}n a 是以2为公差的等差数列,125,,a a a 成等比数列,数列{}n b 前n 项和为n S ,且22n S n n =+.(1)求数列{}n a 和{}n b 的通项公式;(2)记x 〈〉表示x 的个位数字,如20222,20233〈〉=〈〉=, 求数列1nn a b ⎧⎫⎨⎬〈〉⋅〈〉⎩⎭的前20项的和20T .感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,根据题意表示的个位数字,可将,,列举,通过特殊值探路,寻找规律.列举,,通过特殊值探路,寻找规律.通过列举数列发现:,均为周期数列,且周期为5,故将数列中每5个一组,前20项和可分为4组,1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 1 3 5 7 9 1 33 5 7 9 11 13 15 17 19 21 23 25 35791 3579135代入求解【答案】(1)*21()n a n n =-∈N ,21n b n =+;(2)9. (1)由125,,a a a 成等比数列可得2215a a a =,即2111(2)(8)a a a +=⋅+,解得11a =,所以*21()n a n n =-∈N ,又22,n S n n =+,则有11123b S ==+=,当n ≥2时,2212(1)2(1)21n n n b S S n n n n n -=-=+----=+,所以21n b n =+,又13b =满足此式综上,21,N n b n n *=+∈.(2)因为n a 〈〉,n b 〈〉分别表示n a ,n b 的个位数, 所以{}n a 〈〉,{}n b 〈〉均为周期数列,且周期为5,将数列1nn a b ⎧⎫⎨⎬〈〉⋅〈〉⎩⎭中每5个一组,前20项和可分为4组,其前20项的和20T 为201111141335577991T ⎡⎤=++++⎢⎥⨯⨯⨯⨯⨯⎣⎦1111111114(1)233557799⎡⎤=-+-+-+-+⎢⎥⎣⎦111204(1).2999⎡⎤=-+=⎢⎥⎣⎦三、题型归类练1.(2022·海南·嘉积中学高三阶段练习)已知n S 是数列{}n a 的前n 项和,且29n S n n =-.(1)求n a ;(2)求数列{}||n a 的前n 项和为n T .【答案】(1)210n a n =-,*n ∈N ;(2)229,15940,6n n n n T n n n ⎧-≤≤=⎨-+≥⎩. 【详解】(1)由29n S n n =-,可得118a S ==-,2n ≥时,2219(1)99210n n n a S S n n n n n -=-=---+-=-,对1n =也成立,可得210n a n =-,*n ∈N ;(2)当15n ≤≤时,0n a ≤,即有29n n T S n n =-=-; 当6n ≥时,0n a >,255940n n T S S S n n =--=-+,即有229,15940,6n n n n T n n n ⎧-≤≤=⎨-+≥⎩.2.(2022·全国·高三专题练习)数列{}n a 的前n 项和()2=1003n S n n n N *-+∈.(1)求数列{}n a 的通项公式;(2)设n n b a =,求数列{}n b 的前n 项和n T . 【答案】(1) ()()102110122n n a nn ⎧=⎪=⎨-≥⎪⎩ (2) ()()22100350100500351n n n n T n n n ⎧-++≤⎪=⎨-+≥⎪⎩(1)当1n =时,11=10013=102a s =-+,当2n ≥时,()()221=10010011=1012n n n a S S n n n n n -=-------. 综上所述()()102110122n n a nn ⎧=⎪=⎨-≥⎪⎩. (2)当50n ≤时,n n b a =,所以123n n T a a a a =+++⋅⋅⋅+39997951012n =++++⋅⋅⋅+-()()991012331002n n n n +-=+=+-,当51n ≥时,n n b a =-,123505152n n T a a a a a a a =+++⋅⋅⋅+---⋅⋅⋅-()5012312n n T a a a a a -=-+++⋅⋅⋅++ ()50063100n n =---21005003n n =-+.综上所述()()22100350100500351n n n n T n n n ⎧-++≤⎪=⎨-+≥⎪⎩.3.(2022·全国·高三专题练习)已知数列{}n a 是公差不为零的等差数列,{}n b 是各项均为正数的等比数列,11337522,21a b a b a b ====.(1)求数列{}n a 和{}n b 的通项公式;(2)设2n n a c ⎡⎤=⎢⎥⎣⎦,求数列1n n c b +⎧⎫⎨⎬⎩⎭的前10项的和10S .注.[]x 表示不超过x 的最大整数. 【答案】(1)1n a n =+,112n n b -⎛⎫⎪⎝⎭=;(2)109558S =.(1)设{}n a 的公差为d ,{}n b 的公比为q ,由11337522,21a b a b a b ====得:()()242211262d q d q ⎧+=⎪⎨+=⎪⎩, 而0d ≠,0q >,解得1d =,12q =,于是得1n a n =+,112n n b -⎛⎫⎪⎝⎭=,所以数列{}n a 和{}n b 的通项公式分别为1n a n =+,112n n b -⎛⎫⎪⎝⎭=.(2)由(1)知,1[][]22n n a n c +==,则有123456879101,2,3,4,5c c c c c c c c c c ==========, 依题意,23456789101012122222323242425252S =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯()357931222324252⨯⨯⨯⨯=++⨯++,令35791222324252T ⨯⨯⨯⨯+++⨯=+, 则37911541222324252T ⨯⨯⨯⨯++⨯=++, 两式相减得:()5357911111221472322222525221433T --=++++-⨯=-⨯=-⨯--,所以123295587233T =+=⨯,即109558S =.4.(2022·重庆八中高三阶段练习)已知各项均为正数的数列{}n a 的前n项和为)*1,1,,2n n S a a n N n =∈≥.(1)求证;数列是等差数列,并求{}n a 的通项公式;(2)若[]x 表示不超过x 的最大整数,如][1,22,2,12⎡⎤-=-=⎣⎦,求22212111n a a a ⎡⎤+++⎢⎥⎣⎦的值. 【答案】(1)证明见解析,21n a n =-(2)1(1)因为n a2n ≥时,1n nS S --=0n a >0>()12n≥所以数列1=为首项,公差为1的等差数列; ()111n n +-⨯=,则2,n S n =当2n ≥时,121n a n n n ==+-=-,又11a =满足上式, 所以{}n a 的通项公式为21n a n =-. (2)222111(21)441n a n n n ==--+,当2n ≥时,22111114441n a n n n n ⎛⎫<=- ⎪--⎝⎭, 故22212111111111111151111412231444n a a a n n n ⎛⎫⎛⎫+++<+-+-++-=+-<+= ⎪ ⎪-⎝⎭⎝⎭, 当1n =时,211514a =<,所以对任意的*n ∈N ,都有2221211154n a a a +++<, 又222212111111n a a a a +++≥=,所以22212111514n a a a ≤+++<.所以222121111n a a a ⎡⎤+++=⎢⎥⎣⎦. 5.(2022·全国·高三专题练习(理))已知等比数列{}n a 的首项为2-,前n 项和为n S ,且21,,n n n S S S ++成等差数列.(1)求{}n a 的通项公式;(2)设12n n b +⎡⎤=⎢⎥⎣⎦,求数列{}n n a b 的前10项和10T .([]x 表示不超过x 的最大整数) 【答案】(1)(2)n n a =-;(2)3186.(1)因为2n S +,n S ,1n S +成等差数列,所以21n n n n S S S S ++-=-, 所以211n n n a a a +++--=,即212n n a a ++=-,设{}n a 的公比为q ,则2q =-,所以12(2)(2)n n n a -=-⨯-=-.(2)依题意,123456789101,1,2,2,3,3,4,4,5,5b b b b b b b b b b ==========,则2345678910102(2)2(2)2(2)3(2)3(2)4(2)4(2)5(2)5(2)T =-+-+⨯-+⨯-+⨯-+⨯-+⨯-+⨯-+⨯-+⨯-23456789102(2)2(2)(2)3(2)(2)4(2)(2)5(2)(2)⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=-+-+⨯-+-+⨯-+-+⨯-+-+⨯-+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦457922324252=++⨯+⨯+⨯216965122560=++++ 3186=.6.(2022·全国·高三阶段练习)已知公差不为零的等差数列{}n a 和等比数列{}n b ,满足1112b a =+=,221b a =+,341b a =+.(1)求数列{}n a 、{}n b 的通项公式:(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T .若m 表示不大于m 的正整数的个数,求1210T T +++.【答案】(1)21n a n =-,2nn b =(2)121016T T +++=(1)设{}n a 的公差为d ,{}n b 的公比为q ,12b =,11a =,由题意可得:22112131q d q d =++⎧⎨=++⎩整理可得:2320-+=q q ,解得:22q d =⎧⎨=⎩或10q d =⎧⎨=⎩(舍)所以()11221n a n n =+-⨯=-,1222n nn b -=⋅=;(2)因为212n n n a n b -=,则23135212222-=++++n nn T , ∴234111352122222+-=++++n n n T 两式相减得23411111111213232222222222n n n n n n T ++-+⎛⎫=+++++-=- ⎪⎝⎭ 所以2332n nn T +=-显然3n T <,且112102n n n n T T +++-=>,即{}n T 为递增数列, 1112T =<,25124T <=<,315128T <=<,437216T =>, 所以10=,231T T ==,4n ≥时,2n =, 所以121016T T +++=.7.(2022·全国·高二课时练习)在①39S =,520S =;②公差为2,且1S 、2S 、4S 成等比数列;③238n S n n =+;三个条件中任选一个,补充在下面问题中,并给出解答.问题:已知数列{}n a 为公差不为零的等差数列,其前项和为n S ,______. (1)求数列{}n a 的通项公式;(2)令[]2log n n c a =,其中[]x 表示不超过x 的最大整数,求1220c c c +++的值.【答案】(1)答案见解析(2)答案见解析 (1)解:选①,设{}n a 的公差为d ,则()112n n n S na d -=+, 由已知可得315133951020S a d S a d =+=⎧⎨=+=⎩,解得121a d =⎧⎨=⎩,则()111n a a n d n =+-=+;选②,11S a =,2111221222S a a ⨯=+⨯=+,41134424122S a a ⨯=+⨯=+, 由题意可得2214S S S =,则()()211122412a a a +=+,解得11a =,所以,()12121n a n n =+-=-;选③,1111a S ==,当2n ≥时,()()()22138318165n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦. 111a =也满足65n a n =+,故对任意的N n *∈,65n a n =+.(2)解:选①,1n a n =+,则12a =,20162132a <=<, 当[]()22log log 11n n c a n ==+=⎡⎤⎣⎦,则214n ≤+<,可得13n ≤<, 当[]()22log log 12n n c a n ==+=⎡⎤⎣⎦,则418n ≤+<,可得37n ≤<, 当[]()22log log 13n n c a n ==+=⎡⎤⎣⎦,则8116n ≤+<,可得715n ≤<,当[]()22log log 14n n c a n ==+=⎡⎤⎣⎦,则16132n ≤+<,可得1531n ≤<,此时1520n ≤≤. 所以,1,132,373,7154,1520n n n c n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪≤≤⎩,故12201224384658c c c +++=⨯+⨯+⨯+⨯=;选②,21n a n =-,则11a =,20323964a <=<,当[]()22log log 210n n c a n ==-=⎡⎤⎣⎦时,则0211n <-≤,此时1n =, 当[]()22log log 211n n c a n ==-=⎡⎤⎣⎦时,则2214n ≤-<,此时2n =, 当[]()22log log 212n n c a n ==-=⎡⎤⎣⎦时,则4218n ≤-<,此时34n ≤≤, 当[]()22log log 213n n c a n ==-=⎡⎤⎣⎦时,则82116n ≤-<,此时58n ≤≤, 当[]()22log log 214n n c a n ==-=⎡⎤⎣⎦时,则162132n ≤-<,此时916n ≤≤, 当[]()22log log 215n n c a n ==-=⎡⎤⎣⎦时,则322164n ≤-<,此时1720n ≤≤.所以,0,11,22,343,584,9165,1720n n n n c n n n =⎧⎪=⎪⎪≤≤=⎨≤≤⎪⎪≤≤⎪≤≤⎩,故122001112234485469c c c +++=⨯+⨯+⨯+⨯+⨯+⨯=;选③,65n a n =+,则181116a <=<,2064125128a <=<, 当[]()22log log 653n n c a n ==+=⎡⎤⎣⎦,则86516n ≤+<,此时1n =; 当[]()22log log 654n n c a n ==+=⎡⎤⎣⎦,则166532n ≤+<,此时24n ≤≤; 当[]()22log log 655n n c a n ==+=⎡⎤⎣⎦,则326564n ≤+<,此时59n ≤≤; 当[]()22log log 656n n c a n ==+=⎡⎤⎣⎦,则6465128n ≤+<,此时1020n ≤≤.所以,3,14,245,596,1020nnncnn=⎧⎪≤≤⎪=⎨≤≤⎪⎪≤≤⎩,故1220134355611106c c c+++=⨯+⨯+⨯+⨯=.。
高三数学专题练习运用裂项相消法求和(新高考地区专用)

运用裂项相消法求和把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常见的裂项技巧①1n (n +1)=1n -1n +1.②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).一、题型选讲例1、已知数列{}1n a +是等比数列,11a =且2a ,32a +,4a 成等差数列. (1)求数列{}n a 的通项公式; (2)设11n nn n n a a b a a ++-=,求数列{}n b 的前n 项和n S .例2、在①26,7753=+=a a a ;②63,371==S a ;③n n S n 22+=,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目. 已知S n 为等差数列}{n a 的前n 项和,若. (1)求a n ; (2)令*)(112N n a b n n ∈-=,求数列}{n b 的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.例3、已知数列{}n a 的前n 项和n S2(2,)n n =≥∈N ,且14a =.(1)求数列{}n a 的前n 项和n S 及通项公式n a ; (2)记11n n n b a a +=⋅,n T 为{}n b 的前n 项和,求n T .例4、已知数列{}n a 的前n 项和为n S ,且0n a >,242n n n S a a =+.(1)求数列{}n a 的通项公式; (2)若11nn n S S b S S -=⋅,求数列{}n b 的前n 项和n T .例5、已知数列{}n a 的前n 项和n S2(2,)n n =+≥∈N ,且14a =.(1)求数列{}n a 的前n 项和n S ,及通项公式n a ; (2)记11n n n b a a +=⋅,n T 为{}n b 的前n 项和,求n T .例6、已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .例7、已知等差数列{}n a 的前n 项和为254,12,16n S a a S +==.(1)求{}n a 的通项公式; (2)数列{}n b 满足141n n n b T S =-,为数列{}n b 的前n 项和,是否存在正整数m ,()1k m k <<,使得23k m T T =?若存在,求出m ,k 的值;若不存在,请说明理由.例8、在数列中,有.(1)证明:数列为等差数列,并求其通项公式; (2)记,求数列的前n 项和.二、达标训练1、已知数列{a n }的前n 项和为S n ,且a n >0,4S n =a n 2+2a n .(1)求数列{a n }的通项公式; (2)若b n =S 1−S n S n ⋅S 1,求数列{b n }的前n 项和T n .2、设*n N ∈,向量(31,3)AB n =+,(0,32)BC n =-,n a AB AC =⋅. (1)试问数列{}1n n a a +-是否为等差数列?为什么?(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .{}n a ()2*1232n a a a a n n n +++⋯+=+∈N{}n a 11n n n b a a +=⋅{}n b n T3、已知等差数列{}n a 满足246a a +=,前7项和728S =. (1)求数列{}n a 的通项公式;(2)设()()122121n n nn a a b +=++,求数列{}n b 的前n 项和n T .4、已知等差数列{},n a 和等比数列{}n b 满足:311249351,*,3,330.n b a b b N a a a b a b ==∈++==- (I )求数列{}n a 和{}n b 的通项公式;(II )求数列21n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和n S .5、等比数列{}n a 的前n 项和为()*234,2,,4n S n N S S S ∈-成等差数列,且2341216a a a ++=. (1)求数列{}n a 的通项公式;(2)若2(2)log n an b n =-+,求数列1{}nb 的前n 项和n T .6、已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S n 2=a n (S n -12).(1)求S n 的表达式;(2)设b n =S n2n +1,求数列{b n }的前n 项和T n .运用裂项相消法求和把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常见的裂项技巧①1n (n +1)=1n -1n +1.②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).一、题型选讲例1、(2020届山东省九校高三上学期联考)已知数列{}1n a +是等比数列,11a =且2a ,32a +,4a 成等差数列.(1)求数列{}n a 的通项公式; (2)设11n nn n n a a b a a ++-=,求数列{}n b 的前n 项和n S .【解析】(1)设数列{}1n a +的公比为q ,∵112a +=,∴22334121212a q a q a q +=⎧⎪+=⎨⎪+=⎩,∴22334212121a q a q a q =-⎧⎪=-⎨⎪=-⎩, ∵()32422a a a +=+, ∴()232212121q q q +=-+-, ∴2342222q q q +=+-, 即:()()224121q q q +=+, 解得:2q.∴11222n nn a -+=⋅=, ∴21nn a =-.(2)()()1121121212121n nn n n n b ++==-----,∴1231n n n S b b b b b -=+++++122334111111212121212121⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11111121212121n n n n -+⎛⎫⎛⎫++-+- ⎪ ⎪----⎝⎭⎝⎭11112212121n n n +++-=-=--. 例2、(华南师大附中2021届高三综合测试)在①26,7753=+=a a a ;②63,371==S a ;③n n S n 22+=,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目. 已知S n 为等差数列}{n a 的前n 项和,若. (1)求a n ; (2)令*)(112N n a b n n ∈-=,求数列}{n b 的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分. 【解析】:(1)若选择条件(1),在等差数列}{n a 中⎩⎨⎧=+=267753a a a ,⎩⎨⎧=+=+∴261027211d a d a ,解得⎩⎨⎧==231d a122)1(3)1(1+=-+=-+=∴n n d n a a n若选择条件(2),在等差数列}{n a 中⎪⎩⎪⎨⎧=⨯+==6326773171d a S a ,解得⎩⎨⎧==231d a 122)1(3)1(1+=-+=-+=∴n n d n a a n ;若选择条件(3),在等差数列}{n a 中a l =S l =3,当n ≥2时,a n =S n -S n-1=n 2+2n -[(n -l)2 +2(n -1)]= 2n +l ,a 1也符合, ∴a n =2n +1; (2)由(1)得)111(41)1(411)12(11122+-=+=-+=-=n n n n n a b n n ,)1(4)111(41)1113121211(4121+=+-=+-++-+-=+++=∴n n n n n b b b T n n例3、(江苏盐城中学2021届高三年级第三阶段检测数学试题)已知数列{}n a 的前n 项和nS 满足2(2,)n n =+≥∈N ,且14a =.(1)求数列{}n a 的前n 项和n S 及通项公式n a ; (2)记11n n n b a a +=⋅,n T 为{}n b 的前n 项和,求n T .【解析】(I)2=,∴数列为等差数列,2==,22(1)2n n =+-=,即24n S n =,当2n ≥时,22144(1)4(21)n n n a S S n n n -=-=--=-,又12a =也满足上式,∴4(21)n a n =-; (II)由(1)知,111116(21)(21)322121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,∴1111111323352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭, 111322116(21)n n n ⎛⎫=-= ⎪++⎝⎭ 例4、(2020届山东省德州市高三上期末)已知数列{}n a 的前n 项和为n S ,且0n a >,242n n n S a a =+.(1)求数列{}n a 的通项公式; (2)若11nn n S S b S S -=⋅,求数列{}n b 的前n 项和n T .【解析】(1)当1n =时,211142a a a =+,整理得2112a a =,10a >,解得12a =;当2n ≥时,242n n n S a a =+①,可得211142n n n S a a ---=+②,①-②得2211422n n n n n a a a a a --=-+-,即()()221120n n n n a a a a ----+=,化简得()()1120n n n n a a a a --+--=,因为0n a >,10n n a a -∴+>,所以12n n a a --=,从而{}n a 是以2为首项,公差为2的等差数列,所以()2212n a n n =+-=; (2)由(1)知()()()122122n n n a a n n S n n ++===+, 因为()11111111111212n n n n S S b S S S S n n n n -==-=-=--⋅++,1211111111112223212n n T b b b n n ⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=--+--+⋅⋅⋅+-- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭111111111112231212n n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+--=-- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 例5、(2020届山东省滨州市三校高三上学期联考)已知数列{}n a 的前n 项和n S满足2(2,)n n =+≥∈N ,且14a =.(1)求数列{}n a 的前n 项和n S ,及通项公式n a ; (2)记11n n n b a a +=⋅,n T 为{}n b 的前n 项和,求n T .【解析】(I2=,∴数列为等差数列,2==,22(1)2n n =+-=,即24n S n =,当2n ≥时,22144(1)4(21)n n n a S S n n n -=-=--=-,又12a =也满足上式,∴4(21)n a n =-; (II )由(1)知,111116(21)(21)322121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,∴1111111323352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭, 111322116(21)n n n ⎛⎫=-= ⎪++⎝⎭例6、(2020届山东省潍坊市高三上期末)已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【解析】 (1)设数列{}n a 的公差为d , 由题意知: ()1234114414+46102a a a a a d a d ⨯-+++==+=① 又因为124,,a a a 成等比数列, 所以2214a a a =⋅,()()21113a d a a d +=⋅+,21d a d =,又因为0d ≠, 所以1a d =. ② 由①②得11,1a d ==, 所以n a n =,111b a ==,222b a ==,212b qb ==, 12n n b -∴= .(2)因为()111112211n n n c n n n n --⎛⎫=+=+- ⎪++⎝⎭,所以0111111122 (2)12231n n S n n -⎛⎫=++++-+-+⋅⋅⋅+- ⎪+⎝⎭1211121n n -=+--+121n n =-+ 所以数列{}n c 的前n 项和121n n S n =-+.例7、(2020届山东省泰安市高三上期末)已知等差数列{}n a 的前n 项和为254,12,16n S a a S +==.(1)求{}n a 的通项公式;(2)数列{}n b 满足141n n n b T S =-,为数列{}n b 的前n 项和,是否存在正整数m ,()1k m k <<,使得23k m T T =?若存在,求出m ,k 的值;若不存在,请说明理由.【解析】(1)设等差数列{}n a 的公差为d ,由2541216a a S +=⎧⎨=⎩得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩, ()*12121,n a n n n N ∴=+-=-∈;(2)()2122n n n S n n -=+⨯=, 211114122121n b n n n ⎛⎫∴==- ⎪--+⎝⎭,1211111111111123352321212122121n n n T b b b n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥---+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 若23k m T T =,则()2232121k m k m =++,整理得223412m k m m =+-, 又1k m >>,2234121m m m m m ⎧>⎪∴+-⎨⎪>⎩,整理得222104121m m m m m ⎧-->⎪+-⎨⎪>⎩,解得11m <<+, 又*m N ∈,2m ∴=,12k ∴=,∴存在2,12m k ==满足题意.例8、【2020届河北省衡水中学全国高三期末大联考】在数列中,有{}n a.(1)证明:数列为等差数列,并求其通项公式;(2)记,求数列的前n 项和. 【解析】(1)因为,所以当时,,上述两式相减并整理,得.又因为时,,适合上式,所以.从而得到,所以, 所以数列为等差数列,且其通项公式为. (2)由(1)可知,. 所以 .二、达标训练 1、【2020届中原金科大联考高三4月质量检测】已知数列{a n }的前n 项和为S n ,且a n >0,4S n =a n 2+2a n .(1)求数列{a n }的通项公式;(2)若b n =S 1−S nS n ⋅S 1,求数列{b n }的前n 项和T n .【解析】(1)当n =1时,4a 1=a 12+2a 1,整理得a 12=2a 1,∵a 1>0,解得a 1=2;当n ≥2时,4S n =a n 2+2a n ①,可得4S n−1=a n−12+2a n−1②,①-②得4a n =a n 2−a n−12+2a n −2a n−1,即(a n 2−a n−12)−2(a n +a n−1)=0,化简得(a n +a n−1)(a n −a n−1−2)=0,()2*1232n a a a a n n n +++⋯+=+∈N {}n a 11n n n b a a +=⋅{}n b n T ()2*1232n a a a a n n n +++⋯+=+∈N 2n ≥212312((11))n a a a a n n -+++⋯+=--+21(2)n a n n =+≥1n =211213a =+⨯=()*21n a n n =+∈N121n a n -=-12n n a a --={}n a ()*12n Na n n +∈=111111(21)(23)22123n n nb a a n n n n +⎛⎫===- ⎪⋅+⋅+++⎝⎭12311111111123557792123n n T b b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11123233(23)n n n ⎛⎫=-= ⎪++⎝⎭因为a n >0,∴a n +a n−1>0,所以a n −a n−1=2,从而{a n }是以2为首项,公差为2的等差数列,所以a n =2+2(n −1)=2n ;(2)由(1)知S n =n (a 1+a n )2=n (2+2n )2=n (n +1), 因为b n =S 1−S nS n ⋅S 1=1S n −1S 1=1n (n+1)−12=1n −1n+1−12, ∴T n =b 1+b 2+⋅⋅⋅+b n =(11−12)−12+(12−13)−12+⋅⋅⋅+(1n −1n +1)−12=(11−12)+(12−13)+⋅⋅⋅+(1n −1n+1)−12n =1−1n+1−12n .2、(2020届山东省临沂市高三上期末)设*n N ∈,向量(31,3)AB n =+,(0,32)BC n =-,n a AB AC =⋅. (1)试问数列{}1n n a a +-是否为等差数列?为什么? (2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 【解析】(1)(31,31)AC AB BC n n =+=++,2(31)3(31)(31)(34)n a n n n n ∴=+++=++.1(34)(37)(31)(34)6(34)n n a a n n n n n +-=++-++=+,()()21118n n n n a a a a +++∴---=为常数,{}1n n a a +∴-是等差数列.(2)111133134n a n n ⎛⎫=- ⎪++⎝⎭, 1111111111347710313434341216n n S n n n n ⎛⎫⎛⎫∴=-+-++-=-= ⎪ ⎪++++⎝⎭⎝⎭. 3、(2020届山东省济宁市高三上期末)已知等差数列{}n a 满足246a a +=,前7项和728S =.(1)求数列{}n a 的通项公式;(2)设()()122121n n nn a a b +=++,求数列{}n b 的前n 项和n T . 【解析】 (1)设等差数列{}n a 的公差为d ,由246a a +=可知33a =,前7项和728S =.44a ∴=,解得11,1a d ==.()111n a n n ∴=+-=.(2)()()()()1112211212121212121n n n n n n n n n a a b +++===-++++++ {}n b ∴前n 项和12n n T b b b =+++……12231111111212121212121n n +⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭ 111321n +=-+. 4、(2020届浙江省温州市高三4月二模)已知等差数列{},n a 和等比数列{}n b 满足:311249351,*,3,330.n b a b b N a a a b a b ==∈++==-(I )求数列{}n a 和{}n b 的通项公式;(II )求数列21n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和n S . 【解析】 (I ) 311249351,3,330b a b a a a b a b ==++==-,故()224312331130d q q d q ⎧+=⎪⎨⎡⎤+-=-⎪⎣⎦⎩, 解得23d q =⎧⎨=⎩,故21n a n =-,13n n b -=. (II )()()()()22221111212141442121n n n n n a a n n n n n +===+⋅-⋅+--⋅+ 1111482121n n ⎛⎫=+- ⎪-+⎝⎭,故()21114821221n n n n S n n +⎛⎫=+-= ⎪++⎝⎭. 5、(南通市2021届高三年级期中学情检测)等比数列{}n a 的前n 项和为()*234,2,,4n S n N S S S ∈-成等差数列,且2341216a a a ++=. (1)求数列{}n a 的通项公式;(2)若2(2)log n a nb n =-+,求数列1{}nb 的前n 项和n T . 【解析】(1)设等比数列{}n a 的公比为q ,由23424,,S S S -成等差数列知,423422S S S +-=,所以432a a =-,即12q =-.又2341216a a a ++=,所以231111216a q a q a q ++=,所以112a =-, 所以等差数列{}n a 的通项公式12n n a ⎛⎫=- ⎪⎝⎭. (2)由(1)知1()22(2)log (2)n n b n n n =-+=+ 所以11111(2)22n b n n n n ⎛⎫==- ⎪++⎝⎭所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和: 11111111111224511233n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111112212n n ⎡⎤=+--⎢⎥++⎣⎦32342(1)(2)n n n +=-++ 所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和32342(1)(2)n n T n n +=-++ 6、(金陵中学2021届高三年级学情调研测试(一))已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S n 2=a n (S n -12). (1)求S n 的表达式;(2)设b n =S n 2n +1,求数列{b n }的前n 项和T n .【解析】:(1)因为S n 2=a n (S n -12),当n ≥2时,S n 2=(S n -S n -1)(S n -12),即2S n -1S n =S n -1-S n .①…………2分由题意得S n -1·S n ≠0,所以1S n -1S n -1=2, 即数列{1S n }是首项为1S 1=1a 1=1,公差为2的等差数列.…………5分 所以1S n =1+2(n -1)=2n -1,得S n =12n -1.…………………………………………7分(2)易得b n =S n 2n +1=1(2n -1)(2n +1)……………………………8分=12(12n -1-12n +1),……………………………10分所以T n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12(1-12n +1) =n 2n +1。
数列求和之裂项相消(含解析)

1.已知数列{a n}的前n项的积记为T n,且满足.(1)证明:数列{T n}为等差数列;(2)设,求数列{b n}的前n项和S n.2.已知等差数列{a n}的公差为正数,且a1=1,若a2,a6﹣2a1,a14分别是等比数列{b n}的前三项.(1)分别求数列{a n}、{b n}的通项公式;(2)求数列的前n项之和S n.3.已知数列{a n}的首项a1=4,且a n+1=2a n﹣3.(1)求数列{a n}的通项公式;(2)记b n=log2(a n+1﹣3),求数列的前n项和T n.4.在①a8=9,②S5=20,③a2+a9=13这三个条件中选择两个,补充在下面问题中,并进行解答.已知等差数列{a n}的前n项和为S n,n∈N*,_____,_____.(1)求数列{a n}的通项公式;(2)设,证明数列{b n}的前n项和解析1.已知数列{a n}的前n项的积记为T n,且满足.(1)证明:数列{T n}为等差数列;(2)设,求数列{b n}的前n项和S n.分析:(1)根据数列的递推式和等差数列的定义,即可证明结论;(2)由(1)得T n=2n+1,则,利用裂项相消法,即可得出答案.解答:解:(1)证明:∵,∴当n=1时,,解得T1=a1=3,当n≥2时,,∴,即T n﹣T n﹣1=2,∴数列{T n}是以3为首项,2为公差的等差数列;(2)由(1)得T n=2n+1,则,∴.点评:本题考查数列的求和,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.2.已知等差数列{a n}的公差为正数,且a1=1,若a2,a6﹣2a1,a14分别是等比数列{b n}的前三项.(1)分别求数列{a n}、{b n}的通项公式;(2)求数列的前n项之和S n.分析:(1)设等差数列{a n}的公差为d(d>0),由已知可得(5d﹣a1)2=(a1+d)(a13+13d),可求d;(2)由(1)得,可求数列的前n项之和S n.解答:解:(1)设等差数列{a n}的公差为d(d>0),因为a2,a6﹣2a1,a14是等比数列{b n}的前三项,所以(a6﹣2a1)2=a2a14,即(5d﹣a1)2=(a1+d)(a13+13d),化简得d=2a1,又a1=1,所以d=2.得a n=1+2(n﹣1)=2n﹣1.由(1)可得数列{b n}的前三项分别为b1=3,b2=9,b3=27,显然该等比数列{b n}的公比为3,首项为3,所以.综上,两数列的通项公式分别为a n=2n﹣1,.(2)由(1)得..点评:本题考查数列的通项公式和前n项和公式的求法,注意裂项求和法的合理运用,属中档题.3.已知数列{a n}的首项a1=4,且a n+1=2a n﹣3.(1)求数列{a n}的通项公式;(2)记b n=log2(a n+1﹣3),求数列的前n项和T n.分析:(1)由递推关系构造等比数列{a n﹣3},利用等比数列通项公式求解即可;(2)求出b n,再由裂项相消法求解.解答:解:(1)由a n+1=2a n﹣3得a n+1﹣3=2(a n﹣3),且a1﹣3=1≠0,则数列{a n﹣3}是以1为首项,以2为公比的等比数列,可得,从而;(2),故,故.点评:本题考查由数列的递推式求数列的通项公式,利用裂项相消法求数列的前n项和,属中档题.4.在①a8=9,②S5=20,③a2+a9=13这三个条件中选择两个,补充在下面问题中,并进行解答.已知等差数列{a n}的前n项和为S n,n∈N*,_____,_____.(1)求数列{a n}的通项公式;(2)设,证明数列{b n}的前n项和.分析:(1)利用等差数列的通项公式及求和公式直接求解;(2)利用裂项相消法求和即可得证.解答:解:(1)由于{a n}是等差数列,设公差为d,当选①②时:a8=a1+7d=9,S5=5a1+10d=20,解得a1=2,d=1,所以{a n}的通项公式a n=2+(n﹣1)×1=n+1,n∈N*.选①③时,a8=a1+7d=9,a2+a9=2a1+9d=13,解得a1=2,d=1,所以{a n}的通项公式a n=2+(n﹣1)×1=n+1,n∈N*.选②③时,S5=5a1+10d=20,a2+a9=2a1+9d=13,解得a1=2,d=1,所以{a n}的通项公式a n=2+(n﹣1)×1=n+1,n∈N*.(2)证明:由(1)知a n=n+1,n∈N*,所以,所以,∵n∈N*,∴.点评:本题主要考查数列的通项公式的求法,数列的求和,裂项求和法的应用,考查运算求解能力,属于中档题.。
高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析1.设数列的前项积为,且(n∈N*).(1)求,并证明:;(2)设,求数列的前项和.【答案】(1),祥见解析;(2).【解析】(1)n取1,2,3求出,再利用与的关系将已知等式用表示即可证明;(2)由(1)问的结论利用等差数列的通项公式先求出的通项,再由通项利用裂项相消法求.试题解析:(1)由题意可得:,所以 5分(2)数列为等差数列,,, 10分【考点】1.数列的通项公式;2.数列的前n项和.2.已知函数且an =f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0 B.100 C.-100 D.10200【答案】B【解析】由题意,a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,选B.3.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出. 试题解析:(1)解法1:当时,, 当时,.是等差数列, ,得. 又,,,、、成等比数列, ,即,解得.解法2:设等差数列的公差为,则., ,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,② ①②得..解法2:由(1)得.,.,① 由,两边对取导数得,.令,得..【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导4. 数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ). A .3 690 B .3 660 C .1 845 D .1 830【答案】D【解析】∵a n +1+(-1)n a n =2n -1, 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3,从而a2k+1+a2k-1=2,a2k+3+a2k+1=2,因此a2k+3=a2k-1,∴a1=a5=a9=…=a61,于是S60=a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)==1 830.5.如图,是一问题的程序框图,则输出的结果是 .【答案】【解析】根据流程图可知它的作用是求的值,由等差数列的前项和公式可知,.【考点】1.程序框图及其应用;2.等差数列的前项和6.阅读如图程序框图,若输入的,则输出的结果是()A.B.C.D.【答案】A【解析】,,不成立,执行第一次循环,,;不成立,执行第二次循环,,;不成立,执行第三次循环,,;;不成立,执行第一百次循环,,;成立,输出,故选A.【考点】1.数列求和;2.算法与程序框图7.数列中,已知且,则前项和为,则的值为__________.【答案】【解析】因为,所以公差,由得,所以.【考点】1、等差数列的定义;2、等差数列的前项和公式.8.已知数列满足,.(1)求数列的通项公式;(2)令,数列{bn }的前n项和为Tn,试比较Tn与的大小,并予以证明.【答案】(1);(2)详见解析.【解析】(1)由于数列的递推式的结构为,在求数列的通项的时候可以利用累加法来求数列的通项公式;(2)先求出数列的通项公式,根据其通项结构选择错位相减法求出数列的前项和,在比较与的大小时,一般利用作差法,通过差的正负确定与的大小,在确定差的正负时,可以利用数学归纳法结合二项式定理进行放缩来达到证明不等式的目的.试题解析:(1)当时,.又也适合上式,所以.(2)由(1)得,所以.因为①,所以②.由①-②得,,所以.因为,所以确定与的大小关系等价于比较与的大小.当时,;当时,;当时,;当时,;……,可猜想当时,.证明如下:当时,.综上所述,当或时,;当时,.【考点】累加法、错位相减法、二项式定理9.已知数列的通项公式为,那么满足的整数()A.有3个B.有2个C.有1个D.不存在【答案】B【解析】时,,所以,此时从到共项,从到共项,或,有2个值【考点】数列求和点评:本题中数列求和要依据通项公式特点分两种情况,分别讨论所求各项所属的范围及应代入的公式,第二种情况找到各项中正负项分界的位置是难点10.已知数列满足,则的前n项和_____【答案】【解析】根据题意,由于故可知的前n项和,故答案为【考点】数列的递推关系点评:主要是考查了数列的递推关系的运用,来求解数列的通项公式以及数列的和的运用,属于中档题。
2024年高考数学复习大题全题型专练:专题02 裂项相消求和(解析版)

专题2裂项相消求和1.(2022·湖北·大冶市第一中学模拟预测)已知数列 n a 的前n 项和为n S ,111a ,29a ,且 11222n n n S S S n .(1)求数列 n a 的通项公式;(2)已知11n n n b a a,求数列 n b 的前n 项和n T .【答案】(1)213n a n (2)12122n n【解析】【分析】(1)根据1n n n a S S 以及 11222n n n S S S n 可得该数列是等差数列,然后根据等差数列的1a 、d 写出数列的通项公式即可.(2)有题意可知1213211n b n n,然后根据裂项求和即可求得n T .(1)由题意得:由题意知 112n n n n S S S S ,则 122n n a a n 又212a a ,所以 n a 是公差为2的等差数列,则 11213n a a n d n ;(2)由题知11112132112213211n b n n n n则1111111111211997213211211211n T n n n 12122n n2.(2022·青海·海东市第一中学模拟预测(文))已知正项数列 n a 满足2123232n a a a na n n ,且 211nn n n a b n n.(1)求数列 n a 的通项公式;(2)求数列 n b 的前n 项和n S .【答案】(1)21n n a n(2)(3)21n n n nS n【解析】【分析】(1)根据2123232n a a a na n n ,即可得到2123123(1)(1)2(1)n a a a n a n n (2n ),两式作差即可得解;(2)依题意可得1111n b n n n,利用分组求和及裂项相消法求和即可;(1)解:因为2123232n a a a na n n ,①当2n 时,2123123(1)(1)2(1)n a a a n a n n .②① ②得21n na n ,所以21n n a n.当1n 时,13a ,也满足上式,所以21n n a n.(2)解:因为(2)(1)1n n a n n b n n,则221211111111(1)(1)1n n a n b n n n n n n n n n n n n n,则11111(3)2311223121n n n n S n n n n.3.(2022·山东·德州市教育科学研究院三模)已知数列 n a 的前n 项和为n S ,13a ,*112n n S n a n N .(1)求数列 n a 的通项公式n a 和前n 项和n S ;(2)设*22111k k k b k S SN ,数列 n b 的前n 项和记为n T ,证明:*16n T n N .【答案】(1)3,21,N 1,2n n k a k n k,2,21,N ,2n n n k S k n n k(2)证明见解析【解析】【分析】(1)根据11n n n S S a 代入整理得12n n a a ,结合13a 理解处理;(2)代入整理得11122123n b n n,利用裂项相消进行求和.(1)由 112n n S n a,得*111(1)12n n S n a n N 两式相减可得12n n a a ,因为13a ,得21a 数列 n a 为3,1 ,3,1 ,3,1 ,3,即3,21,N 1,2n n k a k n k,当n 为偶数时,[3(1)]2n nS n ;当n 为奇数时,1[3(1)]322n n S n;2,21,N ,2n n n k S k n n k(2)由*22111k k k b k S S N 则有 221111111(21)(23)22123n n n b S S n n n n所以1111111235572123n T n n,111123236n n T4.(2022·河南·平顶山市第一高级中学模拟预测(文))已知数列 n a 的前n 项和为n S ,且 222n n S n a .(1)求数列 n a 的通项公式;(2)若数列21n a的前n 项和为n T ,求证:23n T .【答案】(1)*1n a n n N(2)证明见解析【解析】【分析】(1)先根据 222n n S n a 和an =Sn -Sn -1(n ≥2),推出数列{an }的递推公式,再求an .(2)根据21n a的通项公式的结构形式,结合裂项求和法进行适当放缩,再求和,即可证得结果.(1)当1n 时, 112122S a ,即12a .当2n 时, 222n n S n a ①,111212212n n n S n a n a ②,由①-②,得 1221n n n a n a n a ,即 11n n na n a .所以11n n a a n n ,且112a ,所以数列1n a n为常数列,所以11n a n ,即*1n a n n N .(2)证明:由(1)得*1n a n n N ,所以 22221144411221232123141411n a n n n n n n n,所以2222111111111111222223435577921231n T n n n111111111122235577921233233n n n.5.(2022·辽宁·渤海大学附属高级中学模拟预测)等比数列 n a 中,首项11a ,前n 项和为n S ,且满足 1344a a S .(1)求数列 n a 的通项公式;(2)若31(1)log n n b n a ,求数列242n n b的前n 项和n T .【答案】(1)13n (2)222(1)n【解析】【分析】(1)根据等比数列求解公比即可;(2)根据题意得22242112(1)n n b n n,再裂项求和即可.(1)设数列 n a 公比为q ,由11a , 1344a a S ,可得32330q q q ,化简得2130q q ,即3q ,所以13 n n a .(2)由(1)得3(1)log 3(1)n n b n n n ,所以222224242112(1)(1)n n n b n n n n所以22222111112122223(1)n T n n22222211111221222311n n n..6.(2022·江苏无锡·模拟预测)已知数列{}n a 满足:12(1),=,2n n a n n a n n为奇数为偶数*()N n (1)求1a 、3a 、5a ;(2)将数列{}n a 中下标为奇数的项依次取出,构成新数列{}m b ()m *N ,①证明:m b m是等差数列;②设数列+11m b的前m 项和为m S ,求证:12m S .【答案】(1)10a ;34a ;512a (2)①证明见解析;②证明见解析【解析】【分析】(1)根据12(1),=,2n n a n n a n n为奇数为偶数求解;(2)①利用等差数列的定义证明;②利用裂项相消法求解.(1)由题意知:21222202a a ,23444442a a ,256666122a a ;(2)①当n 为奇数时,n +1为偶数,221111122n n n n a a n n,221211212m m m b a m m,2122m m m b m m m,当2m 时,1(22)[2(1)2]21m m b bm m m m ,m b m是以11011b a 为首项,2为公差的等差数列.②由①知12(1)(N )m b m m m,111111(2(1)21m b m m m m,11111111[(1)()((1)2223121m S m m m ,11122(1)2m .7.(2022·河南·模拟预测(文))已知数列{an }对任意的n ∈N *都满足312233333n n a a a a n .(1)求数列{an }的通项公式;(2)令bn =3413431log log n n a a ,求数列{bn }的前n 项和为Tn .【答案】(1)3n n a (2)1114343n T n【解析】【分析】(1)根据题干中的已知条件可得当1n 时,13a ,当2n 时,13nna ,即可求解数列 n a 的通项公式;(2)代入3n n a 化简数列 nb ,利用裂项相消法即可求解数列 n b 的前n 项和n T .(1)解:∵312233333n n a a a a n ,∴当1n 时,13a ,当2n 时,3-11223-113333n n a a a a n ,从而有13n na ,即当2n 时,3nna ,又13a 满足上式,故数列 n a 的通项公式为3n n a .(2)解:由题可知, 414334134333111=log log log 3log 34143n n n n n b a a n n ,所以1111=414344143n b n n n n,111111111437471144143n T n n,所以1114343n T n.8.(2022·青海·海东市第一中学模拟预测(理))设数列 n a 的前n 项和为n S ,24n n S a n .(1)证明:数列 1n a 是等比数列.(2)若数列12n n n a a的前m 项和170513m T,求m 的值.【答案】(1)证明见解析(2)8【解析】【分析】(1)根据n S 与n a 的关系式化简证明;(2)由(1)得数列 n a 的通项公式为21nn a .所以112112121n n n n n a a ,继而求和计算.(1)当1n 时,1123a a ,13a .当2n 时, 11214n n S a n ,两式相减得121n n a a ,即 1121n n a a ,112a ,则数列 1n a 是首项为2,公比为2的等比数列.(2)由(1)得12n n a ,21n n a ,当1n 时,1213a ,数列 n a 的通项公式为21n n a .111221121212121n n n n n n n n a a ,11111111111135599172121321m m m m T ,令111170321513m ,得121513m ,解得8m .9.(2022·青海·大通回族土族自治县教学研究室三模(理))若n S 为数列 n a 的前n 项和,12a ,且*121n n S S n N .(1)求数列 n a 的通项公式;(2)若*221log n n b a n N ,求数列11n n b b的前n 项和n T .【答案】(1)2n n a (2)n T 21nn【解析】【分析】(1)由 121n n S S ,利用数列通项和前n 项和的关系结合等比数列的定义求解;(2)由(1)得到111(21)(21)n n b b n n 11122121n n,再利用裂项相消法求解.(1)解:因为 121n n S S ①,*n N ,当2n 时, 121n n S S ②,由①②可得 112121n n n n S S S S ,即12(2)n n a a n .1n 时,122a a S 112222S a ,又12a ,所以24a ,所以*12n n a a n N ,所以12n na a ,所以数列 n a 是等比数列,且首项为2,公比为2.所以2n n a .(2)由(1)知221log 21n n b a n ,所以111(21)(21)n n b b n n 11122121n n,所以12233411111n n n T b b b b b b b b ,1111111112335572121n n,111221n ,21n n .10.(2022·重庆·模拟预测)已知数列 n a 的前n 项和为Sn ,111a ,29a =-,且11222n n n S S S n ()(1)求数列{an }的通项公式;(2)设11n n n b a a,数列{bn }的前n 项和为Tn ,求使得Tn >0的n 的最大值.【答案】(1)an =2n ﹣13(2)5【解析】【分析】(1)消去Sn 得到an +1﹣an =2,即可判断出{an }是公差为2的等差数列,求出通项公式;(2)利用裂项相消法求出111211211n T n,列不等式即可求解.(1)由题意知(Sn +1﹣Sn )﹣(Sn ﹣Sn ﹣1)=2,解得an +1﹣an =2(n ≥2),又a 2﹣a 1=2,所以{an }是公差为2的等差数列,则an =a 1+(n ﹣1)d =2n ﹣13;(2)由题知1111((213)(211)2213211n b n n n n,则121111111211997213211111211211111211211n nT b b b n n n n由0n T 得11201121111(211)n n n ,解得1102n ,所以n 的最大值为5.11.(2022·广东·模拟预测)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若 311log 3log 33n n n c S S,求 n c 的前n 项和n T ,并证明:1126n T .【答案】(1)21263 S ,12312633 S ,133n n S (2)1122n T n ,证明见解析【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S ,217611512181263S ,2123187136171116512185412636312633S ,41981572013196231728112716215S 1218541622312636363 123126333 ,…12311263333(1)n n S n ,由等比数列的前n 项和公式可得, 113131263313n n n S ,所以 n S 的通项公式133n n S .(2)由于133n n S ,所以 33111111log 3log 31221n n n c S S n n n n,则1111111132432122n T n n n,因为n N ,所以102n ,所以111222n ,又n T 随n 的增大而减小,所以当1n 时,n T 取得最大值16,故1126n T .12.(2022·四川·绵阳中学实验学校模拟预测(文))已知n S 是数列 n a 的前n 项和,且21n S n n .(1)求 n a 的通项公式.(2)若11n n n b a a,n T 是 n b 的前n 项和,求5T .【答案】(1)3,12,2n n a n n(2)16【解析】【分析】(1)由1(2)n n n a S S n 求通项公式,注意11a S ;(2)从第2项向后用裂项相消法求和.(1)2n 时,2211(1)(1)12n n n a S S n n n n n ,113a S ,所以3,12,2n n a n n ;(2)2n 时,1111()4(1)41n b n n n n,1121113412b a a ,所以11111111[()()(12423341n T n n11128(1)n n ,所以514112866T .13.(2022·江苏·扬州中学模拟预测)已知正项递增的等比数列 n a 满足1330a a ,29a .(1)求 n a 的通项公式;(2)设12311nn n n b a a , n b 的前n 项和为n T ,求n T .【答案】(1)3nn a (2)111431n n T 【解析】【分析】(1)根据已知条件及等比数列通项公式即可求解;(2)根据(1)知3n n a ,得出数列n b ,利用裂项相消法即可求解.(1)设等比数列 n a 的公比为q ,则因为数列 n a 为正项递增等比数列,所以1q ,又1330a a ∵,29a ,∴ 2111309a q a q ,解得133a q ,或12713a q(舍);所以等比数列 n a 的通项公式为111333n n n n a a q .(2)由(1)知3n n a ,所以 1112323111131313131n n n n n n n n n b a a ,所以122231111111313131313131n n n n T b b b111431n .所以 n b 的前n 项和为111431n .14.(2022·天津市滨海新区塘沽第一中学三模)已知数列 n a , n b ,已知对于任意*n N ,都有1n n a ,数列{}n b 是等差数列,11b ,且25b ,41b ,63b 成等比数列.(1)求数列 n a 和 n b 的通项公式;(2)记 *2,21,2n n n a n k c k N b n k .(ⅰ)求13213212log log n i i i c c ;(ⅱ)求211nk k k cc .【答案】(1)3n n a ;21n b n (2)(ⅰ)1121n ;(ⅱ)175402591648n n【解析】【分析】(1)利用等差数列的通项公式及等比中项的性质即可求解;(2)(ⅰ)利用裂项相消法求和即可,(ⅱ)将相邻两项合并成一项,再利用错位相减法求和即可.(1)设数列 n b 的公差为d ,∵25b ,41b ,63b 成等比数列,且11b ,∴ 2426153b b b ,即 223625d d d ,解得2d ,则 12121n b n n ,即13n n n n a ,(2)(ⅰ)由(1)可知,*3,211,2n n n k c k N n n k ,则335212113213213333332222=log log log 3log 3log 3log 3log 3log 3nn n i i i c c 22213352121n n 1111113352121n n1121n ;(ⅱ)由题意,对*n N ,21221212121211222213310213n n n n n n n n n n c c c c n n c c c 102193n n ,设219n n 的前n 项为 n R ,所以 2939219n n R n ,则 2319939219n n R n ,则 212311998929992199221919n n n n n R n n 14558944n n ,所以1458593232n n n R,即211110754025931648nn k k n k n c c R.15.(2022·浙江省杭州学军中学模拟预测)已知数列 n a 的前n 项和为n S ,114a ,且2*1,21n n n S a n n N .(1)求2a 的值,并证明:数列21n a n是一个常数列;(2)设数列 n b满足n bn b 的前n 项和为n T,若2 k T ,求正整数k 的值.【答案】(1)234a,证明见解析.(2)1,2,3k .【解析】【分析】(1)利用1n n n a S S 得到n a 与1n a 的关系,构造数列21n a n即可.(2)先求出n S ,得到8(1)n b n n,裂项求和得到n T ,代入解不等式.(1)当1n 时,1213S a 得:234a .当2n 时,21(1)21 n n n S a n ,则221(1)2121n n n n n a a a n n ,得121212134n n a a a n n ,又1114a 符合上式,即数列21n a n是一个常数列.(2)由(1)可知:2121,44 n n n n a S ,即8118(1)1n b n n n n .12188111k k k T b b b k k ,则8(1)21 k k T k k ,得:13k .即1,2,3k .16.(2022·江苏·南京市江宁高级中学模拟预测)已知数列{}n a 满足11a ,1|121|n n n a a a ,*n N .(1)求4a 的值并求数列{}n a 的通项公式;(2)若333432log log ...log n n b a a a ,求数列1{}nb 的前n 项和.【答案】(1)49a ,21,13,2n n n n a ;(2)21n n .【解析】【分析】(1)根据已知条件及数列的递推公式,取项数n 可得出数列的各项,再利用等比数列的通项公式即可求解;(2)根据对数的运算性质,再利用裂项相消法即可求解.(1)因为1|121|n n n a a a ,又11a ,所以2111211a a a -++,3221213a a a -++,4331219a a a -++.当2n 时,12211n n a a a ,所以1n a ,从而11211213n n n n n n a a a a a a +-,所以数列{}n a 是以首项为21a ,公比为3的等比数列,于是有 221332n n n a n ,又因为11a ,不满足上式,所以数列{}n a 的通项公式为21,13,2n n n n a .(2)由(1)知, 221332n n n a n ,334323lo l 1og g 2n n b a a a n +++l og +=(1)2n n ,故1n b =22n n =1121n n.所以121111112212211113n n b n b b n n 所以数列1n b的前n 项和为21n n .17.(2022·全国·高考真题)记n S 为数列 n a 的前n 项和,已知11,n n S a a 是公差为13的等差数列.(1)求 n a 的通项公式;(2)证明:121112na a a .【答案】(1) 12n n n a(2)见解析【解析】【分析】(1)利用等差数列的通项公式求得 121133n n S n n a ,得到 23n n n a S ,利用和与项的关系得到当2n 时, 112133n n n n n n a n a a S S ,进而得:111n n a n a n ,利用累乘法求得 12n n n a ,检验对于1n 也成立,得到 n a 的通项公式 12n n n a ;(2)由(1)的结论,利用裂项求和法得到121111211n a a a n,进而证得.(1)∵11a ,∴111S a ,∴111S a ,又∵n n S a 是公差为13的等差数列,∴ 121133n n S n n a ,∴ 23n n n a S ,∴当2n 时, 1113n n n a S,∴ 112133n n n n n n a n a a S S ,整理得: 111n n n a n a ,即111n n a n a n ,∴31211221n n n n n a a a a a a a a a a1341123212n n n n n n ,显然对于1n 也成立,∴ n a 的通项公式 12n n n a;(2)12112,11n a n n n n ∴12111n a a a 1111112121222311n n n18.(2022·天津·耀华中学二模)已知 n a 为等差数列,前n 项和为n S , *n N , n b 是首项为2的等比数列,且公比大于0,2312b b ,335b a a ,6112b S .(1)求 n a 和 n b 的通项公式;(2)设10c ,11ln 1n n c c n,*n N ,求n c ;(3)设1113,21ln ,2n n n n n nc n k bd a a n k b ,其中*k N .求 n d 的前2n 项和2n T .【答案】(1)n a n ,2n n b ;(2)ln n c n ;(3)ln(21)4nn .【解析】【分析】(1)根据等差数列的通项公式、前n 项和公式,结合等比数列的通项公式进行求解即可;(2)运用累和法,结合对数的运算性质进行求解即可;(3)根据(1)(2)的结论,结合裂项相消法进行求解即可.(1)设等差数列的公差为d ,等比数列的公比为(0)q q ,由2231222122b b q q q ,或3q 舍去,所以1222n n n b ;35413428434a a b a d a a ,6111121111102642b S a d ,解得:11a d ,即1(1)1n a n n ,所以有n a n ,2n n b ;(2)因为111ln 1ln n n n c c n n,所以当*2,n n N 时,有112211()()()n n n n n c c c c c c c c 12(1)2ln ln ln ln ln 121(1)(2)1n n n n n n n n n ,显然当1n 时也适合,即ln n c n ;(3)由(1)(2)可知:n a n ,2n n b ,ln n c n .当21n k ,*k N 时,2123ln(21)2k k k d,当2n k ,*k N 时,2221ln 212k k k k d ,122221ln 3ln(21)4ln(21)ln(21)21224k k k k k k k k k k d d,21234ln1ln 34ln 3ln 54ln 5ln 74ln(21)ln(21)4444n n n n T112231ln 3ln 3ln 5ln 54ln 7ln(21)ln(21)04444444n n n nln(21)4nn .【点睛】关键点睛:运用裂项相消法是解题的关键.19.(2022·湖北省仙桃中学模拟预测)已知数列{}n a 为等比数列,且6431316,32a a a a (1)求{}n a 的通项公式;(2)若(1)(1)n n n a b n n ,{}n b 的前n 项和为n T ,求满足8n T 的最小正整数n 【答案】(1)2nn a (2)5(1)列方程组求得等比数列{}n a 首项、公比,进而求得其通项公式;(2)先化简{}n b 的通项公式,利用裂项相消法求得{}n b 的前n 项和为n T ,再解8n T ,即可求得满足不等式的最小正整数n .(1)设等比数列{}n a 首项为1a ,公比为q ,则531121131632a q a q a q a ,解之得122a q ,则等比数列{}n a 的通项公式2nn a (2)由2nn a ,可得1(1)2121222(1)111n n n n n n n a b a n n n n n n n n 则{}n b 的前n 项和232435411222222222222232435411n n n n T n n n由12281n n T n ,可得1210100n n 令 1()210101N x f x x x x ,,则1()2ln 2101N x f x x x ,由1()2ln 2100x f x ,可得210log 1 2.85ln 2x由1()2ln 2100x f x ,可得210log 1 2.85ln 2x则有()f x 在 1,2.85单调递减,在 2.85, 单调递增又2(1)21010160f ,5(4)24010180f ,6(5)2501040f 则0(1)(2)f f ,(3)(4)0(5)()f f f f n 即由不等式1210100n n ,可得5,Nn n 则满足8n T 的最小正整数为520.(2022·全国·高考真题)已知函数()e e ax x f x x .(1)当1a 时,讨论()f x 的单调性;(2)当0x 时,()1f x ,求a 的取值范围;(3)设n Nln(1)n .【答案】(1) f x 的减区间为 ,0 ,增区间为 0, .(2)12a【分析】(1)求出()f x ¢,讨论其符号后可得 f x 的单调性.(2)设 e e 1ax x h x x ,求出 h x ,先讨论12a 时题设中的不等式不成立,再就102a 结合放缩法讨论 h x 符号,最后就0a 结合放缩法讨论 h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t tt 对任意的1t 恒成立,从而可得 ln 1ln n n*n N 恒成立,结合裂项相消法可证题设中的不等式.(1)当1a 时, 1e x f x x ,则 e x f x x ,当0x 时,()0f x ¢<,当0x 时,()0f x ¢>,故 f x 的减区间为 ,0 ,增区间为 0, .(2)设 e e 1ax x h x x ,则 00h ,又 1e e ax x h x ax ,设 1e e ax x g x ax ,则22e e ax x g x a a x ,若12a ,则 0210g a ,因为 g x 为连续不间断函数,故存在 00,x ,使得 00,x x ,总有()0g x ¢>,故 g x 在 00,x 为增函数,故 00g x g ,故 h x 在 00,x 为增函数,故 01h x h ,与题设矛盾.若102a ,则 ln 11e e e e ax ax ax x x h x ax ,下证:对任意0x ,总有 ln 1x x 成立,证明:设 ln 1S x x x ,故 11011x S x x x,故 S x 在 0, 上为减函数,故 00S x S 即 ln 1x x 成立.由上述不等式有 ln 12e e e e e e 0ax ax x ax ax x ax x ,故 0h x 总成立,即 h x 在 0, 上为减函数,所以 01h x h .当0a 时,有 e e e 1100ax x ax h x ax ,所以 h x 在 0, 上为减函数,所以 01h x h .综上,12a.(3)取12a ,则0x ,总有12e e 10x x x 成立,令12e x t ,则21,e ,2ln x t t x t ,故22ln 1t t t 即12ln t t t 对任意的1t 恒成立.所以对任意的*n N ,有 整理得到:ln 1ln n nln 2ln1ln 3ln 2ln 1ln n n ln 1n ,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.。
(完整版)裂项相消法求和附答案

裂项相消法利用列项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,再就是通项公式列项后,有时需要调整前面的系数,使列项前后等式两边保持相等。
(1)若是{a n }等差数列,则)11.(1111++-=n n n n a a d a a ,)11.(21122n ++-=n n n a a d a a(2)11111+-=+n n n n )( (3))11(1)(1kn n k k n n +-=+(4))121121(2112)121+--=+-n n n n )(((5)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n(6)n n n n -+=++111(7))(11n k n kkn n -+=++ 1.已知数列的前n 项和为, .(1)求数列的通项公式;(2)设,求数列的前n 项和为.[解析] (1) ……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即,……………………………………5分故对2.已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+8.(Ⅰ)求公差d的值;(Ⅰ)若a1=1,设T n是数列{}的前n项和,求使不等式T n≥对所有的nⅠN*恒成立的最大正整数m的值;[解析](Ⅰ)设数列{a n}的公差为d,Ⅰ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅰ)由a1=1,d=2,得a n=2n-1,…………………………………………5分Ⅰ =.…………………………………………6分Ⅰ T n===≥,…………………………………………8分又Ⅰ 不等式T n≥对所有的nⅠN*恒成立,Ⅰ ≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.Ⅰ m的最大正整数值为6.……………………………………………………12分3.)已知各项均不相同的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)设T n为数列的前n项和,求T2 012的值.[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),Ⅰa1=2. (5分)故a n=n+1. (6分)(Ⅰ)==-,(8分)ⅠT n=-+-+…+-=-=. (10分)ⅠT2 012=. (12分)4.)已知数列{a n}是等差数列,-=8n+4,设数列{|a n|}的前n项和为S n,数列的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:≤T n<1.[答案] (1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d. (2分)Ⅰ-=8n+4,Ⅰ(a n+1+a n)(a n+1-a n)=d(2a1-d+2nd)=8n+4.当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20.解方程组得或(4分)经检验知,a n=2n或a n=-2n都满足要求.Ⅰa n=2n或a n=-2n. (6分)(2)证明:由(1)知:a n=2n或a n=-2n.Ⅰ|a n|=2n.ⅠS n=n(n+1). (8分)Ⅰ==-.ⅠT n=1-+-+…+-=1-. (10分)Ⅰ≤T n<1. (12分)5.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅰ)令b n=(-1)n-1,求数列{b n}的前n项和T n.[答案] 查看解析[解析] (Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(Ⅰ)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+=.所以T n=6. 已知点的图象上一点,等比数列的首项为,且前项和(Ⅰ) 求数列和的通项公式;(Ⅰ) 若数列的前项和为,问的最小正整数是多少?[解析]解:(Ⅰ) 因为,所以,所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1的等差数列,,所以,当时,,所以. (6分)(Ⅰ) 由(Ⅰ) 得,(10分)由得,满足的最小正整数为72. (12分)7. 在数列,中,,,且成等差数列,成等比数列().(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅰ)证明:.[解析] (Ⅰ)由条件得,由此可得.猜测. (4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,.所以当时,结论也成立.由①②,可知对一切正整数都成立. (7分)(Ⅰ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8.已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅰ)设,,求使成立的最小的正整数的值.[解析] (1)当时,,由,……………………1分当时,Ⅰ是以为首项,为公比的等比数列.……………………4分故…………………6分(2)由(1)知,………………8分,故使成立的最小的正整数的值.………………12分9. 己知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}的通项公式;(II)设T n为数列的前n项和,若T n≤¨对恒成立,求实数的最小值.[解析] 122.(Ⅰ)设公差为d. 由已知得……………………………3分解得,所以………………………………6分(Ⅰ),………………………………9分对恒成立,即对恒成立又Ⅰ的最小值为……………………………………………………………12分10. 已知数列前项和为,首项为,且,,成等差数列.(Ⅰ)求数列的通项公式;(II)数列满足,求证:,[解析] (Ⅰ)成等差数列, Ⅰ,,当时,,两式相减得:.所以数列是首项为,公比为2的等比数列,.(6分)(Ⅰ) ,(8分),.(12分)11.等差数列{a n}各项均为正整数, a1=3, 前n项和为S n, 等比数列{b n}中, b1=1, 且b2S2=64, {}是公比为64的等比数列.(Ⅰ) 求a n与b n;(Ⅰ) 证明:++…+<.[答案] (Ⅰ) 设{a n}的公差为d, {b n}的公比为q, 则d为正整数,a n=3+(n-1) d,b n=q n-1.依题意有①由(6+d) q=64知q为正有理数, 又由q=知, d为6的因子1, 2, 3, 6之一, 解①得d=2, q=8. 故a n=3+2(n-1) =2n+1, b n=8n-1.(Ⅰ) 证明:S n=3+5+…+(2n+1) =n(n+2) ,所以++…+=+++…+==<.12. 等比数列{a n}的各项均为正数, 且2a1+3a2=1, =9a2a6.(Ⅰ) 求数列{a n}的通项公式;(Ⅰ) 设b n=log3a1+log3a2+…+log3a n, 求数列的前n项和.[答案] (Ⅰ) 设数列{a n}的公比为q. 由=9a2a6得=9, 所以q2=.因为条件可知q>0, 故q=.由2a1+3a2=1得2a1+3a1q=1, 所以a1=.故数列{a n}的通项公式为a n=.(Ⅰ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-.所以数列的前n项和为-.13.等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60.(Ⅰ)求a n和b n;(Ⅰ)求++…+.[答案] (Ⅰ)设{a n}的公差为d,且d为正数,{b n}的公比为q,a n=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2.(4分)故a n=3+2(n-1)=2n+1,b n=2n-1.(6分)(Ⅰ)S n=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-.(12分)14.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1). 等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.(1)求数列{a n}的通项公式;(2)设数列的前n项和为M n,求证:≤M n<.[答案](1)ⅠT5=T3+2b5,Ⅰb4+b5=2b5,即(a1-1)b4=0,又b4≠0,Ⅰa1=1. n≥2时,a n=S n-S n-1=na n-(n-1)a n-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1).Ⅰn-1≥1,Ⅰa n-a n-1=4(n≥2),Ⅰ数列{a n}是以1为首项,4为公差的等差数列,Ⅰa n=4n-3. (6分)(2)证明:Ⅰ==·,(8分)ⅠM n=++…+==<,(10分)又易知M n单调递增,故M n≥M1=.综上所述,≤M n<. (12分)。
高考真题与模拟训练 专题12 数列求和(解析版)

专题12 数列求和第一部分 真题分类1.(2021·)111,N n a a n *+==∈.n项和为ABCD【答案】A11122n n -+≤+=,当且仅当1n =时取等号,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++由累乘法可得n a ≤1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭1003S <<.故选:A .2.(2021·全国高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三4次共可以得到不同规格图形的种数为______次,那么1nkk S==∑______【答案】【解析】(1)由对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,所以125610320⨯⨯,,;4种不同规格(单位2dm );故对折46,53⨯,3204⨯,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积第nn 此对折后的图形的规格形状种数,根据(1设0121120212031204222nk k S S =⨯⨯⨯==+++∑L两式作差得:()()112011203120360360222n n nn n -++=--=-,3.(2020·江苏高考真题)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.d ,等比数列{}n b 的公比为,根据题意1q ≠.,即22111212211nn b b d d n n n a n q q q ⎛⎫-+-=+--+ ⎪--⎝⎭,.4.(2021·2的等差数列,其前8项和为640(I(II)记2*1,n n nc b b n N =+∈,(i(ii )证明)*nk n N =<∈【答案】(III )(i )证明见解析;(ii )证明见解析.【解析】(I 2的等差数列,其前8项和为64.,所以11a =,所以()12121,n n n n N a a *=+-=-∈;所以()221321484q b b b q q b q ==-=--(II )(i所以22224211442444n nn n n nn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以数列{}22n n c c -是等比数列;(ii<==设101211232222n n k k k T -===+++⋅⋅⋅+∑所以1242n n n T -+=-,5.(2021·13nn na b =(1(2nT{}n b 的前n项和.证明:n T <【答案】(12)证明见解析.1的等比数列且1a即29610q q -+=,解得q =11()3n n a -=,(2)证明:由(1211213333n n n n nT --=++++ ①,②①②所以31(143n n T =--所以n T <6.(2021·12a =,且()*1321n n a a n n N +=+-∈.(1(2(3n S .【答案】(1)见解析;(23【解析】(1∴{}n a n +是首项为3,公比为3的等比数列.(2(3.7.(2020·{}n b为等比数列,()()115435431,5,4a b a a a b b b ===-=-.{}n b 的通项公式;(Ⅱ)记{}n a ()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数,设()21132,,,.n nn n n n n a b n a ac a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c的前2n 项和.【解析】(Ⅰ)q .由11a =,()5435a a a =-,可得d =1.n a n =.又q ≠0,可得2440q q -+=,解得q =2,(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=,从而2211(1)(2)02n n n S S S n n ++-=-++<,(Ⅲ)当n当n 为偶数时,1112n n n n a n c b -+-==,对任意的正整数n①由223141135232144444n k n n k n n c +=--=+++++ ②①②由因此,22121114652194n nnnk k k nk k k n c c c n -===+=+=--+⨯∑∑∑2n 项和为465421949n nn n +--+⨯.8.(2020·全国高考真题(理))设数列{a n }满足a 1=3(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.【答案】(12【解析】(1{}n a2证明如下:21ka k=+成立..(2)由(1①②②得:()23162222(21)2n nnS n+-=+⨯+++-+⋅9.(2020·1(1(2)若11a=,求数列{}nna【答案】(12)1(13)(2)9nnnS-+-=.【解析】(1为23,a a的等差中项,(2n Sn S ∴=第二部分 模拟训练一、单选题1.定义[]x 表示不超过[]0.390=,[]1.281=.若数列{}n a 的通项公式为[]2log n a n ={}n a A .1122+B .11322⨯+C D .11922⨯+【答案】D【解析】1n ≥ ,2log 0n ∴≥,当20log 1n ≤<时,1n =,即10a =(共1项);2,3n =2项);当22log 3n ≤<时,4,5,6,7n =,即45672a a a a ====(共4项);…2047=.即122048k +=,所以10k =.故选:D .2满足123232n n aa a na ++++= ,设1(1)2nn n a b n -=+{}nb 的前n 项和.n *∈N 恒成立,则实数t 的最小值为( )A .1B .2CD .52【答案】C【解析】1n =111111313123341221n S n n n ⎛⎫=+-+-+-=-<⎪++⎝⎭ ,t故选:C.312a =下的三项按原来的顺序恰为等比数列{}n b 的前三项,则数列10项的和10T =( )AB C .12112⋅D .12122⋅【答案】A711767721352S a d a d ⨯=+⋅=+=, 解得1d =,,1516a =,所以4,8,16为等比数列{}n b 的前三项,,公比2q =,则23122322(1)2n n n T n n +=⋅+⋅+⋅⋅⋅+⋅++⋅,10故选:A.4112a =10项的和为( )A B C D .6532【答案】C1为首项,1为公差的等差数列,所以()211nn a n n =+-=,得na =n2311212222n n n n n S +-=++++ ,,即222n n n S +=-,故选:C.5535S =.n T ,若21n m T +>恒成立,则AB .0C .1D .2【答案】B,535S =.解得132a d =⎧⎨=⎩,1111((21)(23)22123n n n n ==-++++,所以1216+m …,解得≥m0.故选:B .6{}n a 项和,且315S =,34527a a a ++=,记n b ={}n b 的前20项和为( )ABCD .40129【答案】Cd ,根据题意3454327a a a a +=+=,得49a =1413315,39,a d a a d +=⎧⎨=+=⎩解得13a =,2d =.所以数列{}n b 的前20项和为故选:C .7中11a =,{}n aA .1,12⎡⎫⎪⎢⎣⎭B .1,12⎛⎫ ⎪⎝⎭C .13,24⎡⎫⎪⎢⎣⎭D .2,13⎡⎫⎪⎢⎣⎭【答案】A11a =∴1为首项,2为公差的等差数列,∴()1121n a a n d n =+-=-,∴211111n n b S n n n n n ===-+++,当1n =时n T =故选:A.8,35a=,则数列10项的和为( )ABCD【答案】D5127a a -=,35a =()()1111212122121n n n n ⎛⎫==- ⎪-+-+⎝⎭.所以数列11{}n n a a +的前10项的和为故选:D 二、填空题9.已知数列的前项和为n S,,且对任意的n *∈N【答案】5【解析】∴224321log 1log 16533321=+⋅⋅⋅⋅⎛⎫⋅⎪⎭=+ ⎝⋅=.故答案为:510.已知数列{}n a 的前n 项和为n S ,且21122n Sn n =+,若()1n n b =-{}n b 的前n项()()2211111112222n n na S S n n n n n-⎡⎤=-=+--+-=⎢⎥⎣⎦,满足11a=,为偶数时,111111111+122334111 nn Tn n n n⎛⎫⎛⎫⎛⎫⎛⎫=-++-++++=-+=-⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭,11.已知数列{}na满足()23*1232222nna a a a n nN++++=∈,若nb={}nb【解析】因为()23*1232222nna a a a n n N++++=∈,1n=时也满足,故111111122311n S n nn 1=-+-++-=-=++12.已知数列{}n a.【答案】880n S当1n =,10a > ,解得12a =;211142n n n S a a ---=+,()()()11141n nn n n b a a n n +=-⋅=-⋅+ ,可视为数列{}212n n b b -+项和,因此,()20101616108802T⨯+⨯==.三、解答题13.等比数列{}n a(1(2)设b n =log 3a 1+log 3a 2…++log3a n ,求数列1n b ⎧⎫⎨⎬⎩⎭【答案】(12)21nn -+.【解析】(1)设数列{a n }的公比为q ,9a 2a 6得23a =所以q 2由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1故数列{a n }的通项公式为a n(2)b n =log 3a 1+log 3a 2…++log 3a n =-(1+2…++n.2111111122122311n n b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=--+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦n 项和为14.已知数列{}n a(1(2)设等差数列{}n b21122n S n n k =-+{}n c 的前项和n T .【答案】(12【解析】(1)当1n =112=-,132a ∴=-;3122311112121212n n n a a a ---++++=-+++L ,②1na=-(2则()221111122222nn n d d dS nb n b n n n k-⎛⎫=+=+-=-+⎪⎝⎭,;由(1)知,212n n n nc b a kn n=-+=+,15na≠恒成立.(1(2,当11a=、4a=n a的通项公式;(3,11a=-nS最大值.【答案】(1;(23【解析】(11k= ;(2令1n =所以4221624a =⨯,所以32a =,解得2a =,12n -=,12=,以上式子累乘得:所以(()21n n a -=,(3132412n n n n a a a a ++++=-,所以22424111224n n n n n n a a aa a a +++++⎛⎫=-- ⎪=⎝⎭⨯,()48122020a a a a +++++()250441444a +++++,所以240a a >,因为所以()24a a +-≥=-24a a +≤-,令31y a =-+-,设2,t⎡=⎣,所以t =1234a a a a +++最大值为(211--=-,16.已知数列{}na 满足:()21*1231333N 3n n n aa a a n -++++⋅⋅⋅+=∈.(1(2n S .【答案】(1221【解析】解:(1所以,当1n =时,1a =相减可得1133n n a -=,所以n a =(2时,1111111112313131133n n n n n n b +++⎛⎫==- ⎪--⎛⎫⎛⎫⎝⎭-- ⎪⎪⎝⎭⎝⎭.综上,对*N n ∈都有,716n S <.。
高考数学数列求和错位相减裂项相消(解析版)全

数列求和-错位相减、裂项相消◆错位相减法错位相减法是求解由等差数列a n 和等比数列b n 对应项之积组成的数列c n (即c n =a n b n )的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练.在讲等比数列的时候, 我们推导过等比数列的求和公式,其过程正是利用错位相减的原理, 等比数列的通项b n 其实可以看成等差数列通项a n a n =1 与等比数列通项b n 的积.公式秒杀:S n =(A ⋅n +B )q n -B (错位相减都可化简为这种形式,对于求解参数A 与B ,可以采用将前1项和与前2项和代入式中,建立二元一次方程求解.此方法可以快速求解出结果或者作为检验对错的依据.)【经典例题1】设数列a n 的前n 项和为S n ,若a 1=1,S n =a n +1-1.(1)求数列a n 的通项公式;(2)设b n =na n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1n ∈N ∗ ; (2)T n =2-n +22n.【解析】(1)因为a 1=1,S n =a n +1-1.所以S 1=a 2-1,解得a 2=2.当n ≥2时,S n -1=a n -1,所以a n =S n -S n -1=a n +1-a n ,所以2a n =a n +1,即a n +1a n=2.因为a 2a 1=2也满足上式,所以a n 是首项为1,公比为2的等比数列,所以a n =2n -1n ∈N ∗ .(2)由(1)知a n +1=2n ,所以b n =n2n ,所以T n =1×12+2×12 2+3×12 3+⋯+n ×12 n⋯①12T n =1×12 2+2×12 3+⋯+(n -1)×12 n +n ×12n +1⋯②①-②得12T n =12+12 2+12 3+⋯+12 n -n ×12 n +1=121-12 n1-12-n ×12 n +1=1-1+n 2 12 n ,所以T n =2-n +22n.【经典例题2】已知等差数列a n 的前n 项和为S n ,数列b n 为等比数列,且a 1=b 1=1,S 3=3b 2=12.(1)求数列a n ,b n 的通项公式;(2)若c n =a n b n +1,求数列c n 的前n 项和T n .【答案】(1)a n =3n -2,b n =4n -1(2)T n =4+n -1 4n +1【解析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由题意得:3a 1+3d =12,解得:d =3,所以a n =1+3n -1 =3n -2,由3b 2=12得:b 2=4,所以q =a2a 1=4,所以b n =4n -1(2)c n =a n b n +1=3n -2 ⋅4n ,则T n =4+4×42+7×43+⋯+3n -2 4n ①,4T n =42+4×43+7×44+⋯+3n -2 4n +1②,两式相减得:-3T n =4+3×42+3×43+3×44+⋯+3×4n -3n -2 4n +1=4+3×16-4n +11-4-3n -2 4n +1=-12+3-3n 4n +1,所以T n =4+n -1 4n +1【经典例题3】已知各项均为正数的等比数列a n 的前n 项和为S n ,且S 2=6,S 3=14.(1)求数列a n 的通项公式;(2)若b n =2n -1a n,求数列b n 的前n 项和T n .【答案】(1)a n =2n n ∈N * (2)T n =3-2n +32n 【解析】(1)设等比数列a n 的公比为q ,当q =1时,S n =na 1,所以S 2=2a 1=6,S 3=3a 1=14,无解.当q ≠1时,S n =a 11-q n 1-q ,所以S 2=a 11-q 21-q =6,S 3=a 11-q 31-q=14.解得a 1=2,q =2或a 1=18,q =-23(舍).所以a n =2×2n -1=2n n ∈N * .(2)b n =2n -1a n =2n -12n .所以T n =12+322+523+⋯+2n -32n -1+2n -12n ①,则12T n=122+323+524+⋯+2n -32n+2n -12n +1②,①-②得,12T n =12+222+223+224+⋯+22n -2n -12n +1=12+2122+123+124+⋯+12n -2n -12n +1=12+2×141-12n -1 1-12-2n -12n +1=32-2n +32n +1.所以T n =3-2n +32n.【练习1】已知数列a n 满足a 1=1,a n +1=2a n +1n ∈N ∗ .(1)求数列a n 的通项公式;(2)求数列n a n +1 的前n 项和S n .【答案】(1)a n =2n -1(2)S n =n -1 ⋅2n +1+2【解析】(1)由a n +1=2a n +1得:a n +1+1=2a n +1 ,又a 1+1=2,∴数列a n +1 是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.(2)由(1)得:n a n +1 =n ⋅2n ;∴S n =1×21+2×22+3×23+⋅⋅⋅+n -1 ⋅2n -1+n ⋅2n ,2S n =1×22+2×23+3×24+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1,∴-S n =2+22+23++2n-n ⋅2n +1=21-2n1-2-n ⋅2n +1=1-n ⋅2n +1-2,∴S n =n -1 ⋅2n +1+2.【练习2】已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n 的通项公式;(2)设b n =na n ,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =(n -1)⋅2n +1【解析】(1)令n =1得S 1=a 1=2a 1-1,∴a 1=1,当n ≥2时,S n -1=2a n -1-1,则a n =S n -S n -1=2a n -2a n -1,整理得a n =2a n -1,∴an a n -1=2,∴数列a n 是首项为1,公比为2的等比数列,∴a n =2n -1;(2)由(1)得b n =na n =n ⋅2n -1,则T n =1⋅20+2⋅21+3⋅22+⋅⋅⋅+n ⋅2n -1,2T n =1⋅21+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n ,两式相减得-T n =20+21+22+23+⋅⋅⋅+2n -1-n ⋅2n =1-2n1-2-n ⋅2n ,化简得T n =1-2n +n ⋅2n =(n -1)⋅2n +1.【练习3】已知数列a n 的前n 项和为S n ,且3S n =4a n -2.(1)求a n 的通项公式;(2)设b n =a n +1⋅log 2a n ,求数列b n 的前n 项和T n .【答案】(1)a n =22n -1(2)T n =409+6n -59×22n +3【解析】(1)当n =1时,3S 1=4a 1-2=3a 1,解得a 1=2.当n ≥2时,3a n =3S n -3S n -1=4a n -2-4a n -1-2 ,整理得a n =4a n -1,所以a n 是以2为首项,4为公比的等比数列,故a n =2×4n -1=22n -1.(2)由(1)可知,b n =a n +1⋅log 2a n =2n -1 ×22n +1,则T n =1×23+3×25+⋯+2n -1 ×22n +1,4T n =1×25+3×27+⋯+2n -1 ×22n +3,则-3T n =23+26+28+⋯+22n +2-2n -1 ×22n +3=23+26-22n +41-4-2n -1 ×22n +3=-403-6n -53×22n +3.故T n =409+6n -59×22n +3.【练习4】已知数列a n 满足a 1=1,a n +1=2n +1a na n +2n(n ∈N +).(1)求证数列2n a n 为等差数列;(2)设b n =n n +1 a n ,求数列b n 的前n 项和S n .【答案】(1)证明见解析 (2)S n =n -1 ⋅2n +1+2【解析】(1)由已知可得a n +12n +1=a n a n +2n ,即2n +1a n +1=2n a n +1,即2n +1a n +1-2n a n =1,∴2n a n 是等差数列.(2)由(1)知,2n a n =2a 1+n -1 ×1=n +1,∴a n =2nn +1,∴b n =n ⋅2nS n =1⋅2+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n2S n =1⋅22+2⋅23+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1相减得,-S n=2+22+23+⋅⋅⋅+2n-n⋅2n+1=21-2n1-2-n⋅2n+1=2n+1-2-n⋅2n+1∴S n=n-1⋅2n+1+2◆裂项相消法把数列的通项拆成相邻两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.在消项时要注意前面保留第几项,最后也要保留相对应的倒数几项.例如消项时保留第一项和第3项,相应的也要保留最后一项和倒数第三项.常见的裂项形式:(1)1n(n+k)=1k1n-1n+k;(2)1(2n-1)(2n+1)=1212n-1-12n+1;(3)1n+k+n=1k(n+k-n);(4)2n+1n2(n+1)2=1n2-1(n+1)2;(5)2n2n-12n+1-1=12n-1-12n+1-1;(6)2n(4n-1)n(n+1)=2n+1n+1-2nn;(7)n+1(2n-1)(2n+1)2n =1(2n-1)2n+1-1(2n+1)2n+2;(8)(-1)n(n+1)(2n+1)(2n+3)=14(-1)n2n+1-(-1)n+12n+3(9)(-1)nn-n-1=(-1)n(n+n-1)=(-1)n n-(-1)n-1n-1(10)1n(n+1)(n+2)=121n(n+1)-1(n+1)(n+2).(11)n⋅n!=n+1!-n!(12)kk+1!=1k!-1k+1!【经典例题1】已知正项数列a n中,a1=1,a2n+1-a2n=1,则数列1a n+1+a n的前99项和为( )A.4950B.10C.9D.14950【答案】C【解析】因为a2n+1-a2n=1且a21=1,所以,数列a2n是以1为首项,1为公差的等差数列,所以,a2n=1+n-1=n,因为数列a n为正项数列,则a n=n,则1a n+1+a n=1n+1+n=n+1-nn+1+nn+1-n=-n+n+1,所以,数列1a n+1+a n的前99项和为-1+2-2+3-⋯-99+100=10-1=9.故选:C.【经典例题2】数列a n 的通项公式为a n =2n +1n 2n +12n ∈N *,该数列的前8项和为__________.【答案】8081【解析】因为a n =2n +1n 2n +12=1n 2-1(n +1)2,所以S 8=1-122+122-132 +⋯+182-192 =1-181=8081.故答案为:8081.【经典例题3】已知数列a n 的前n 项和为S n =n 2,若b n =1a n a n +1,则数列{b n }的前n 项和为________.【答案】n 2n +1【解析】当n =1时,a 1=S 1=12=1,当n ≥2时,a n =S n -S n -1=n 2-n -1 2=2n -1,且当n =1时,2n -1=1=a 1,故数列a n 的通项公式为a n =2n -1,b n =1a n a n +1=1(2n -1)(2n +1)=1212n -1-12n +1 ,则数列{b n }的前n 项和为:121-13 +13-15 +15-17 +⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.故答案为:n2n +1【练习1】数列12n +1+2n -1的前2022项和为( )A.4043-12B.4045-12C.4043-1D.4045-1【答案】B 【解析】解:12n +1+2n -1=2n +1-2n -12n +1+2n -1 2n +1-2n -1=2n +1-2n -12记12n +1+2n -1 的前n 项和为T n ,则T 2022=123-1+5-3+7-5+⋯+4045-4043=124045-1 ;故选:B 【练习2】数列a n 的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列,又记b n =1a 2n +1⋅a 2n +3,数列b n 的前n 项和T n =______.【答案】n6n +9【解析】由对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列可得:2S n =a 2n +a n ,当n ≥2时可得2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n +a n -a 2n -1-a n -1,所以a 2n -a n -a 2n -1-a n -1=0,所以(a n +a n -1)(a n -a n -1-1)=0,由数列a n 的各项均为正数,所以a n -a n -1=1,又n =1时a 2n -a n =0,所以a 1=1,所以a n =n ,b n =1a 2n +1⋅a 2n +3=1(2n +1)(2n +3)=1212n +1-12n +3 ,T n =1213-15+15-17+⋯12n +1-12n +3 =1213-12n +3 =n 6n +9.故答案为:n6n +9.【练习3】12!+23!+34!+⋅⋅⋅+nn +1 !=_______.【答案】1-1n +1 !【解析】∵k k +1 !=k +1-1k +1 !=1k !-1k +1 !,∴12!+23!+34!+⋅⋅⋅+n n +1 !=1-12!+12!-13!+13!-14!+⋅⋅⋅+1n -1 !-1n !+1n !-1n +1 !=1-1n +1 !.故答案为:1-1n +1 !.【练习4】设数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n .(1)求a n 的通项公式;(2)求数列a n3n +1 的前n 项和T n .【答案】(1)a n =33n -2(2)T n =3n3n +1【解析】(1)解:数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n ,当n =1时,得a 1=3,n ≥2时,a 1+4a 2+⋯+(3n -5)a n -1=3(n -1),两式相减得:(3n -2)a n =3,∴a n =33n -2,当n =1时,a 1=3,上式也成立.∴a n =33n -2;(2)因为a n 3n +1=3(3n -2)(3n +1),=13n -2-13n +1,∴T n =11-14+14-17+⋯+13n -2-13n +1,=1-13n +1=3n3n +1.【练习5】已知数列a n 的前n 项和为S n ,且2S n =1-a n n ∈N ∗ .(1)求数列a n 的通项公式;(2)设b n =log 13a n ,C n =n +1-nb n b n +1,求数列C n 的前n 项和T n【答案】(1)a n =13n (2)T n =1-1n +1【解析】(1)当n =1时,2a 1=2S 1=1-a 1,解得:a 1=13;当n ≥2时,2a n =2S n -2S n -1=1-a n -1+a n -1,即a n =13a n -1,∴数列a n 是以13为首项,13为公比的等比数列,∴a n =13 n =13n .(2)由(1)得:b n =log 1313 n =n ,∴C n =n +1-n n n +1=1n -1n +1,∴T n =1-12+12-13+13-14+⋅⋅⋅+1n -1-1n +1n -1n +1=1-1n +1.【练习6】已知数列a n 中,2n a 1+2n -1a 2+⋯+2a n =n ⋅2n .(1)证明:a n 为等比数列,并求a n 的通项公式;(2)设b n =(n -1)a nn (n +1),求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =2n -1n ∈N *(2)2n n +1-1【解析】(1)解:2n a 1+2n -1a 2+⋯+2a n =n ⋅2n ,即为a 1+a 22+⋯+a n2n -1=n ·······①,又a 1+a 22+⋯+a n -12n -2=n -1,········②,①-②得a n2n -1=1,即a n =2n -1(n ≥2),又当n =1时,a 1=1=21-1,故a n =2n -1n ∈N * ;从而a n +1a n =2n2n -1=2n ∈N * ,所以a n 是首项为1,公比为2的等比数列;(2)由(1)得b n =(n -1)2n -1n (n +1)=2n n +1-2n -1n ,所以S n =212-201 +223-212 +⋯+2n n +1-2n -1n =2nn +1-1.【练习7】记S n 是公差不为零的等差数列a n 的前n 项和,若S 3=6,a 3是a 1和a 9的等比中项.(1)求数列a n 的通项公式;(2)记b n =1a n ⋅a n +1⋅a n +2,求数列b n 的前20项和.【答案】(1)a n =n ,n ∈N *(2)115462【解析】(1)由题意知a 23=a 1⋅a 9,设等差数列a n 的公差为d ,则a 1a 1+8d =a 1+2d 2,因为d ≠0,解得a 1=d又S 3=3a 1+3d =6,可得a 1=d =1,所以数列a n 是以1为首项和公差为1的等差数列,所以a n =a 1+n -1 d =n ,n ∈N *(2)由(1)可知b n =1n n +1 n +2 =121n n +1 -1n +1 n +2,设数列b n 的前n 和为T n ,则T n =1211×2-12×3+12×3-13×4+⋅⋅⋅+1n n +1 -1n +1 n +2=1212-1n +1 n +2,所以T 20=12×12-121×22 =115462所以数列b n 的前20和为115462【练习8】已知等差数列a n 满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N +).(1)求数列a n ,b n 的通项公式;(2)数列b n 的前n 项和为S n ,求S n .【答案】(1)a n =2n +1,b n =14n n +1(2)S n =n 4n +1【解析】(1)由题意,可设等差数列a n 的公差为d ,则a 1+2d =72a 1+10d =26,解得a 1=3,d =2,∴a n =3+2n -1 =2n +1;∴b n =1a 2n -1=12n +1 2-1=14n 2+4n =14n n +1 ;(2)∵b n =14n n +1=141n -1n +1 ,S n =141-12+12-13+⋯+1n -1n +1 =141-1n +1 =n 4n +1.【练习9】已知正项数列a n 的前n 项和为S n ,且4、a n +1、S n 成等比数列,其中n ∈N ∗.(1)求数列a n 的通项公式;(2)设b n =4S na n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =n +n2n +1【解析】(1)解:对任意的n ∈N ∗,a n >0,由题意可得4S n =a n +1 2=a 2n +2a n +1.当n =1时,则4a 1=4S 1=a 21+2a 1+1,解得a 1=1,当n ≥2时,由4S n =a 2n +2a n +1可得4S n -1=a 2n -1+2a n -1+1,上述两个等式作差得4a n =a 2n -a 2n -1+2a n -2a n -1,即a n +a n -1 a n -a n -1-2 =0,因为a n +a n -1>0,所以,a n -a n -1=2,所以,数列a n 为等差数列,且首项为1,公差为2,则a n =1+2n -1 =2n -1.(2)解:S n =n 1+2n -12=n 2,则b n =4S n a n a n +1=4n 22n -1 2n +1 =4n 2-1+12n -1 2n +1 =1+12n -1 2n +1=1+1212n -1-12n +1,因此,T n =n +121-13+13-15+⋯+12n -1-12n +1 =n +n2n +1.【练习10】已知S n 是数列a n 的前n 项和,a 1=1,___________.①∀n ∈N ∗,a n +a n +1=4n ;②数列S n n 为等差数列,且S nn 的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解:(1)求a n ;(2)设b n =a n +a n +1a n ⋅a n +1 2,求数列b n 的前n 项和T n .【答案】(1)条件选择见解析,a n =2n -1(2)T n =2n n +12n +12【解析】(1)解:选条件①:∀n ∈N ∗,a n +a n +1=4n ,得a n +1+a n +2=4n +1 ,所以,a n +2-a n =4n +1 -4n =4,即数列a 2k -1 、a 2k k ∈N ∗ 均为公差为4的等差数列,于是a 2k -1=a 1+4k -1 =4k -3=22k -1 -1,又a 1+a 2=4,a 2=3,a 2k =a 2+4k -1 =4k -1=2⋅2k -1,所以a n =2n -1;选条件②:因为数列S n n 为等差数列,且S nn 的前3项和为6,得S 11+S 22+S 33=3×S 22=6,所以S 22=2,所以S n n 的公差为d=S 22-S 11=2-1=1,得到Sn n =1+n -1 =n ,则S n =n 2,当n ≥2,a n =S n -S n -1=n 2-n -1 2=2n -1.又a 1=1满足a n =2n -1,所以,对任意的n ∈N ∗,a n =2n -1.(2)解:因为b n =a n +a n +1a n ⋅a n +1 2=4n 2n -1 22n +1 2=1212n -1 2-12n +1 2,所以T n =b 1+b 2+⋅⋅⋅+b n =12112-132+132-152+⋅⋅⋅+12n -1 2-12n +1 2 =121-12n +1 2 =2n n +1 2n +12.【过关检测】一、单选题1.S n=12+24+38+⋯+n2n=( )A.2n-n2n B.2n+1-n-22nC.2n-n+12n+1D.2n+1-n+22n【答案】B 【解析】由S n=12+24+38+⋯+n2n,得12S n=1×122+2×123+3×124+⋯+n⋅12n+1,两式相减得12S n=12+122+123+124+⋯+12n-n⋅12n+1=121-12n1-12-n12 n+1=1-12n-n⋅12 n+1=2n+1-n-22n+1.所以S n=2n+1-n-22n.故选:B.2.数列n⋅2n的前n项和等于( ).A.n⋅2n-2n+2B.n⋅2n+1-2n+1+2C.n⋅2n+1-2nD.n⋅2n+1-2n+1【答案】B【解析】解:设n⋅2n的前n项和为S n,则S n=1×21+2×22+3×23+⋯+n⋅2n, ①所以2S n=1×22+2×23+⋯+n-1⋅2n+n⋅2n+1, ②①-②,得-S n=2+22+23+⋯+2n-n⋅2n+1=21-2n1-2-n⋅2n+1,所以S n=n⋅2n+1-2n+1+2.故选:B.3.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则数列{nan}的前n项和为( )A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n【答案】D【解析】设等比数列{an}的公比为q,易知q≠1,所以由题设得S3=a11-q31-q=7S6=a11-q61-q=63 ,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以an=a1qn-1=2n-1,所以nan=n×2n-1.设数列{nan }的前n 项和为Tn ,则Tn =1×20+2×21+3×22+⋯+n ×2n -1,2Tn =1×21+2×22+3×23+⋯+n ×2n ,两式作差得-Tn =1+2+22+⋯+2n -1-n ×2n =1-2n1-2-n ×2n =-1+(1-n )×2n ,故Tn =1+(n -1)×2n .故选:D .4.已知等差数列a n ,a 2=3,a 5=6,则数列1a n a n +1的前8项和为( ).A.15B.25C.35D.45【答案】B 【解析】由a 2=3,a 5=6可得公差d =a 5-a 23=1 ,所以a n =a 2+n -2 d =n +1,因此1a n a n +1=1n +1 n +2 =1n +1-1n +2 ,所以前8项和为12-13 +13-14 +⋯+19-110 =12-110=25故选:B 5.已知数列a n 的前n 项和为S n ,S n +4=a n +n +1 2.记b n =8a n +1a n +2,数列的前n 项和为T n ,则T n 的取值范围为( )A.863,47 B.19,17C.47,+∞D.19,17【答案】A 【解析】因为数列a n 中,S n +4=a n +(n +1)2,所以S n +1+4=a n +1+n +2 2,所以S n +1+4-S n +4 =a n +1-a n +2n +3,所以a n =2n +3.因为b n =8a n +1a n +2,所以b n =82n +5 2n +7=412n +5-12n +7 ,所以T n =417-19+19-111+⋅⋅⋅+12n +5-12n +7=417-12n +7 .因为数列T n 是递增数列,当n =1时,T n =863,当n →+∞时,12n +7→0,T n →47,所以863≤T n <47,所以T n 的取值范围为863,47 .故选:A .6.已知数列满足a 1+2a 2+3a 3+⋯+na n =n 2,设b n =na n ,则数列1b n b n +1的前2022项和为( )A.40424043B.20214043C.40444045D.20224045【答案】D【解析】因为a 1+2a 2+3a 3+⋯+na n =n 2①,当n =1时,a 1=1;当n ≥2时,a 1+2a 2+3a 3+⋯+n -1 a n -1=(n -1)2②,①-②化简得a n =2n -1n ,当n =1时:a 1=2×1-11=1=1,也满足a n =2n -1n,所以a n =2n -1n ,b n =na n =2n -1,1b n b n +1=1(2n -1)(2n +1)=1212n -1-12n +1 所以1b n b n +1的前2022项和121-13+13-15+⋯+12×2022-1-12×2022+1 =121-12×2022+1 =20224045.故选:D .7.已知数列a n 满足a 1=1,且a n =1+a n a n +1,n ∈N *,则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=( )A.2021 B.20202021C.122021D.22021【答案】B 【解析】∵a n =1+a n a n +1,即a n +1=a n 1+a n ,则1a n +1=1+a n a n =1a n +1∴数列1a n是以首项1a 1=1,公差d =1的等差数列则1a n =1+n -1=n ,即a n =1n∴a n a n +1=1n n +1=1n -1n +1则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=1-12+12-13+...+12020-12021=20202021故选:B .8.等差数列a n 中,a 3=5,a 7=9,设b n =1a n +1+a n,则数列b n 的前61项和为( )A.7-3B.7C.8-3D.8【答案】C 【解析】解:因为等差数列满足a 3=5,a 7=9,所以d =a 7-a 37-3=1,所以a n =a 3+n -3 d =n +2,所以b n =1n +3+n +2=n +3-n +2,令数列b n 的前n 项和为S n ,所以数列b n 的前n 项和S n =4-3+5-4+⋯+n +3-n +2=n +3-3,所以S 61=8-3.故选:C .9.设数列n 22n -1 2n +1的前n 项和为S n ,则( )A.25<S 100<25.5B.25.5<S 100<26C.26<S 100<27D.27<S 100<27.5【答案】A 【解析】由n 2(2n -1)(2n +1)=14⋅4n 24n 2-1=141+14n 2-1 =141+121(2n -1)(2n +1)=14+1812n -1-12n +1,∴S n =n 4+181-13+13-15+⋅⋅⋅+12n -1-12n +1 =n 4+181-12n +1 =n (n +1)2(2n +1),∴S 100=100×1012(2×100+1)≈25.12,故选:A .10.已知数列a n 满足a n =1+2+4+⋯+2n -1,则数列2n a n a n +1 的前5项和为( )A.131B.163C.3031D.6263【答案】D 【解析】因为a n =1+2+4+⋯+2n -1=2n -1,a n +1=2n +1-1,所以2n a n a n +1=2n 2n -1 2n +1-1 =2n +1-1 -2n-1 2n -1 2n +1-1=12n -1-12n +1-1.所以2n a n a n +1 前5项和为121-1-122-1 +122-1-123-1 +⋯+125-1-126-1 =121-1-126-1=1-163=6263故选:D 11.已知数列a n 的首项a 1=1,且满足a n +1-a n =2n n ∈N * ,记数列a n +1a n +2 a n +1+2的前n 项和为T n ,若对于任意n ∈N *,不等式λ>T n 恒成立,则实数λ的取值范围为( )A.12,+∞ B.12,+∞C.13,+∞D.13,+∞【答案】C 【解析】解:因为a n +1-a n =2n n ∈N * ,所以a 2-a 1=21,a 3-a 2=22,a 4-a 3=23,⋯⋯,a n -a n -1=2n -1,所以a n -a 1=21+22+⋯+2n -1=21-2n -1 1-2=2n -2,n ≥2 ,又a 1=1,即a n =2n -1,所以a n +1=2n ,所以a n +1a n +2 a n +1+2 =2n 2n +1 2n +1+1=12n +1-12n +1+1,所以T n =121+1-122+1+122+1-123+1+⋯+12n +1-12n +1+1=13-12n +1+1<13所以λ的取值范围是13,+∞ .故选:C 12.在数列a n 中,a 2=3,其前n 项和S n 满足S n =n a n +12 ,若对任意n ∈N +总有14S 1-1+14S 2-1+⋯+14S n -1≤λ恒成立,则实数λ的最小值为( )A.1B.23C.12D.13【答案】C 【解析】当n ≥2时,2S n =na n +n ,2S n -1=n -1 a n -1+n -1 ,两式相减,整理得n -2 a n =(n -1)a n -1-1①,又当n ≥3时,n -3 a n -1=n -2 a n -2-1②,①-②,整理得n -2 a n +a n -2 =2n -4 a n -1,又因n -2≠0,得a n +a n -2=2a n -1,从而数列a n 为等差数列,当n =1时,S 1=a 1+12即a 1=a 1+12,解得a 1=1,所以公差d =a 2-a 1=2,则a n =2n -1,S n =na 1+n (n -1)2d =n 2,故当n ≥2时,14S 1-1+14S 2-1+⋯+14S n -1=122-1+142-1+⋯+12n 2-1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =121-12n +1 ,易见121-12n +1 随n 的增大而增大,从而121-12n +1 <12恒成立,所以λ≥12,故λ的最小值为12,故选:C .二、填空题13.已知正项数列{an }满足a 1=2且an +12-2an 2-anan +1=0,令bn =(n +2)an ,则数列{bn }的前8项的和等于__.【答案】4094【解析】由a 2n +1-2a 2n -a n a n +1=0,得(an +1+an )(an +1-2an )=0,又an >0,所以an +1+an >0,所以an +1-2an =0,所以an +1a n=2,所以数列{an }是以2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =n +2 a n =n +2 ⋅2n ,令数列{bn }的前n 项的和为Tn ,T 8=3×21+4×22+⋯+9×28,则2T 8=3×22+4×23+⋯+9×29,-T 8=6+22+23+⋯+28 -9×29=6+221-271-2-9×29=2-8×29=-4094,则T 8=4094,故答案为:4094.14.已知数列{an }的前n 项和为Sn ,且Sn =2an -2,则数列n a n的前n 项和Tn =__.【答案】2-n +22n.【解析】解:∵Sn =2an -2,∴Sn -1=2an -1-2(n ≥2),设公比为q ,两式相减得:an =2an -2an -1,即an =2an -1,n ≥2,又当n =1时,有S 1=2a 1-2,解得:a 1=2,∴数列{an }是首项、公比均为2的等比数列,∴an =2n ,n a n =n2n ,又Tn =121+222+323+⋯+n2n ,12Tn =122+223+⋯+n -12n +n 2n +1,两式相减得:12Tn =12+122+123+⋯+12n -n 2n +1=121-12n1-12-n2n +1,整理得:Tn =2-n +22n.故答案为:Tn =2-n +22n .15.将1+x n (n ∈Ν+)的展开式中x 2的系数记为a n ,则1a 2+1a 3+⋅⋅⋅+1a 2015=__________.【答案】40282015【解析】1+xn的展开式的通项公式为T k +1=C k n x k ,令k =2可得a n =C 2n =n n -12;1a n =2n n -1=21n -1-1n ;所以1a 2+1a 3+⋅⋅⋅+1a 2015=21-12 +212-13 +⋯+212014-12015=21-12015 =40282015.故答案为:40282015.16.数列a n 的前项n 和为S n ,满足a 1=-12,且a n +a n +1=2n 2+2nn ∈N * ,则S 2n =______.【答案】2n 2n +1【解析】由题意,数列{a n }满足a n +a n +1=2n 2+2n,可得a 2n -1+a 2n =2(2n -1)2+2(2n -1)=2(2n -1)(2n +1)=12n -1-12n +1,所以S 2n =11-13+13-15+⋯+12n -1-12n +1=1-12n +1=2n2n +1,故答案为:2n2n +1三、解答题17.已知数列a n 满足a 1=1,2a n +1a n +a n +1-a n =0.(1)求证:数列1a n 为等差数列;(2)求数列a n a n +1 的前n 项和S n .【答案】(1)证明见解析;(2)S n =n2n +1.【解析】(1)令b n =1a n ,因为b n +1-b n =1a n +1-1a n =a n -a n +1a n ⋅a n +1=2,所以数列b n 为等差数列,首项为1,公差为2;(2)由(1)知:b n =2n -1;故a n =12n -1;所以a n a n +1=12n -1 2n +1=1212n -1-12n +1 ;所以S n =a 1a 2+a 2a 3+⋯+a n a n +1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =n 2n +1;18.已知正项数列a n 的前n 项和为S n ,a n +1-a n =3n ∈N * ,且S 3=18.(1)求数列a n 的通项公式;(2)若b n =1a n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =n9n +9【解析】(1)∵a n +1-a n =3,∴数列a n 是以公差为3的等差数列.又S 3=18,∴3a 1+9=18,a 1=3,∴a n =3n .(2)由(1)知b n =13n ×3n +1=19×1n -1n +1 ,于是T n =b 1+b 2+b 3+⋅⋅⋅+b n =191-12 +12-13 +13-14 +⋅⋅⋅+1n -1n +1 =191-1n +1 =n 9n +919.已知数列a n 的首项为3,且a n -a n +1=a n +1-2 a n -2 .(1)证明数列1a n -2 是等差数列,并求a n 的通项公式;(2)若b n =-1 n an n +1,求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =1n+2(2)-1+-1 n1n +1【解析】(1)因为a n -a n +1=a n +1-2 a n -2 ,所a n -2 -a n +1-2 =a n +1-2 a n -2 ,则1a n +1-2-1a n -2=1,所以数列1a n -2 是以13-2=1 为首项,公差等于1的等差数列,∴1a n -2=1+n -1 =n ,即a n =1n+2;(2)b n =-1 n a n n +1=-1 n 1n n +1+2n +1 =-1 n 1n +1n +1 ,则S n =-1+12 +12+13 -13+14 +⋅⋅⋅+-1 n 1n +1n +1 =-1+-1 n 1n +1;综上,a n =1n +2,S n =-1+-1 n 1n +1 .20.已知数列a n 中,a 1=-1,且满足a n +1=2a n -1.(1)求证:数列a n -1 是等比数列,并求a n 的通项公式;(2)若b n =n +11-a n +1,求数列b n 的前n 项和为T n .【答案】(1)证明见解析,a n=-2n+1(2)T n=32-n+32n+1【解析】(1)解:对任意的n∈N∗,a n+1=2a n-1,所以a n+1-1=2a n-1,且a1-1=-2,所以数列a n-1是以-2为首项,2为公比的等比数列.所以a n-1=-2n,所以a n=-2n+1.(2)解:由已知可得b n=n+11-a n+1=n+12n+1,则T n=222+323+424+⋯+n+12n+1,所以,12T n=223+324+⋯+n 2n+1+n+12n+2,两式相减得12T n=222+123+⋯+12n+1-n+12n+2=12+181-12n-11-12-n+12n+2=34-1 2n+1-n+12n+2=34-n+32n+2,因此,T n=32-n+32n+1.21.已知等比数列a n,a1=2,a5=32.(1)求数列a n的通项公式;(2)若数列a n为正项数列(各项均为正),求数列(2n+1)⋅a n的前n项和T n.【答案】(1)a n=2n或a n=2·-2n-1;(2)T n=2+(2n-1)⋅2n+1.【解析】(1)等比数列a n的公比为q,a1=2,a5=32,则q4=a5a1=16,解得q=±2,所以当q=2时,a n=2n,当q=-2时,a n=2⋅(-2)n-1.(2)由(1)知,a n=2n,则有(2n+1)⋅a n=(2n+1)⋅2n,则T n=3×21+5×22+7×23+⋯+(2n+1)⋅2n,于是得2T n=3×22+5×23+⋯+(2n-1)⋅2n+(2n+1)⋅2n+1,两式相减,得-T n=6+2×(22+23+⋯+2n)-(2n+1)⋅2n+1=6+2×22×(1-2n-1)1-2-(2n+1)⋅2n+1=-2-(2n-1)⋅2n+1,所以T n=2+(2n-1)⋅2n+1.22.已知等差数列a n满足a1=1,a2⋅a3=a1⋅a8,数列b n的前n项和为S n,且S n=32b n.(1)求数列a n,b n的通项公式;(2)求数列a n b n的前n项和T n.【答案】(1)a n=1或a n=2n-1;b n=3n;(2)若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.【解析】(1)设等差数列a n的公差为d,∵a1=1,a2⋅a3=a1⋅a8,∴1+d1+2d=1+7d,化简得2d2-4d=0,解得:d=0或d=2,若d=0,则a n=1;若d=2,则a n=2n-1;由数列b n的前n项和为S n=32b n-32①,当n=1时,得b1=3,当n≥2时,有S n-1=32b n-1-32②;①-②有b n=32b n-32b n-1,即b nb n-1=3,n≥2,所以数列b n是首项为3,公比为3的等比数列,所以b n=3n,综上所述:a n=1或a n=2n-1;b n=3n;(2)若a n=1,则a n b n=b n=3n,则T n=3+32+⋯+3n=31-3n1-3=33n-12,若a n=2n-1,则a n b n=2n-13n,则T n=1×3+3×32+⋯+2n-1×3n③;③×3得3T n=1×32+3×33+⋯+2n-1×3n+1④;③-④得:-2T n=3+2×32+2×33+⋯+2×3n-2n-1×3n+1=3+2×32(1-3n-1)1-3-(2n-1)×3n+1整理化简得:T n=n-13n+1+3,综上所述:若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题06 数列求和(裂项相消法)(典型例题+题型归类练)一、必备秘籍常见的裂项技巧 类型一:等差型类型二:无理型类型三:指数型①11(1)11()()n n n n n a a a k a k a k a k++-=-++++如:11211(2)(2)22n n n n n k k k k++=-++++类型四:通项裂项为“+”型如:①()()()21111111nn n n n n n +⎛⎫-⋅=-+ ⎪++⎝⎭ ②()()131222(1)(11)1n nn n nn n n n n +⎛⎫++⋅-=+- ⎝+⎪⎭本类模型典型标志在通项中含有(1)n -乘以一个分式.二、典型例题类型一:等差型例题1.(2022·辽宁·鞍山一中模拟预测)已知n S 是等差数列{}n a 的前n 项和,0n a >,315S =,公差1d >,且___________.从①21a -为11a -与31a +等比中项,②等比数列{}n b 的公比为3q =,1124,b a b a ==这两个条件中,选择一个补充在上面问题的横线上,使得符合条件的数列{}n a 存在并作答. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:16nT <. 【答案】(1)选择条件见解析,21n a n =+(2)证明见解析 (1)若选①,21a -为11a -与31a +的等比中项,则()()()2132111a a a -+=-,由{}n a 为等差数列,315S =,得2315a =,∴25a =,把25a =代入上式,可得()()4616d d -+=,解得2d =或4d =-(舍) ∴13a =,21n a n =+;若选②,3q =为等比数列{}n b 的公比,且1124,b a b a ==, 可得213b b =,即413a a =,即有113)3a d a +=(,即123a d =; 又315S =,可得11332152a d +⨯⨯=,即15a d +=,解得12,3d a ==, 此时21n a n =+;第(2)问解题思路点拨:由(1)知:,设,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;(2)∵()()111111212322123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭, ∴11111111112355721232323n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪+++⎝⎭⎝⎭; ∴16n T <,得证 例题2.(2022·广东佛山·模拟预测)已知数列{}n a 的前n 项和为n S ,111a =-,29a =-,且()11222n n n S S S n +-+=+≥. (1)求数列{}n a 的通项公式; (2)已知11n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)213n a n =- (2)122212nn -(1)解:由题意得:由题意知()()112n n n n S S S S +----=,则()122n n a a n +-=≥又212a a -=,所以{}n a 是公差为2的等差数列,则()11213n a a n d n =+-=-;感悟升华(核心秘籍)本例是裂项相消法的等差型,注意裂项,是裂通项,裂项的过程中注意前面的系数不要忽略了.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;(2)由题知()()11112132112213211n b n n n n ⎛⎫==- ⎪----⎝⎭则1111111111211997213211211211n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-++-+++-=-- ⎪ ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 122212n n-=类型二:无理型例题3.(2022·重庆八中模拟预测)已知各项均为正数的等差数列{}n a 满足11a =,22112()n n n n a a a a ++=++.(1)求{}n a 的通项公式; (2)记11n n n b a a +=+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-(2)1(211)2n +-(1)解:各项均为正数的等差数列{}n a 满足11a =,22112()n n n n a a a a ++=++,整理得()()()1112n n n n n n a a a a a a ++++-=+,由于10n n a a ++≠, 所以12n n a a +-=, 故数列{}n a 是以1为首项,2为公差的等差数列.所以21n a n =-.(2)解:由(1)可得111212122121n n n n n b a a n n ++--===+-++,所以11(3153...2121)(211)22n S n n n =⨯-+-+++--=+-.例题4.(2022·福建龙岩·模拟预测)已知等差数列{}n a 的前n 项和为n S ,3518a a +=,648S =.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;(1)求{}n a 的通项公式; (2)设112n n n b a a +-=+,求数列{}n b 的前n 项和为n T .【答案】(1)21n a n =+;(2)证明见解析﹒(1)由题可知,11261861548a d a d +=⎧⎨+=⎩,解得132a d =⎧⎨=⎩,∴21n a n =+;(2)1122232122321n n n n n b a a n n +-+--===+++-,()()()()()1517395212323212n T n n n n ⎡⎤=-+-+-+++--++--⎣⎦12123132n T n n ⎡⎤=+++--⎣⎦感悟升华(核心秘籍)本例是裂项相消法的无理型,具有明显的特征,其技巧在于分母有理化,注意裂项相消的过程中,是连续相消,还是隔项相消,计算注意细节.类型三:指数型第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;例题5.(2022·全国·模拟预测)已知等差数列{}n a 满足()*10n n a a n +->∈N ,且141015a a a ++=,2a ,4a ,8a 成等比数列.(1)求数列{}n a 的通项公式;(2)若122n a n n n n a b a a ++⋅=⋅,求数列{}n b 的前n 项和n S .【答案】(1)n a n =(2)n S 1212n n +=-++(1)解:设等差数列{}n a 的公差为d ,因为2a ,4a ,8a 成等比数列,所以()()()211137a d a d a d +=++,整理得()10d a d -=,又因为10n n a a +->,所以0d >,1a d =,又1410131215a a a a d ++=+=,即15d =15, 所以11a d ==,所以n a n =;感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和.(2)解:由(1)知,n a n =, 所以()()12221221n n nn n b n n n n +⋅==-++++,2324312112222222222223243541121n n n n n n n S n n n n n n ---+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212n n +=-++.例题6.(2022·江西·临川一中模拟预测(理))已知数列{}n a 的前n 项和为n S ,且21,*=-∈n n S a n N .(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足22,(1)*++=∈⋅⋅+n n n b n N a n n ,求数列{}n b 的前n 项和n T .【答案】(1)12n na ;(2)1112(1)2n n T n +=-+⋅. (1)因为21n n S a =-,当1n =时,1121S a =-,解得11a =,当2n ≥时,1121n n S a --=-,所以()()111212122n n n n n n n a S S a a a a ---=-=---=-,即12(2)n n a a n -=≥,所以数列{}n a 是首项为1,公比为2的等比数列.故11122n n n a --=⨯=.(2),1122211(1)(1)22(1)2n n n n n n n b a n n n n n n +++++===-⋅⋅++⋅+⋅于是12231111111111122222322(1)22(1)2n n n n T n n n ++=-+-++-=-⋅⋅⋅⋅⋅+⋅+⋅类型四:通项裂项为“+”型第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和例题7.(2022·吉林辽源·高二期末)已知等差数列{}n a 的前n 项和21,3n S n an b a =++=,数列{}n b 的前n 项和23n n n T b +=,12b =. (1)求数列{}n a 和{}n b 的通项公式; (2)令(1)nnn na cb =-,求数列{}nc 的前n 项和n P .【答案】(1)21n a n =+,()1n b n n =+ (2)2,?1,?1n n n n P n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得则:,注意到通项中含有,需分奇偶讨论通分,逆向求当为偶数(为正),(注意此时为偶数,代入偶数的结论中)当为奇数(为偶数)综上:(1)设等差数列{}n a 的公差为d ,则22113222n n n n d d S na d n n n a b -⎛⎫=+=+-=++ ⎪⎝⎭, 所以1,23,20,dd a b ⎧=⎪⎪⎪-=⎨⎪=⎪⎪⎩所以2,2,0,d a b =⎧⎪=⎨⎪=⎩,所以数列{}n a 的通项公式为()32121n a n n =+-=+. 因为23n n n T b +=,当2n ≥时,1113n n n T b --+=, 所以112133n n n n n n n b T T b b --++=-=-, 所以11133n n n n b b --+=,即111n n b n b n -+=-. 所以1232112321n n n n n n n b b b b b b b b b b b b -----=⨯⨯⨯⋅⋅⋅⨯⨯⨯()11432112321n n n n n n n n +-=⨯⨯⨯⋅⋅⋅⨯⨯⨯=+---. (2)()()()()()11111111nn n n n n n n a c b n n n n ++⎛⎫=-=-⋅=-+ ⎪++⎝⎭, 当n 为奇数时,11111111223341n P n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋅⋅⋅-+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭12111n n n +=--=-++. 当n 为偶数时,11111111223341n P n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭1111n n n =-+=-++. 综上所述,数列{}n c 的前n 项和2,1,1n n n n P n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数.例题8.(2022·陕西·长安一中高二期中(文))已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S成等比数列.(1)求数列{}n a 的通项公式; (2)令()1141n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-;(2)2,2122,21n nn n T n n n ⎧⎪⎪+=⎨+⎪⎪+⎩为偶数为奇数 第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得,通分,逆向求当为奇数(为正),(注意此时为奇数,代入奇数的结论中)当为偶数(为奇数)综上:(1)∴等差数列{an }的公差为2,前n 项和为S n ,且S 1、S 2、S 4成等比数列. ∴S n =na 1+n (n ﹣1)(2a 1+2)2=a 1(4a 1+12),a 1=1,∴an =2n ﹣1; (2)∴由(1)可得()()111411112121n n n n n n b a a n n --+⎛⎫=-=-+ ⎪-+⎝⎭, 当n 为偶数时,T n =11111111113355723212121n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212121nn n =-=++. 当n 为奇数时,11111111113355723212121n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-⋯-+++ ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12212121n n n +=+=++ . 2,2122,21n nn n T n n n ⎧⎪⎪+∴=⎨+⎪⎪+⎩为偶数为奇数. 三、题型归类练1.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))已知在等差数列{}n a 中,25a =,1033a a =. (1)求数列{}n a 的通项公式; (2)设()21n n b n a =+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =+(2)1n n + (1)设等差数列{}n a 的公差为d , 由210353a a a =⎧⎨=⎩,可得()1115932a d a d a d ⎧+=⎪⎨+=+⎪⎩解得13,2a d==,所以()13122n a n n -⨯=++= (2)由(1)可得2111(1)(22)(1)12n n b n a n n n n n n ====-++++所以111111 (22311)n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 2.(2022·山西运城·模拟预测(理))已知单调递增的等差数列{}n a 的前n 项和为n S ,512340,,1,S a a a =-成等比数列,正项等比数列{}n b 满足11631,23b a S b =+=+. (1)求{}n a 与{}n b 的通项公式; (2)设()3123log n n n c a b =+,求数列{}n c 的前n 项和n T .【答案】(1)31n a n =-,3nn b =(2)64n nT n =+ (1)设数列{}n a 的公差为d ,则0d >, 由540S =得1545402a d ⨯+=,即128a d +=①, 又123,1,a a a -成等比数列,所以()22131a a a -=,所以()()211112a d a a d +-=+,所以21(1)2d a -=②,联立①②及0d >解得12,3a d ==. 所以2(1)331n a n n =+-⨯=-. 所以161653,6572b S a d ⨯==+=, 所以35723b =+,解得327b =,又231,0b b q q =>,所以3q =,所以3nn b =.(2)由(1)得()311111(31)23log (31)(32)33132n n c n b n n n n ⎛⎫===- ⎪-+-+-+⎝⎭,所以121111111111325583132323264n n n T c c c n n n n ⎛⎫⎛⎫=+++=-+-+⋅⋅⋅+-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 3.(2022·河南·模拟预测(理))已知正项数列{}n a 的前n 项和为n S ,且()()222220n n S n n S n n -+--+=.(1)求1a 的值和数列{}n a 的通项公式; (2)设21n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)12a =;2n a n =;(2)()()32316812n n T n n +=-++. (1)由()()222220n n S n n S n n -+--+=得:()()()220n n S S n n +-+=;{}n a 为正项数列,0n S ∴>,2n S n n ∴=+;当1n =时,112a S ==;当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=;经检验:12a =满足2n a n =;()2n a n n N *∴=∈.(2)由(1)得:()()111112224282n b n n n n n n ⎛⎫===- ⎪⋅+++⎝⎭,11111111111832435112n T n n n n ⎛⎫∴=⨯-+-+-+⋅⋅⋅+-+- ⎪-++⎝⎭()()()()1111132332318212821216812n n n n n n n n ⎛⎫++⎛⎫=⨯+--=⨯-=- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭. 4.(2022·河北保定·一模)已知数列{}n a 的前n 项和为n S ,且1332n n S +-=. (1)求数列{}n a 的通项公式; (2)设3314log log n n n b a a +=⋅,求{}n b 的前n 项和n T .【答案】(1)3nn a =;(2)41n nT n =+. (1)因为1332n n S +-=,故当1n =时,13a =,当2n ≥时,1332n n S --=,则()132nn n n a S S n -=-=≥,当1n =时,13a =满足上式,所以3nn a =.(2)由(1)得()33144114log log 11n n n b a a n n n n +⎛⎫===- ⎪⋅++⎝⎭,所以12311111144141223111n n n T b b b b n n n n ⎛⎫⎛⎫=++++=⨯-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭. 故数列{}n b 的前n 项和41n nT n =+. 5.(2022·安徽·北大培文蚌埠实验学校高三开学考试(文))已知数列{}n a 的前n 项和为n S ,11a =,525S =,且()*1232n n n n S a S S n ++-=+∈N .(1)求数列{}n a 的通项公式; (2)设n b =,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-(2)n T )112=(1)由1232n n n n S a S S ++-=+得:121211223222n n n n n n n n n n a S S S S S S S a a +++++++-=-+=-+-=-+即122n n n a a a ++=+, 所以数列{}n a 为等差数列, 由53525S a ==得35a =,设公差为d ,315212a a d d ==+=+,得2d =, 所以()11221n a n n =+-⨯=-, 故数列{}n a 的通项公式为21n a n =-.(2)12n b =,所以1122n Tn =++)112=.6.(2022·江苏盐城·三模)已知正项等比数列{}n a 满足1330a a +=,请在①4120S =,②481a =,③2211120n n n n a a a a --+-=,2n ≥,*n N ∈中选择一个填在横线上并完成下面问题:(1)求{}n a 的通项公式;(2)设()()12311n n n n b a a +⋅=++,{}n b 的前n 和为n S ,求证:14n S <.【答案】(1)选择见解析;3nn a =(2)证明见解析(1)设正项等比数列{}n a 公比为q ,又1330a a +=,选①,()()41234131120S a a a a a a q =+++=++=,所以3q =;选②,13431130a a a q q ⎛⎫+=+= ⎪⎝⎭,所以()()2310390,3q q q q -++==;选③,()()22111112340n n n n n n n n a a a a a a a a ----+-=-+=,所以13n n a a -=,∴3q =;又1311191030a a a a a +=+==,∴13a =,则3nn a =.(2)因为()()()()1112323111131313131n n n n n n n n n b a a +++⋅⋅===-++++++,所以122231111111313131313131n n n n S b b b +⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭11114314n +=-<+. 7.(2022·浙江金华·模拟预测)已知数列{}{},n n a b ,其中{}n a 为等差数列,且满足11211,,32a b b ===,21141,2n n n n nn a b a b n N *++-=+∈. (1)求数列{}{},n n a b 的通项公式; (2)设212n n nn n a c a a ++=,数列{}n c 的前n 项和为n T ,求证:1n T <【答案】(1)21n a n =-,131(21)22n n b n -⎛⎫=-- ⎪⎝⎭(2)证明见解析(1)解:由数列{}n a 为等差数列,{}n b 且满足11211,,32a b b ===,211412n n n n nn a b a b ++-=+,当1n =时,可得122132a b a b =+,即213322a =⨯+,解得23a =; 因为{}n a 是等差数列,所以21n a n =-,所以2141(21)(21)2n n nn n b n b +--=++,所以1121212n n n b b n n +-=+-, 所以12132121131532123n n n b b b b b b b b n n n -⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭11211112211111311222222212n n n ---⎛⎫⎛⎫- ⎪ ⎪⎪⎝⎭⎛⎫⎝⎭=++++=+=- ⎪⎝⎭-所以131(21)22n n b n -⎛⎫=-- ⎪⎝⎭.(2)解:由(1)得12311(21)(21)22(21)2(21)n n n n n c n n n n -+==--+-+,所以12n n T c c c =+++211111112323252(21)2(21)n n n n -=-+-++-⋅⋅⋅-+ 1112(21)n n =-<+.8.(2022·湖北·二模)已知正项等差数列{}n a 满足:()33n n a a n *=∈N ,且1382,1,a a a +成等比数列.(1)求{}n a 的通项公式;(2)设()()1121212n n n a n a a c ++=++,n R 是数列{}n c 的前n 项和,若对任意n *∈N 均有n R λ<恒成立,求λ的最小值. 【答案】(1)n a n =(2)最小值为23(1)解:设等差数列的公差为d ,由33n n a a =得[]11(31)3(1)a n d a n d +-=+-,则1a d =, 所以1(1)n a a n d nd =+-=.因为12a 、31a +、8a 成等比数列,所以()231812a a a +=⋅,即2(31)28d d d +=⋅, 所以27610d d --=,解得1d =或17d =-,因为{}n a 为正项数列,所以0d >,所以1d =,所以n a n =.(2)解:由(1)可得()()()()1111122112121212121212n n n a n n nn a a n n c +++++⎛⎫===- ⎪++++++⎝⎭, 所以1223111111111122121212121212312n n n n R ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪⎪ ⎪⎢⎥+++++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为对任意n *∈N 均有23n R <,所以23λ≥,所以实数λ的最小值为239.(2022·江西·临川一中高二期末(理))已知数列{}n a ,0n a >,11a =,n S 为其前n 项和,且满足()()()1112n n n n S S S S n --+-=≥.(1)求数列{}n a 的通项公式; (2)设()11nnn a b =-⋅,求数列{}n b 的前n 项和n T .【答案】(1)=n a ()1nn T =-(1)由题可知()22112n n S S n --=≥⇒数列是{}2n S 等差数列,所以()2211n S S n n =+-=,)12n n n n S a S S n -=-=≥,又因为11a ==,所以n a(2)()()11nnnnnb a -===-.所以()()311nnn T =-=+-故答案为:n a ()1n- .10.(2022·重庆八中模拟预测)已知n S 是公差不为零的等差数列{}n a 的前n 项和,36S =,2319a a a =⋅.(1)求数列{}n a 的通项公式; (2)设数列()()24141nn n a b n n +=-∈-N ,数列化{}n b 的前2n 项和为2n T ,若2112022n T +<,求正整数n 的最小值. 【答案】(1)*,N na n n =∈(2)505(1)公差d 不为零的等差数列{}n a ,由2319a a a =⋅, ()()211182a a d a d +=+,解得1a d =.又31336S a d =+=,可得11a d ==,所以数列{}n a 是以1为首项和公差的等差数列, 所以*,N na n n =∈.(2)解:由(1)可知()()241111412121nn n n b n n n ⎛⎫=-=-+ ⎪--+⎝⎭, 211111111113355743414141n T n n n n ∴=--++--+--++---+1141n =-++,2111412020n T n +=<+,20194n ∴>所以n 的最小值为505.11.(2022·天津市武清区杨村第一中学二模)已知{}n a 是等差数列,{}n b 是等比数列,且114342131,2,2,a b a b b b a a ====+.(1)求数列{}{},n n a b 的通项公式;(2)记{}n b 的前n 项和为n S ,证明:()n n n S a b n *≤⋅∈N ;(3)记()311(1)*++⋅=-∈⋅n n n nnn a b c n a a N ,求数列{}n c 的前2n 项和. 【答案】(1)(),2nn n a n b n *=∈=N ;(2)证明见解析;(3)2212221n n T n +=-+(1)设等差数列公差为d ,等比数列公比为q ,所以()2311111132132222222d q d a d b q b q q d q b q a d⎧+==+=⎧⎧⇒⇒⎨⎨⎨=+==+⎩⎩⎩,所以,2n n na b n ==, (2){}n b 的前n 项和为 248222222n n n n n n n n n S n a b =++++≤++++=⋅=⋅,(当1n =时,取等号)命题得证.(3)由(1)得,()()131131222(1)(1)(1)11n nn n n n nn n n n n n a b c a n n a n +++⎛⎫+ ⎪+⋅⋅=-=-=-+⎝+⎭⋅, 所以数列{}n c 的前2n 项和2212244881616122()3222241334522nn n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++++ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭-⎝⎭,2212221n n T n +=-+12.(2022·黑龙江实验中学模拟预测(理))已知数列{}n a 满足11a =,11n n n n a a a a --=-,且0n a ≠. (1)求数列{}n a 的通项公式; (2)若()()11121n n n n b n a a ++=-+,数列{}n b 前n 项和为nT,求2022T .【答案】(1)1n a n =;(2)20222023. (1)由11n n n n a a a a --=-,0n a ≠得:1111n n a a --=,又111a ,∴数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列,1n n a ∴=,1n a n ∴=;(2)由(1)知:()()()()1121111111n n n n b n n n n +++=-=-+++;20221111111111223342021202220222023T ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++--+++⋅⋅⋅+++-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12022120232023=-=.13.(2022·湖北·蕲春县第一高级中学模拟预测)已知数列{}n a 的前n 项和为n S ,其中1215a S ==,,当2n ≥时,1124n n n a S S +-,,成等差数列. (1)求数列{}n a 的通项公式.(2)记数列()()2123211n n n a a ++⎧⎫⋅⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和n T ,求证:121855n T ≤<.【答案】(1)14n n a -=;(2)证明见解析.(1)依题意,当2n ≥时,1144n n n a S S +-+=, 故11444n n n n a S S a +-=-=, 由1215a S ==,得22144a a a ==,,故数列{}n a 是以1为首项,4为公比的等比数列,则14n n a -=;(2)依题意,()()()()2211123232111141414141n n n n n n n n a a ++++⋅⋅==-++++++,故12231111111111414141414141541n n n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭, ∴n *∈N ,∴1112111855415n T +=≤-<+,即121855n T ≤<.。