二阶张量的谱分解 算法
第 2 章 二阶张量

研究定义在一个固定点(张量的元素是实常数, gi 也是常数)上的二阶张量随坐标系转动的
不同形式,不涉及与另一个张量的关系,也不涉及张量运动。
2.1 二阶张量的元素
T = Tij g i g j = Ti• j g i g j = T•ii gi g j = T ij gi g j
k n
(2) T 的不变量由无限多个(不变量的组合仍是不变量),通常关心的有两组:
主不变量( T 特征多项式的三个系数)
2
η1 = T•11 + T•22 + T•33 = G : T = T•mm = GmnT mn = GmnTmn = Tm•m
( )( ) η2
=
T•11 T•21
T•12 T•22
、 Ni• j
=
N•ji
,
(而一般: N•i j
≠
N
j •i
、
N
• i
j
≠
N •i j
在相同的,混变分量的转置 ≠ 系数矩阵的转置)
N ⋅u=u⋅N
(4) 反对称张量 Ω = −ΩT
性质: Ωij
=
−Ω 、 Ω ij ji
=
−Ω
ji
Ω 、 i •j
=
Ω − Ω 、 •i
•j
j
i
=
−Ω•ij ,
(而一般:
+ T•22 T•32
T•23 T•33
+ T•11 T•31
T•13 T•33
=
1 2
⎣⎡
G :T
G :T − T ⋅⋅T ⎦⎤
=
1 2
⎡⎣T•mmT•nn
− T•pqT•qp ⎤⎦
第2章二阶张量

+ T•22 T•32
T•23 T•33
+ T•11 T•31
T•13 T•33
=
1 2
⎣⎡
G :T
G :T − T ⋅⋅T ⎦⎤
=
1 2
⎡⎣T•mmT•nn
− T•pqT•qp ⎤⎦
=
1 2
δ
ijpqT•jiT•qp
[共有 6 项相加,前后指标一样为正,不一样为负;指标 m, n 和 p, q 可以互换但乘积不
而一般: Ωi• j
≠
−Ω
j •i
、
Ω
• i
j
≠
−Ω
•i j
Ω ⋅ u = −u ⋅ Ω
(2) 不变量:
η1Ω = 0 ;η3Ω = 0 (对角元为零)
5
( ) ( ) ( ) η2Ω
=
0 − Ω1•2
Ω1•2 0
+
0 − Ω•23
Ω•23 0
+
0 − Ω1•3
Ω1•3 0
=
Ω1•2
2+
Ω•23
2+
变,所以要乘 1/2]
T•11 T•12 T•13
η3 = T•21
T•22
T•23
=
1 3!
εMT
⊗T
⊗TMε
=
1 6
δ limjknT•l iT•mjT•nk
=
1 6
ε
ijk ε lmnT•l iT•mjT•nk
T•31 T•32 T•33
[共有 6 项相加,前后指标均为顺序或逆序为正,一正一逆为负,有非序为零; l, m, n 均顺 序和均逆序的排列有 6 种,同样 i, j, k 也有六种,组合共有 36 种,除去重复的只有 6 种, 所以要乘 1/6]
【张量分析ppt课件】张量分析课件第三章3 二阶张量特征值与特征方向

设V中标准正交坐标系为 {i1, i2, i3} 。则二阶张量 A和矢量 u可表示为:
A Aij ii i j ; u ui ii A u u ; ( A I ) u o
可分别写成: 或
u A u
;
u ( A I ) o
( Aij ii i j ij ii i j ) (umim ) o ; (umim ) ( Aij ii i j ij ii i j ) o A12 A13 u1 0 A11 A u 0 A A 22 23 2 21 (3.4-3) A32 A33 A31 u 3 0
det(A I ) 0 ( a) det(A* I ) 0 ( b)
∵ ∴ (a)、(b)两式是关于λ的三次相同的代数方程。也就是说 A的右特征值和左特征值相同。由 (a)式或 (b)式得: ∵
[( A I ) a ] [( A I ) b][( A I ) c ] 0 a (b c ) [( A I ) a ] [( A I ) b][( A I ) c ] det( A I )
; ∴
u ai 2
u1 0 u 2 a u 0 3
(a是任意实数)
是方程组(1)的非零解。
A u (i1i3 i2i1 i2i2 i3i1 ) (ai2 ) ai2 1u
因此 u = a i2是 A的λ1 = 1特征值对应的右特征矢量。 左特征矢量: ∵
(detet Q) det(Q I ) det(Q I )
2 det(Q I ) 0 ∴ 因此得出结论: 正交二阶张量 Q,当det Q =1时存在右特征矢量 r。其对应 的特征值λ = 1。且:
第2章 二阶张量

111
222
333
N为正(非负)张量 ⇔ N > (≥)0 i
(2)N非负,存在唯一的非负对称张量M,使 M 2 = N
(3)任意非对称张量可以 构造非负张量:
1 )X = T ⋅T T,Y = T T ⋅T为非负张量,若T可逆,则X、Y为正张量
2)X 、Y 为对称张量
3)X 、Y 为不同的张量,但有相同的主分量
定理:[T ⋅ u, T ⋅ v, T ⋅ w] = det T [u, v, w]
正则与退化 det T ≠ 0 的二阶张量-正则二阶张量;否则为退化的二阶张量。
(1)T为正则 ⇔ (i = 1, 2, 3) u(i)性无关,则T ⋅ u(i)也线性无关。
(2)正则T是单射的:u ≠ v ⇒ T ⋅ u ≠ T ⋅ v (3)正则T是满射的:∀u所作的线性变换T ⋅ u = v,必存在唯一的
≠
−Ω j、Ω • j
•i
i
≠
−Ω •i)Ω ⋅ u j
=
−u ⋅ Ω
(5)行列式的值:
, , 定义:det T
=
Ti •j
T ij
= g T•j i
=
Ti •j
g = g 2 T ij
g= G ij
( ) ( ) ( ) 、 TT ij
=T ij
T T ij = T ij 、
T 、 = T T i j
l, m, n均顺序和均逆序的排列有6种,i, j, k同样也有六种,组合共有36种,
除去重复的只有6种,所以要乘1 / 6]
[T ⋅ a, b, c] = [a,T ⋅ b, c] = [a, b,T ⋅ c] = η1(T )[a, b, c]
第二章 二阶张量

第二章:二阶张量1. ij T ij ji i j j i i j T T T ;=⊗=⊗=⊗T g g T g g g g ij i j ij i j T ; T =⋅⋅=⋅⋅g T g g T g2. T =T.u u.TT ij ij ij ij j i j i i j j i ( = T T u ;T T u )⋅⊗==⊗⋅=u.T u g g g T.u g g u g 3.i .j det()T =T行列式不等于零的二阶张量定义为正则二阶张量 正则二阶张量存在逆张量:1-⋅T T =G 4.主不变量①1)()()ζ⋅⋅⨯⋅⋅⨯⋅⨯⋅=⋅⨯T u (v w)+u (T v w)+u (v T w )u (v w)(1.()::i i Tr T ζ====T T G G T)()()i j k ijk S u v w ⋅⋅⨯⋅⋅⨯⋅⨯⋅=T u (v w)+u (T v w)+u (v T w )(m m mijk .i mjk .j imk .k ijm S T T T εεε=++由于mik imkmmmiik .i mik.i imk.k iimS T T T εεεεε=-⇓=++=当i,j,k 当中有两个相等时,0iik S = 当i j k ≠≠时i j k m ijk .i .j .k ijk not sum ijk .m ijk S (T T T )T εε=++=②2)[)][()(]()[()]()ξ⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=⋅⨯T u (T v w +u T v T w)+T u (v T w u v w (2......122123323113.1.2.1.2.2..3.2..3.3.1.3.1112233.1.2.2..3.3.1223311.1.2.2..3.3.111()22ij l mi j i l lm i j i j l j T T T T T T T T T T T T T T T T T T T T T T T T TTTTT T ζδ==-=-+-+-=++注意:ij ijklm lmkδδ=是张量的分量张量T 行列式中各阶主子式之和)[)][()(]()[()]i j k ijk S u v w ⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=T u (T v w +u T v T w)+T u (v T w ( 其中......()m n m n n mijk i j mnk j k imn k i mjn S T T T T T T εεε=++..........()0m n m n n m iik i i mnk i k imn k i min m n i i mnk m n i i nmk iik S T T T T T T T T T T S εεεεε=++===-=当i,j,k 当中有两个相等时,0iik S = 当i j k ≠≠时 (122123323113).1.2.1.2.2..3.2..3.3.1.3.12()()i j j i j k k j k i i k ijk i j i j j k j k k i k i ijk not sumijkijkijkS T T T T T T T T T T T T T T T T T T T T T T T T εεζε=-+-+-=-+-+-=③()[()()]det()()⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w...()[()()]()()()i j k l m nl m n ijkl m n lmn T T T u v w det u v w det εε⋅⋅⋅⨯⋅===⋅⨯T u T v T w T T u v w ④()()det()()T T -⋅⨯⋅=⨯T v T w T v w()[()()]det()()[()()]det()()T⋅⋅⋅⨯⋅=⋅⨯⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w u T T v T w T u v w由于上式对任意矢量u 都成立[()()]det()()()()det()()T T-⋅⋅⨯⋅=⨯⋅⨯⋅=⨯T T v T w T v w T v T w T T v w⑤主不变量与矩之间的关系*1*2..*3...()()()ii i kk i i j kj k i Tr T Tr T T Tr T T T ζζζ===⋅==⋅⋅=T T T T T T2212112212ij k li j j i kl .i .j .i .j .i .j *T T (T T T T )[()]ζδζζ==-=-3.....................*3***13121611()()661(()23)6ijk l m nlmn i j ki j k j k i k i j j i k i k j k j i i j k i j k i j k i j k i j k i j k e e T T T T T T T T T T T T T T T T T T T T T ζζζζζ==++-++=+- 二阶张量标准形 1. 特征值、特征向量 λ⋅=T v v ()λ-⋅=T G v 01111232221233331230.........T T T T T T T T T λλλ--=-特征方程 321230λζλζλζ-+-= 特征根是不变量2. 实对称二阶张量标准形 1. 特征根是实根*************; ; ()0 () λλλλλλλλ⋅=⋅=⋅⋅=⋅⋅⋅=⋅-⋅=⇒=⋅-=⇒=N v N v v v N v v v v N v v v v v N v v 0v v2. 特征向量互相正交1112222112112212121212 ; ; ()00λλλλλλ⋅=⋅=⋅⋅=⋅⋅⋅=⋅-⋅=⇒⋅=N v v N v v v N v v v v N v v v v v v v 3. 不存在约当链如果λ是n 重根,但不存在相应的特征向量12,v v ,使1122 ; λλ⋅=⋅=T v v T v v则一定存在约当链11221λλ⋅=⋅=+T v v T v v v然而对对称张量112212112121211110λλλλ⋅=⋅=+⇓⋅⋅=⋅⋅⋅=⋅+⋅⇓⋅=N v v N v v v v N v v v v N v v v v v v v这是不可能的。
2.6二阶张量的分解

N =P+D
于是 其中
T = N + = P + D+ 1 T i 1 T i j j P = P j g i g = J 1 δ j g i g = J1 G 3 3 1 k P T N J1 = J1 = J1 = N k 3 1 N 2 1 N 3 P P J 2 = J1 J3 = J1 3 27
i3
1 (i1 + i2 + i3 ) n= 3
N 在八面体等斜面上作用的矢量分量: 在八面体等斜面上作用的矢量分量:
σ
i3' n i2' pn
1 (N1i1 + N 2 i2 + N 3i3 ) pn = N n = 3
pn 的法向分矢量: 的法向分矢量:
i1
i1'
ω τ
i2
1 1 N σ = ( N : nn )n = (N1 + N 2 + N 3 )n = J1 n 3 3
π J cos ω 3
D 2
π J cos ω + 3
D 2
2 D3 = 3
J 2D cosω
就可满足前述三式。 就可满足前述三式。利用其中第三式可证
cos3ω =
27 J 3D 2J
D 32 2
不失广泛性, 不失广泛性,可设 D1 ≥ D2 ≥ D3 ,因此必有 D1 ≥ 0, D3 ≤ 0, 从而
2
T T T = H T QT Q H = H 2 > O
后二式存在方根,且其方根也是正张量, 后二式存在方根,且其方根也是正张量,即
H = T T T > O
H1 = T T T > O
二阶张量的定义

二阶张量的定义二阶张量是线性代数中的一个重要概念。
在数学和物理学领域中,二阶张量被广泛应用于描述物质的性质、力学系统的行为以及电磁场的传播等问题。
本文将介绍二阶张量的定义和一些基本性质,以及其在实际应用中的意义。
我们来定义二阶张量。
在线性代数中,一个二阶张量可以被视为一个二维矩阵,它具有两个索引,通常用小写字母的下标表示。
一个二阶张量可以用以下形式表示:T_ij其中,i和j是张量的两个索引,可以取1、2、3等整数值。
这个二阶张量有四个分量,分别是T_11、T_12、T_21、T_22。
这些分量可以对应于矩阵的四个元素。
二阶张量的分量具有特定的变换规律。
当坐标系发生变换时,二阶张量的分量也会相应地发生变化。
具体而言,对于一个二阶张量T_ij,在坐标系变换下,其分量会按照以下规则进行变换:T_ij' = R_i^k * R_j^l * T_kl其中,T_ij'是变换后的二阶张量的分量,R_i^k和R_j^l是坐标系变换矩阵。
这个变换规律保证了二阶张量在不同坐标系下的表示是相容的。
二阶张量具有一些重要的性质。
首先,二阶张量可以进行加法和数乘运算,即两个二阶张量可以相加,一个二阶张量可以与一个标量相乘。
其次,二阶张量还可以进行张量积运算,即两个二阶张量可以进行分量乘积并相加的运算。
这些运算使得二阶张量具有了更强大的描述能力。
在实际应用中,二阶张量有着广泛的应用。
在物质力学中,二阶张量可以描述物质的应力和应变。
通过应力张量和应变张量的组合,可以得到物质的弹性模量和刚度矩阵等重要性质。
此外,在电磁学中,电磁场的张量表示也是一个二阶张量,可以用来描述电磁场的分布和传播。
二阶张量还在图像处理、机器学习等领域中有着重要的应用,例如图像的卷积运算和神经网络的权重矩阵等。
总结起来,二阶张量是线性代数中的一个重要概念,用于描述具有两个索引的二维矩阵。
二阶张量具有特定的变换规律和运算性质,可以用于描述物质的性质、力学系统的行为以及电磁场的传播等问题。
《二阶张量的矩阵》课件

06 二阶张量的实例分析
实例一:弹性力学中的应力张量
弹性力学中的应 力张量定义
应力张量的基本 性质
弹性力学中的应 力张量应用
实例分析:某具 体弹性力学问题 中的应力张量
实例二:流体力学中的应力张量
应力张量的定义与性质 流体力学中的应力张量表示 应力张量在流体力学中的应用 实例分析:某流体力学问题的应力张量分析
电磁学:二阶张量用于描述电磁场 的应力-能量张量
添加标题
添加标题
添加标题
添加标题
流体力学:二阶张量用于描述流体 的应力场
相对论力学:二阶张量用于描述相 对论力学中的应力-能量张量
在工程中的应用
结构分析:利用二阶张量矩阵对结构进行力学分析,包括应力、应变、刚度等
弹性力学:二阶张量矩阵在弹性力学中的应用,如弹性问题的求解、弹性本构关系的 建立等
注意事项:在计算过程中需要注意各个分量的符号和顺序,以确保结果 的正确性
应用范围:适用于所有类型的二阶张量计算,是一种通用的计算方法
间接计算法
定义:通过已知 的一阶张量计算 二阶张量的方法
计算步骤:先计算 一阶张量的偏导数, 再利用高斯公式计 算二阶张量
适用范围:适用 于具有对称性的 一阶张量
注意事项:需要 保证计算精度和 稳定性
二阶张量的矩阵
PPT,a click to unlimited possibilities
汇报人:PPT
目录 /目录
01
点击此处添加 目录标题
04
二阶张量的应 用
02
二阶张量的定 义
05
二阶张量的计 算方法
03
二阶张量的矩 阵表示
06
二阶张量的实 例分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二阶张量的谱分解算法
一、引言
张量在许多领域,如机器学习、信号处理、图像处理等,都有着广泛的应用。
对于二阶张量(Tensor)这种多阶结构,其谱分解算法的研究具有重要的理论和实践价值。
本文将介绍一种适用于二阶张量的谱分解算法。
二、算法描述
1. 准备工作:首先,我们需要对二阶张量进行适当的坐标变换,将其转化为对角矩阵形式,以便后续的谱分解。
2. 特征值分解:对变换后的二阶张量进行特征值分解,得到其特征向量矩阵和特征值向量。
3. 谱因子选取:根据实际需求,选取需要的谱因子,如对角线元素或特定位置的元素。
4. 构造分解矩阵:根据选取的谱因子和特征向量矩阵,构造出对应的分解矩阵。
5. 反变换:将构造的分解矩阵代入变换后的二阶张量中,得到原始二阶张量的一种表示形式。
三、算法实现
1. 输入:二阶张量T和选取的谱因子。
2. 输出:分解后的二阶张量T'和对应的分解矩阵M。
3. 算法步骤:
a. 对T进行坐标变换,得到变换后的二阶张量T';
b. 对T'进行特征值分解,得到特征向量矩阵Q和特征值向量D;
c. 根据需求,选取对角线元素或特定位置的元素作为谱因子;
d. 构造分解矩阵M = QΛD^(-1)Q^T;
e. 将M代入T'中,得到分解后的二阶张量T' = M*T';
f. 输出T'和M。
四、算法优缺点分析
1. 优点:该算法具有较高的稳定性和准确性,适用于各种类型的二阶张量。
同时,算法的实现过程简单明了,易于理解和实现。
2. 缺点:对于大规模的二阶张量,计算量可能会较大,需要优化算法以提高效率。
此外,对于某些特殊类型的二阶张量,可能存在无法完全分解的情况。
五、应用场景与案例分析
该算法可以应用于机器学习、信号处理、图像处理等领域中,如用于降维、数据压缩、特征提取等。
以机器学习为例,通过对数据集进行二阶张量的谱分解,可以提取出关键的特征向量,从而更有效地进行分类或回归。
六、总结与展望
本文介绍了一种适用于二阶张量的谱分解算法,该算法能够有效地对二阶张量进行分解,提取出关键的谱因子。
虽然该算法在处理大规模二阶张量时可能会有一定的计算压力,但总体上来说,该算法具有较高的稳定性和准确性,值得进一步研究和应用。
未来,我们可以进一步优化算法,提高其效率,并尝试将其应用于更广泛的领域中。