2.2正则与退化的二阶张量
第 2 章 二阶张量

研究定义在一个固定点(张量的元素是实常数, gi 也是常数)上的二阶张量随坐标系转动的
不同形式,不涉及与另一个张量的关系,也不涉及张量运动。
2.1 二阶张量的元素
T = Tij g i g j = Ti• j g i g j = T•ii gi g j = T ij gi g j
k n
(2) T 的不变量由无限多个(不变量的组合仍是不变量),通常关心的有两组:
主不变量( T 特征多项式的三个系数)
2
η1 = T•11 + T•22 + T•33 = G : T = T•mm = GmnT mn = GmnTmn = Tm•m
( )( ) η2
=
T•11 T•21
T•12 T•22
、 Ni• j
=
N•ji
,
(而一般: N•i j
≠
N
j •i
、
N
• i
j
≠
N •i j
在相同的,混变分量的转置 ≠ 系数矩阵的转置)
N ⋅u=u⋅N
(4) 反对称张量 Ω = −ΩT
性质: Ωij
=
−Ω 、 Ω ij ji
=
−Ω
ji
Ω 、 i •j
=
Ω − Ω 、 •i
•j
j
i
=
−Ω•ij ,
(而一般:
+ T•22 T•32
T•23 T•33
+ T•11 T•31
T•13 T•33
=
1 2
⎣⎡
G :T
G :T − T ⋅⋅T ⎦⎤
=
1 2
⎡⎣T•mmT•nn
− T•pqT•qp ⎤⎦
二阶张量的谱分解 算法

二阶张量的谱分解算法一、引言张量在许多领域,如机器学习、信号处理、图像处理等,都有着广泛的应用。
对于二阶张量(Tensor)这种多阶结构,其谱分解算法的研究具有重要的理论和实践价值。
本文将介绍一种适用于二阶张量的谱分解算法。
二、算法描述1. 准备工作:首先,我们需要对二阶张量进行适当的坐标变换,将其转化为对角矩阵形式,以便后续的谱分解。
2. 特征值分解:对变换后的二阶张量进行特征值分解,得到其特征向量矩阵和特征值向量。
3. 谱因子选取:根据实际需求,选取需要的谱因子,如对角线元素或特定位置的元素。
4. 构造分解矩阵:根据选取的谱因子和特征向量矩阵,构造出对应的分解矩阵。
5. 反变换:将构造的分解矩阵代入变换后的二阶张量中,得到原始二阶张量的一种表示形式。
三、算法实现1. 输入:二阶张量T和选取的谱因子。
2. 输出:分解后的二阶张量T'和对应的分解矩阵M。
3. 算法步骤:a. 对T进行坐标变换,得到变换后的二阶张量T';b. 对T'进行特征值分解,得到特征向量矩阵Q和特征值向量D;c. 根据需求,选取对角线元素或特定位置的元素作为谱因子;d. 构造分解矩阵M = QΛD^(-1)Q^T;e. 将M代入T'中,得到分解后的二阶张量T' = M*T';f. 输出T'和M。
四、算法优缺点分析1. 优点:该算法具有较高的稳定性和准确性,适用于各种类型的二阶张量。
同时,算法的实现过程简单明了,易于理解和实现。
2. 缺点:对于大规模的二阶张量,计算量可能会较大,需要优化算法以提高效率。
此外,对于某些特殊类型的二阶张量,可能存在无法完全分解的情况。
五、应用场景与案例分析该算法可以应用于机器学习、信号处理、图像处理等领域中,如用于降维、数据压缩、特征提取等。
以机器学习为例,通过对数据集进行二阶张量的谱分解,可以提取出关键的特征向量,从而更有效地进行分类或回归。
张量分析课件第三章3 二阶张量特征值与特征方向

右特征矢量:
u1 0u2 u3 0
∵
u1
0u2
ቤተ መጻሕፍቲ ባይዱ0u3
0
u1 0u2 u3 0
;∴
是方程组(1)的非零解。
u1 0
u
2
a
u 3 0
(a是任意实数)
uai2
A u ( i 1 i 3 i 2 i 1 i 2 i 2 i 3 i 1 ) ( a i 2 ) a i 2 1 u
(3.4-4)
(3.3-3)和(3.3-4)是关于 u1, u2, u3的齐次线性代数方程 。方程有非零解的充要条件是方程组的系数行列式为零。
或者说A有非零的右特征矢量和左特征矢量的充要条件是:
d e t( A I) 0
( a )
d e t( A * I) 0
( b )
∵
d e t ( A I ) * d e t ( A * I ) d e t ( A I )
ω
1 2
e
:
A
1 2
(eijk
iii
j
ik
)
:
(
Amnimin
)
1 2
eijk
Ajk
ii
1 2
( A23i1
A31i2
A12i3
A32i1
A21i3
A13i2
)
1 2
(2A23i1
在。但特征方程(3.4-6)至少有一个实特征值。因此可以 肯定二阶张量至少有一个右特征矢量和一个左特征矢量。
二阶张量主不变量的推导

二阶张量主不变量的推导二阶张量主不变量是描述二阶张量的一个重要指标,它可以帮助我们了解张量的性质和特征。
在本文中,我们将推导二阶张量主不变量的计算公式,并解释其物理意义。
我们回顾一下二阶张量的定义。
二阶张量是一个具有两个下标的矩阵,可以表示为一个2x2的矩阵。
在三维空间中,二阶张量可以表示为一个对称矩阵,其中的元素表示了不同方向上的物理量的关系。
为了推导二阶张量主不变量的计算公式,我们先考虑二阶张量的特征值和特征向量。
特征值和特征向量是矩阵理论中的重要概念,它们可以帮助我们了解矩阵的性质。
对于一个二阶张量T,我们可以通过解特征值问题来求得其特征值和特征向量。
特征值问题可以表示为以下形式:T·v = λ·v其中,T表示二阶张量,v表示特征向量,λ表示特征值。
我们可以将特征值问题转化为一个线性方程组来求解。
假设特征向量v为非零向量,我们可以得到以下方程组:(T - λ·I)·v = 0其中,I表示单位矩阵。
由于v非零,所以方程组有非零解的条件是矩阵(T - λ·I)的行列式为0。
计算矩阵(T - λ·I)的行列式,我们可以得到一个关于特征值λ的二次方程,形式如下:det(T - λ·I) = 0将行列式展开并进行计算,我们可以得到一个关于特征值λ的二次方程。
通过求解这个二次方程,我们可以得到二阶张量的两个特征值。
特征值表示了二阶张量在特征向量方向上的伸缩比例。
通过计算特征值,我们可以得到二阶张量在不同方向上的伸缩程度。
二阶张量主不变量可以由特征值计算得到。
具体而言,二阶张量主不变量的计算公式如下:I1 = λ1 + λ2其中,I1表示二阶张量的主不变量,λ1和λ2表示二阶张量的特征值。
二阶张量主不变量的物理意义是描述了二阶张量在不同方向上的伸缩总和。
通过计算主不变量,我们可以了解二阶张量的整体伸缩情况。
总结起来,二阶张量主不变量是描述二阶张量的一个重要指标,它可以通过计算二阶张量的特征值得到。
第2章 张量分析(清华大学张量分析,你值得拥有)

( Nij ij )a j 0 det( Nij ij ) 0
利用指标升降关系 a为非0矢量 利用主不变量
N ( ) 3 J1N 2 J 2 J3N 0
二阶张量的标准形: 张量最简单的形式
非对称二阶张量
•
请研究以下领域的同学关注。 1、应变梯度理论,偶应力理论 2、电流场,电磁流变(有旋场)
x
x
椭圆曲线的坐标变换
正交变换可使椭圆曲线的方程由以下一般形式
ax bxy cy d 0
任意二阶张量将一线性相关的矢量集映射为线性相 关的矢量集:
(i)u(i) 0
i 1
l
l l 0 T (i)u(i) (i)(T u(i)) i 1 i 1
正则与退化的二阶张量
•
3D空间中任意二阶张量T将任意矢量组u,v,w映射 为另一矢量组,满足:
N S
1 p
S S1e1e1 S2e2e2 S3e3e3
Si N i
1 p
几种特殊的二阶张量
正张量的对数
N N1e1e1 N2e2e2 N3e3e3
ln N ln N1 e1e1 ln N2 e2e2 ln N3 e3e3
Nij N ji Ni j Nij Nij N ji N ij N ji
N 1 NT 1
( ) , ( ) , ( ) ,
N T 1 N 2 N T 3 N 3 N T 2 N 4
NT 4
N T ( 4 )
反对称张量与其转置张量分量及二者所对应的矩阵
二阶张量的行列式
张量分析提纲及部分习题答案

y
对静止的连续介质,有
ζ n fd 0 , ζd fd 0 ,
A
ζ f 0。
(21) 证明应力是一个张量; 记 ij :表示在给定基 g i 下,在面 g j 上,单位面积受力 F j 在 g i 方向上的分量为
对斜圆锥面上任一点 (图中黑点处) , 不难由相似三角形得到,
z z R cos C i R sin j zk ,进而可得, H H r Rz sin zR cos r R cos C R g i j, gz i sin j k , H H z H H r
dx g dx I g dx II 1 4 x I 2 dx I 6 x I x II 2 dx II Pdx I Q dx II 11 12 1 1 I 。 2 4 dxII g 21dx I g 22 dx II 6 x I x II dx I 9 x II dx II P2 dx I Q2 dx II
Pi Qi 时,坐标 xI , xII 才可能存在。即向量场 P, Q 无旋时,其在两点间 x II x I Pi Qi 的路径积分与路径无关,积出的值就是坐标。本例中, II I ,故相应的“协 x x
当 变坐标”不存在。 (正因为如此,坐标也没有逆变、协变之说。 ) (9) 有点类似曲面第一基本型(1.3.12) 。 (10) Lame 常数定义(1.3.13)在非正交系中也成立,但此时(1.3.12a)不成立。
1.9-1.13:略; 1.14: 注意,所谓斜圆锥是指, O 点沿 z 方向在大圆平面上的投影 M 在大圆的直径上。
第二章 二阶张量

第二章:二阶张量1. ij T ij ji i j j i i j T T T ;=⊗=⊗=⊗T g g T g g g g ij i j ij i j T ; T =⋅⋅=⋅⋅g T g g T g2. T =T.u u.TT ij ij ij ij j i j i i j j i ( = T T u ;T T u )⋅⊗==⊗⋅=u.T u g g g T.u g g u g 3.i .j det()T =T行列式不等于零的二阶张量定义为正则二阶张量 正则二阶张量存在逆张量:1-⋅T T =G 4.主不变量①1)()()ζ⋅⋅⨯⋅⋅⨯⋅⨯⋅=⋅⨯T u (v w)+u (T v w)+u (v T w )u (v w)(1.()::i i Tr T ζ====T T G G T)()()i j k ijk S u v w ⋅⋅⨯⋅⋅⨯⋅⨯⋅=T u (v w)+u (T v w)+u (v T w )(m m mijk .i mjk .j imk .k ijm S T T T εεε=++由于mik imkmmmiik .i mik.i imk.k iimS T T T εεεεε=-⇓=++=当i,j,k 当中有两个相等时,0iik S = 当i j k ≠≠时i j k m ijk .i .j .k ijk not sum ijk .m ijk S (T T T )T εε=++=②2)[)][()(]()[()]()ξ⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=⋅⨯T u (T v w +u T v T w)+T u (v T w u v w (2......122123323113.1.2.1.2.2..3.2..3.3.1.3.1112233.1.2.2..3.3.1223311.1.2.2..3.3.111()22ij l mi j i l lm i j i j l j T T T T T T T T T T T T T T T T T T T T T T T T TTTTT T ζδ==-=-+-+-=++注意:ij ijklm lmkδδ=是张量的分量张量T 行列式中各阶主子式之和)[)][()(]()[()]i j k ijk S u v w ⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=T u (T v w +u T v T w)+T u (v T w ( 其中......()m n m n n mijk i j mnk j k imn k i mjn S T T T T T T εεε=++..........()0m n m n n m iik i i mnk i k imn k i min m n i i mnk m n i i nmk iik S T T T T T T T T T T S εεεεε=++===-=当i,j,k 当中有两个相等时,0iik S = 当i j k ≠≠时 (122123323113).1.2.1.2.2..3.2..3.3.1.3.12()()i j j i j k k j k i i k ijk i j i j j k j k k i k i ijk not sumijkijkijkS T T T T T T T T T T T T T T T T T T T T T T T T εεζε=-+-+-=-+-+-=③()[()()]det()()⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w...()[()()]()()()i j k l m nl m n ijkl m n lmn T T T u v w det u v w det εε⋅⋅⋅⨯⋅===⋅⨯T u T v T w T T u v w ④()()det()()T T -⋅⨯⋅=⨯T v T w T v w()[()()]det()()[()()]det()()T⋅⋅⋅⨯⋅=⋅⨯⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w u T T v T w T u v w由于上式对任意矢量u 都成立[()()]det()()()()det()()T T-⋅⋅⨯⋅=⨯⋅⨯⋅=⨯T T v T w T v w T v T w T T v w⑤主不变量与矩之间的关系*1*2..*3...()()()ii i kk i i j kj k i Tr T Tr T T Tr T T T ζζζ===⋅==⋅⋅=T T T T T T2212112212ij k li j j i kl .i .j .i .j .i .j *T T (T T T T )[()]ζδζζ==-=-3.....................*3***13121611()()661(()23)6ijk l m nlmn i j ki j k j k i k i j j i k i k j k j i i j k i j k i j k i j k i j k i j k e e T T T T T T T T T T T T T T T T T T T T T ζζζζζ==++-++=+- 二阶张量标准形 1. 特征值、特征向量 λ⋅=T v v ()λ-⋅=T G v 01111232221233331230.........T T T T T T T T T λλλ--=-特征方程 321230λζλζλζ-+-= 特征根是不变量2. 实对称二阶张量标准形 1. 特征根是实根*************; ; ()0 () λλλλλλλλ⋅=⋅=⋅⋅=⋅⋅⋅=⋅-⋅=⇒=⋅-=⇒=N v N v v v N v v v v N v v v v v N v v 0v v2. 特征向量互相正交1112222112112212121212 ; ; ()00λλλλλλ⋅=⋅=⋅⋅=⋅⋅⋅=⋅-⋅=⇒⋅=N v v N v v v N v v v v N v v v v v v v 3. 不存在约当链如果λ是n 重根,但不存在相应的特征向量12,v v ,使1122 ; λλ⋅=⋅=T v v T v v则一定存在约当链11221λλ⋅=⋅=+T v v T v v v然而对对称张量112212112121211110λλλλ⋅=⋅=+⇓⋅⋅=⋅⋅⋅=⋅+⋅⇓⋅=N v v N v v v v N v v v v N v v v v v v v这是不可能的。
二阶张量的定义

二阶张量的定义二阶张量是线性代数中的一个重要概念。
在数学和物理学领域中,二阶张量被广泛应用于描述物质的性质、力学系统的行为以及电磁场的传播等问题。
本文将介绍二阶张量的定义和一些基本性质,以及其在实际应用中的意义。
我们来定义二阶张量。
在线性代数中,一个二阶张量可以被视为一个二维矩阵,它具有两个索引,通常用小写字母的下标表示。
一个二阶张量可以用以下形式表示:T_ij其中,i和j是张量的两个索引,可以取1、2、3等整数值。
这个二阶张量有四个分量,分别是T_11、T_12、T_21、T_22。
这些分量可以对应于矩阵的四个元素。
二阶张量的分量具有特定的变换规律。
当坐标系发生变换时,二阶张量的分量也会相应地发生变化。
具体而言,对于一个二阶张量T_ij,在坐标系变换下,其分量会按照以下规则进行变换:T_ij' = R_i^k * R_j^l * T_kl其中,T_ij'是变换后的二阶张量的分量,R_i^k和R_j^l是坐标系变换矩阵。
这个变换规律保证了二阶张量在不同坐标系下的表示是相容的。
二阶张量具有一些重要的性质。
首先,二阶张量可以进行加法和数乘运算,即两个二阶张量可以相加,一个二阶张量可以与一个标量相乘。
其次,二阶张量还可以进行张量积运算,即两个二阶张量可以进行分量乘积并相加的运算。
这些运算使得二阶张量具有了更强大的描述能力。
在实际应用中,二阶张量有着广泛的应用。
在物质力学中,二阶张量可以描述物质的应力和应变。
通过应力张量和应变张量的组合,可以得到物质的弹性模量和刚度矩阵等重要性质。
此外,在电磁学中,电磁场的张量表示也是一个二阶张量,可以用来描述电磁场的分布和传播。
二阶张量还在图像处理、机器学习等领域中有着重要的应用,例如图像的卷积运算和神经网络的权重矩阵等。
总结起来,二阶张量是线性代数中的一个重要概念,用于描述具有两个索引的二维矩阵。
二阶张量具有特定的变换规律和运算性质,可以用于描述物质的性质、力学系统的行为以及电磁场的传播等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)正则的二阶张量 映射的满射性 )正则的二阶张量T 映射的满射性 定义 对于正则的二阶张量T,必存在唯一的正则二 对于正则的二阶张量 , 阶张量T 阶张量 -1,使
T T 1 = T 1 T = G
T -1 称为正则的二阶张量的逆,正则的二阶张量也称为可逆 称为正则的二阶张量的逆 的二阶张量。 的二阶张量。可证
[T ] = [T ]
1
1
detT
1 T
(T )
1 1
=T
(T ) = (T )
T 1
对于正则的二阶张量T 对于任意矢量u 满射性 对于正则的二阶张量 对于任意矢量 所做的线性 变换Tu=w,必存在唯一的逆变换,使T -1u=w。 变换 ,必存在唯一的逆变换, 。
张量分析 及连续介质力学
2.2 正则与退化的二阶张量
2.2.1 关于映射的几个定理
任意二阶张量将一个线性相关的矢量集映射为线性相 定理 任意二阶张量将一个线性相关的矢量集映射为线性相 关的矢量集. 关的矢量集 证明 设矢量集 设矢量集u(i)(i=1, 2, …, I )线性相关,则存在不全为零 线性相关, 线性相关 的实数α(i),使得 ,
T v T w ] = detT [u v w ]
证明 (式1.8.25)、(1.8.22) ) )
= detT
lmn
u v w = detT [u v w ]
l m n
[T u
T v T w] =
j T il u lT m v mT k n wn ijk
2.2.2 正则与退化
的二阶张量T 的二阶张量 称为正则的二阶张量; 定义 detT≠0的二阶张量 称为正则的二阶张量;否 称为退化的二阶张量。 则称为退化的二阶张量。 若T 是正则的,则T T 也是正则的。 是正则的, 也是正则的。 正则二阶张量的性质: 正则二阶张量的性质: (1)定理 二阶张量是正则的必要且充分条件是将每一组 ) 线性无关的矢量组u(i)(i=1,2,3)映射为另一组线性无关的 映射为另一组线性无关的 线性无关的矢量组 映射为另 矢量组Tu(i)(i=1,2,3)。 矢量组 。 等价表述: 等价表述: 二阶张量是正则的必要且充分条件是 Tu=0,当且仅当 ,当且仅当u=0;或者,二阶张量是退化的必要且 ;或者, 充分条件是存在u≠0 使得 使得Tu=0。 充分条件是存在 。 (2)正则的二阶张量 映射的单射性 对于任意 个不等 )正则的二阶张量T 映射的单射性 对于任意2 的矢量u≠v,被T 映射以后仍不相等:Tu≠Tv。 映射以后仍不相等: 的矢量 , 。
∑ α (i )u(i ) = 0
i =1
I
0 = T ∑ α (i )u(i ) = ∑ α (i )(T u(i ))
i =1 i =1
I
I
三维空间中任意二阶张量T 将任意矢量组u, , 定理 三维空间中任意二阶张量 将任意矢量组 ,v,w 映射 为另一矢量组,满足 为另一矢量组,
[T u