二阶对称张量的示性面

合集下载

张量基础知识

张量基础知识
描述物理量的矢量和张量应与坐标轴的选择无关。就是 说,当坐标轴变换时,矢量和张量的所有分量都随之变换, 但作为描述物理量的矢量和张量本身是不变的。因此,分量 的变换必有一定的规律。接下来我们就来讨论一下坐标变换 时分量变换的规律。
张量基础知识
一、坐标变换 如图所示,设有直角坐标
系OX1X2X3,其三个方向的单
张量基础知识
此处σ不再是一个数,而是9个数构成一个方阵,称为电导率
张量,这是一个二阶张量。于是,各向异性晶体中的欧姆定
律可表示为
JE
11 12 13
21
22
23
31 32 33
张量的定义:一般来说,在物理学中,有一些量需要用9个分 量来描述,这种物理量就是二阶张量。
张量基础知识
2.2 张量的数学定义
张量基础知识
2.3 张量的运算
一、张量的加法
若 Ai,jBi(ji,j1,2,3)皆为二阶张量,则
C i j A i jB ij(i,j 1 ,2 ,3 )也为二阶张量,于是我们定义 Cij
为 Aij, Bij 之和。这就是二阶张量的加法,并表为C=A+B。
以此类推,若A,B为两个同阶张量,则A,B相应分量之和构成 新的同阶张量C,记作C=A+B。
同 样 x x1 2 : 1 2''1 1 1 2''2 2 x x1 2'' i'jT x x1 2''
由( )式得
xx12i'
j1xx12''
比较 : i'jTi'j1
[ i ' j ] 为张量正基础交知识矩阵
引用指标符号:

晶体光学 lesson5张量

晶体光学 lesson5张量

第二章晶体性质的数学描述研究内容张量的概念二阶张量-重点介绍-推导变换关系 二阶张量示性曲面及主轴化高阶张量及其变换三阶张量四阶张量晶体宏观对称性与晶体张量的关系张量的概念标量物理中常见的一些量,如密度、温度等等很多。

特点:无方向可用一个数值完全表示矢量区别于标量的另一类物理量,既有数值又有方向,如机械力就是矢量。

矢量用黑体字母表示,如F 。

在直角坐标系中用矢量在该坐标系上的分量表示矢量。

例如电场强度矢量E 记为:123[,,]T E E E =E 123E E E ++E=i j k二阶张量张量的概念以电场强度和极化强度矢量为例:123P P P =++P i j k 123E E E ++E=i j k对于各向同性晶体中,同方向则,P E0εχ=P E123[,,]T E E E =E 123[,,]T P P P =P¾如果在各向异性晶体中情况就复杂了,电场强度和它引起的极化强度的方向一般不相同¾这时电场强度的每个分量对极化强度每个方向的分量均有影响,且影响的程度不同,这时我们就不能简单的利用前面的公式()11112130111122133()()()P P E P E P E E E E εχχχ=++=++()22122230211222233()()()P P E P E P E E E E εχχχ=++=++()33132330311322333()()()P P E P E P E E E E εχχχ=++=++张量的概念我们把上述公式表示为矩阵的形式1112131120212223233313233P E P E P E χχχεχχχχχχ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠ 1、P 的每一个分量与电场强度的三个分量存在线性关系2、坐标系确定后为常数3、各向异性介质的电极化特性需用9各数值才能完整描述----我们接下来会详细介绍ij χ张量的概念-二阶张量111213212223313233χχχχχχχχχ⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠我们称这个3×3的矩阵为二阶张量张量的概念-二阶张量推广-如果某个物理性质T ,可以表征另外两个物理量p,q 之间的关联,并具有如下关系111213112212223233313233T T T P q P T T T q P q T T T ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠ 我们称构成二阶张量ij T 张量的概念-二阶张量张量的习惯写法:引入爱因斯坦求和法则-略去求和符号31(1,2,3)i ij j j p T q i ===∑i ij j p T q =i 为自由下标,j 为求和下标,注意顺序1、下标符号任意选定,但要有区别2、自由下标前后呼应,求和下标成对出现张量的概念-二阶张量张量的概念-二阶张量或者表示为矩阵的形式:P Tq=对于我们晶体光学范畴研究的二阶张量均有:ij ji T T =对称张量T T ′=张量的概念-二阶张量我们可以将二阶张量的下标作如下简化:11-1 22-2 33-323 32-4 13 31-5 12 21-6121112131653212223624431323354356T T T T T T T T T T T T T T T T T T T T T T T T ⎛⎞⎜⎟⎜⎟⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⇒⇒⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎜⎟⎜⎟⎜⎟⎝⎠张量的概念9标量(零阶张量)9矢量(一阶张量)9二阶张量9三阶张量9四阶张量。

张量分析基础

张量分析基础

张量的性质
张量的定义
— 张量是与坐标系有联系的一组量,并满足一定的坐标变换规律。
张量的性质
— 任何两个张量相乘所得到的新张量的阶数等于原张量阶数之和; — 两个张量间的比例系数一般是一个张量,其阶数等于原张量阶 数之和; — 张量的变换规律与坐标乘积的变换规律相同; — 变换矩阵与二阶张量的区别
二阶对称张量
δ ij =
1 i = j 0 i ≠ j
[ ]
1 0 0 δ ij = 0 1 0 0 0 1
δ ij Pj = Pi δ ij Pi = Pj
δ ijT jl = Til δ ilT jl = T ji
i, j , k顺序轮换 i, j , k反序轮换 两个以上角标同
反对称三重积
ei × e j = ε ijk e j
傀标
Pi = Tij Q j
自由 下标
[A] + [B][C][D] = [E][F]
Aij + BikCkl Dlj = Eik Fkj
坐标变换
坐标轴变换
e1* a11 * e 2 = a 21 * e3 a 31 a12 a 22 a 32
*∧
X3’
X3
θ23
a13 e1 a 23 e 2 a 33 e3
x1* a11 * x 2 = a 21 * x 3 a 31
a12 a 22 a 32
a13 x1 a 23 x 2 a 33 x 3
Neuman原理
物质张量、场张量
— 物质张量是建立晶体在外场作用下的响应与外场之间关系的物理性 能,物质张量受到晶体对称性的制约,如弹性系数 — 场张量:外场张量及晶体对外场响应后所产生的新的物理量,不受 晶体对称性的制约,如应力、电场 — 晶体响应,受外场、物理性能和晶体对称性的共同影响,如应变

张量第三章——精选推荐

张量第三章——精选推荐

张量第三章第三章⼏个基本的张量§3.1 度量张量⼀、度量张量j j i i g g δ= ji j i g g δ=协变基⽮量的逆变分量和逆变基⽮量的协变分量是单位张量。

若把每个基⽮量看成是异名基⽮量所构成的参照标架的⼀个特殊⽮量,则可以表⽰为:jij i g g g = j ijig g g =ij g 是i g 的协变分量,ij g 是i g 的逆变分量。

ij g 和ij g 称为度量张量。

ij g ——度量张量的协变分量或协变度量张量。

ij g ——度量张量的逆变分量或逆变度量张量。

证明:ijg ,ij g 是⼆阶张量:''''i j i i g g g =⼜ijj j i i j i ijj j i i j i j ij j j i i j j j ij i i jij i i i i i i g g g g g g g g g g g g '''''''''''''''''ββββββββββ==∴====同理,度量张量的混变分量是单位张量,即i ji j g δ=j i j i g δ=⼆、度量张量的性质和作⽤1、度量张量各分量等于同名基⽮量的点积。

ij k j ik j k ik j i g g g g g g g ==?=?δij j k ik j k ik j i g g g g g g g ==?=?δ2、度量张量是⼆阶对称张量。

ij j i g g g g ?=? jiij g g =i j j i g g g g ?=?ji ij g g =3、度量张量的协变分量和逆变分量相乘并按⼀对指标求和等于单位张量。

ji jk ik g g δ=jk ik hl jl ih l jl k ik j i j i g g g g g g g g g g ==?=?=δδ由上式,可由度量张量的协变分量求逆变分量或者反过来求。

2.5几种特殊的二阶张量

2.5几种特殊的二阶张量
i
Ai j
j

A:A
tr A A

T

满足范数公理的三个条件:非负性、对称性与三角不等式, 可作为二阶张量空间的一种范数。
2.5.6
2.5.6.1
反对称二阶张量
定义
满足 T 的张量称为反对称张量。在任一笛卡儿 坐标系中
i j
0 1 2 1 3
T
n
T
-1
T
-1
T
-1
n 个T -1
2.5.4
正张量、非负张量及其方根、对数
正张量、非负张量都是对称二阶张量。 定义 正张量N >O满足u· u=N:uu>0 对于任意u≠0 N· 非负张量N ≥O满足u· u=N:uu≥0 对于任意u≠0 N· 对称二阶张量必定可在一组正交标准化基中化为对角标准形
u u
易证:
e3
( 包含了 的全部信息)


1
:

J2

2.5.6.5
反对称二阶张量所对应的线性变换
e1 e 2
e 2 e1
e3 0

e3 u
×u
u+ · u e2
· e u 1
对于空间任一矢量 u u1e1+u2e2+u3e3,
可证:利用任意一个非对称二阶张量T 可构造两个非负张量
X T T
T
O
Y T
T
T O
如果T 是正则的,则X,Y 是正张量:
X T T
T
>O >O
Y T
T
T
一般来说,X,Y 是两个不同的张量。可证:它们具有相同 的主分量,只是主轴方向不同而已。

二阶对称张量场可视化的一种新模式

二阶对称张量场可视化的一种新模式

二阶对称张量场可视化的一种新模式宋伟杰;崔俊芝;叶正麟;周敏【摘要】目前二阶对称张量场的可视化均是基于最大(次大)和最小特征向量场的,但这样定义的特征向量场存在着方向不连续的问题,而应力场的特征向量的方向却是永远连续的,鉴于此,提出了基于特征向量方向连续的一种可视化的新模式.从原理上阐述了问题产生的机理,提出了特征向量场的新定义-根据特征向量方向的连续性将特征向量场定义为第一和第二(第三)特征向量场,并对新定义的特征向量场在每一点包括退化点处的取值问题进行了研究.新定义克服了传统定义方向不连续的缺点,保持了特征向量场在每一点包括退化点处的方向上的连续性,同时,基于新定义的可视化从本质上体现了应力场及其他对称张量场本身具有的属性.【期刊名称】《计算机工程与应用》【年(卷),期】2011(047)006【总页数】4页(P1-4)【关键词】对称张量场;可视化;特征向量场【作者】宋伟杰;崔俊芝;叶正麟;周敏【作者单位】西北工业大学理学院应用数学系,西安,710072;中国科学院,数学与系统科学研究院,北京,100080;西北工业大学理学院应用数学系,西安,710072;西北工业大学理学院应用数学系,西安,710072【正文语种】中文【中图分类】TP391.4二阶对称张量场在物理、力学及生物医学等诸多领域有着非常广泛的应用。

例如,固体力学中的应力和应变,流体力学中的应力、粘性应力、雷诺应力和应变率都被描述为二阶对称张量。

另外,二阶对称张量场在核磁共振成像中也扮演着重要角色。

因此,研究二阶对称张量场的可视化技术具有非常重要的科学意义和跨学科的应用价值。

二阶对称张量场的可视化方法可以划分为两类。

起初,研究人员采用标量场的可视化方法来实现张量场的可视化。

这类方法除了不能从整体上展现张量场的结构之外,存在一个致命的缺点:可视化的结果严重依赖于坐标系的选择,这显然不是我们所希望的。

第二类方法是通过对与之等价的特征向量场进行可视化来实现张量场的可视化。

第六讲:二阶对称张量及其主轴化

第六讲:二阶对称张量及其主轴化
5
1. 6. 2 二阶对称张量的主轴化
什么样的二阶张量可以主轴化(对角化)
数学要求:所有实对称矩阵都可以被对角化
张量主轴化方法
• 线性代数方法 • 求解张量矩阵特征值、特征向量
6
1. 6. 2 二阶对称张量的主轴化
例子 1 :对如下介电常数矩阵进行对角化
3 1 0 1 3 0 0 0 4
2 0 0 0 4 0 0 0 4
为了得到矩阵的上述变换,坐标轴发生了什么变化?
1/ 2 1/ 2 坐标变换矩阵: 1 / 2 1 / 2 0 0
0 0 1
7
1. 6. 2 二阶对称张量的主轴化
例子 2 :对如下介电常数矩阵进行对角化
2F ji E j Ei
ij ji
二阶偏微分结果与微分次序无关
4
1. 6. 1 二阶对称张量
对称张量的判断Байду номын сангаас
• 电导率张量
A J E J i Ei

单位时间电阻消耗的能量
A J i Ei ij Ei E j
ij ji
从能量的角度可以证明,介电张量、电导率张量为二阶对称张量! 应力张量、应变张量如何呢?
2
1. 6. 1 二阶对称张量
二阶对称张量举例 介电张量 电导率张量
应力张量
应变张量
3
1. 6. 1 二阶对称张量
对称张量的判断
• 介电张量
广义力 广义位移 电能表达式

dF E d D Ei dDi
Ei dDi Ei ijdE j
2F ij Ei E j

二阶张量的定义

二阶张量的定义

二阶张量的定义二阶张量是线性代数中的一个重要概念。

在数学和物理学领域中,二阶张量被广泛应用于描述物质的性质、力学系统的行为以及电磁场的传播等问题。

本文将介绍二阶张量的定义和一些基本性质,以及其在实际应用中的意义。

我们来定义二阶张量。

在线性代数中,一个二阶张量可以被视为一个二维矩阵,它具有两个索引,通常用小写字母的下标表示。

一个二阶张量可以用以下形式表示:T_ij其中,i和j是张量的两个索引,可以取1、2、3等整数值。

这个二阶张量有四个分量,分别是T_11、T_12、T_21、T_22。

这些分量可以对应于矩阵的四个元素。

二阶张量的分量具有特定的变换规律。

当坐标系发生变换时,二阶张量的分量也会相应地发生变化。

具体而言,对于一个二阶张量T_ij,在坐标系变换下,其分量会按照以下规则进行变换:T_ij' = R_i^k * R_j^l * T_kl其中,T_ij'是变换后的二阶张量的分量,R_i^k和R_j^l是坐标系变换矩阵。

这个变换规律保证了二阶张量在不同坐标系下的表示是相容的。

二阶张量具有一些重要的性质。

首先,二阶张量可以进行加法和数乘运算,即两个二阶张量可以相加,一个二阶张量可以与一个标量相乘。

其次,二阶张量还可以进行张量积运算,即两个二阶张量可以进行分量乘积并相加的运算。

这些运算使得二阶张量具有了更强大的描述能力。

在实际应用中,二阶张量有着广泛的应用。

在物质力学中,二阶张量可以描述物质的应力和应变。

通过应力张量和应变张量的组合,可以得到物质的弹性模量和刚度矩阵等重要性质。

此外,在电磁学中,电磁场的张量表示也是一个二阶张量,可以用来描述电磁场的分布和传播。

二阶张量还在图像处理、机器学习等领域中有着重要的应用,例如图像的卷积运算和神经网络的权重矩阵等。

总结起来,二阶张量是线性代数中的一个重要概念,用于描述具有两个索引的二维矩阵。

二阶张量具有特定的变换规律和运算性质,可以用于描述物质的性质、力学系统的行为以及电磁场的传播等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二阶对称张量的示性曲面
二阶对称张量与二次曲面
1(,1,2,3)
ij i j S x x i j ==二阶曲面
i ki k
j lj l x a x x a x ′=′
=1ij ki lj k
l S a a x x ′′=kl
ij ki lj S S a a ′=kl
ki lj ij S a a S ′=
光率体
•称二次曲面包围的椭球为光率体•椭球面上矢径的长度即为折射率•沿晶体不同方向传输具有不同的折射率
•我们可以获得相互垂直两个偏振态在晶体某个波矢方向的折射率。

K D E S
⊥⊥
折射率曲面
为什么研究折射率曲面
研究方便
形象直观
如何获得折射率曲面
取任意过晶体中心的直线方向为光线传输方向
利用该方向矢量定义该方向过晶体中心的垂直截面,求出它与光率体外表面的交线(椭圆)
求该椭圆的长轴和短轴
由于取得方向任意获得的即为椭圆长短轴曲面-即
两互相垂直偏振态的折射率曲面。

相关文档
最新文档