第2章二阶张量

合集下载

张量基础知识

张量基础知识

I 0
1
0 21
22
23
ij
0 0 1 31 32 33
即相当于单位矩阵。
ij Ai
1 j A1
2 j A2
3 j A3
A1 A2
A3
Aj
j 1 j2 j 3
现在我们 以二维直 角坐标系 为例来看 看一个小 问题:
x2
x1'
x2' x2
x2' e2'
e2 e1'
x1'
在晶体物理中所涉及的张量分析是比较简单的,晶体的 对称性的操作对应的坐标变换,一般使用三维正交直角坐标 系的变换就够了。本章中将只限于介绍这种坐标系中所定义 的张量。
2.1标量、矢量、张量
一、标量 在物理学中,有一些量是没有方向而言的,如温度、质
量、密度等,这些物理量只需要一个数值即可描述,我们把 这种物理量称为标量。
i'
j
xx12
( )
同样:xx12
1211''
1
2'
2 2'
x1' x2'
i
'
j
T
xx12''
由()式得
x1 x2
i
'
j
1
xx12''
比较 :
i
'
j
T
i
'
j
1
[i' j ] 为正交矩阵
引用指标符号:
xi ij x j xi i j' x j'
由 xi x i j' j' ij' j'k xk

第 2 章 二阶张量

第 2 章   二阶张量
第 2 章 二阶张量
研究定义在一个固定点(张量的元素是实常数, gi 也是常数)上的二阶张量随坐标系转动的
不同形式,不涉及与另一个张量的关系,也不涉及张量运动。
2.1 二阶张量的元素
T = Tij g i g j = Ti• j g i g j = T•ii gi g j = T ij gi g j
k n
(2) T 的不变量由无限多个(不变量的组合仍是不变量),通常关心的有两组:
主不变量( T 特征多项式的三个系数)
2
η1 = T•11 + T•22 + T•33 = G : T = T•mm = GmnT mn = GmnTmn = Tm•m
( )( ) η2
=
T•11 T•21
T•12 T•22
、 Ni• j
=
N•ji

(而一般: N•i j

N
j •i

N
• i
j

N •i j
在相同的,混变分量的转置 ≠ 系数矩阵的转置)
N ⋅u=u⋅N
(4) 反对称张量 Ω = −ΩT
性质: Ωij
=
−Ω 、 Ω ij ji
=
−Ω
ji
Ω 、 i •j
=
Ω − Ω 、 •i
•j
j
i
=
−Ω•ij ,
(而一般:
+ T•22 T•32
T•23 T•33
+ T•11 T•31
T•13 T•33
=
1 2
⎣⎡
G :T
G :T − T ⋅⋅T ⎦⎤
=
1 2
⎡⎣T•mmT•nn
− T•pqT•qp ⎤⎦

2.1二阶张量的矩阵

2.1二阶张量的矩阵

二阶张量的转置, 2.1.2 二阶张量的转置, 对称、 对称、反对称张量及其所对应的矩阵
T = T
T
( ) g g = (T )
T i j ij
T j i
g gj = T
i
( )
j
T i j
gi g = T
j
( ) gg
T ij i
j
= T ji g g = T g g j = T gi g = T gi g j
定义
显然
2.1.4
( ) det (T ) = det (T )
T det (T ) = det τ 3
T
二阶张量的代数运算与矩阵的代数运算
(1)张量的相等、相加、标量与张量相乘等代数运算均与 张量的相等、相加、 矩阵运算一一对应。 矩阵运算一一对应。 (2)二阶张量的迹 trT :
trT = Ti i
张量分析 及连续介质力学
第2章
二 阶 张 量
2.1 二阶张量的矩阵
2.1.1 二阶张量的四种分量所对应的矩阵
三维空间中的二阶张量T 三维空间中的二阶张量
T 11 T12 T13 τ 1 = T21 T22 T23 = Tij T31 T32 T33
[ ]
T 1 T 2 T 3 1 1 1 1 2 3 τ 2 = T 2 T 2 T 2 = T i j T 31 T 32 T 33 T 11 T 12 T 13 τ 4 = T 21 T 22 T 23 = T ij T 31 T 32 T 33
[ ] [ ]
T 11 T 12 T 13 2 2 2 τ 3 = T 1 T 2 T 3 = T i j T 31 T 3 2 T 3 3
[ ]

第2章 张量分析(清华大学张量分析,你值得拥有)

第2章 张量分析(清华大学张量分析,你值得拥有)

( Nij ij )a j 0 det( Nij ij ) 0
利用指标升降关系 a为非0矢量 利用主不变量
N ( ) 3 J1N 2 J 2 J3N 0
二阶张量的标准形: 张量最简单的形式

非对称二阶张量

请研究以下领域的同学关注。 1、应变梯度理论,偶应力理论 2、电流场,电磁流变(有旋场)

x
x
椭圆曲线的坐标变换
正交变换可使椭圆曲线的方程由以下一般形式
ax bxy cy d 0
任意二阶张量将一线性相关的矢量集映射为线性相 关的矢量集:
(i)u(i) 0
i 1
l
l l 0 T (i)u(i) (i)(T u(i)) i 1 i 1
正则与退化的二阶张量

3D空间中任意二阶张量T将任意矢量组u,v,w映射 为另一矢量组,满足:
N S
1 p
S S1e1e1 S2e2e2 S3e3e3
Si N i
1 p
几种特殊的二阶张量

正张量的对数
N N1e1e1 N2e2e2 N3e3e3
ln N ln N1 e1e1 ln N2 e2e2 ln N3 e3e3
Nij N ji Ni j Nij Nij N ji N ij N ji

N 1 NT 1
( ) , ( ) , ( ) ,
N T 1 N 2 N T 3 N 3 N T 2 N 4
NT 4
N T ( 4 )

反对称张量与其转置张量分量及二者所对应的矩阵

二阶张量的行列式

连续介质力学第二章.

连续介质力学第二章.

即得( i ),将( i )作相应的指标替换, 展开化简,将得其余三式。
二维置换符号 e (, 1, 2)
从三维退化得到
e ei j3 e 3
其中
e11 e22 0, e12 e21 1
有下列恒等式
e e
又如,方程
12


2 2

32
111
2 22
333
用指标法表示,可写成
i i i ii i ii i ii
i 不参与求和,只在数值上等于 i
1.2 Kronecker 符号
在卡氏直角坐标系下,Kronecker 符号定义为:
ij
表示
e1 A11e1 A12e2 A13e3 e2 A21e1 A22e2 A23e3 e3 A31e1 A32e2 A33e3
ei Aije j i 为自由指标,j 为哑标
表示
e1 A11e1 A12e2 A13e3 e2 A21e1 A22e2 A23e3 e3 A31e1 A32e2 A33e3
新旧基矢量夹角的方向余弦:
ei e j | ei || e j | cos(ei , e j ) cos(ei , e j ) ij
1.5.1 坐标系的变换关系
ij cos(ei , e j ) ei e j
旧 新
e1
e 2 e 3
e1
11 21 31
ai xi a1x1 a2 x2 a3x3 bjj b11 b22 b33
cmem c1e1 c2e2 c3e3
双重求和
33
S

张量分析提纲及部分习题答案

张量分析提纲及部分习题答案

y
对静止的连续介质,有
ζ n fd 0 , ζd fd 0 ,
A
ζ f 0。
(21) 证明应力是一个张量; 记 ij :表示在给定基 g i 下,在面 g j 上,单位面积受力 F j 在 g i 方向上的分量为
对斜圆锥面上任一点 (图中黑点处) , 不难由相似三角形得到,
z z R cos C i R sin j zk ,进而可得, H H r Rz sin zR cos r R cos C R g i j, gz i sin j k , H H z H H r
dx g dx I g dx II 1 4 x I 2 dx I 6 x I x II 2 dx II Pdx I Q dx II 11 12 1 1 I 。 2 4 dxII g 21dx I g 22 dx II 6 x I x II dx I 9 x II dx II P2 dx I Q2 dx II
Pi Qi 时,坐标 xI , xII 才可能存在。即向量场 P, Q 无旋时,其在两点间 x II x I Pi Qi 的路径积分与路径无关,积出的值就是坐标。本例中, II I ,故相应的“协 x x
当 变坐标”不存在。 (正因为如此,坐标也没有逆变、协变之说。 ) (9) 有点类似曲面第一基本型(1.3.12) 。 (10) Lame 常数定义(1.3.13)在非正交系中也成立,但此时(1.3.12a)不成立。
1.9-1.13:略; 1.14: 注意,所谓斜圆锥是指, O 点沿 z 方向在大圆平面上的投影 M 在大圆的直径上。

第二章-张量基础

第二章-张量基础

5
例 2. 张量。
ai 和 bi 是两个任意矢量, ij ai b j 是标量。证明 ij 是一个二阶
证:由于 是一个标量,即坐标变换时的不变量,故
ij ai b j ij (ii ai )( jj b j ) ii jjij aib j ij aib j
为一个二阶张量。事实上
(2.21)
Cij Aij Bij ii jj Aij ii jj Bij
ii jj ( Aij Bij ) ii jj Cij
式(2.21)也可以写成 C Cij ei e j A B ( Aij Bij )ei e j 。 张量的线性组合满足加法交换律 A B B A 、结合律
T21e2 e1 T22e 2 e 2 T23e2 e3
T31e3 e1 T32e3 e 2 T33e3 e3
二阶的基张量有 9 个。需要指出的是,若 i j ,则 ei
e j e j ei 。
3
张量的第二种定义 在某一坐标系中,某一个量 T 可表示成 T Ti1i2 in ei1 ei2 ein 的形式, 则就称 T 是一个 n 阶张量。 可以证明,该定义和(2.19)式的定义是等价的:
(c)
Cij ii jj Cij ii jj Aijkl Bkl ii jj k k l l Aijkl Bk l
(b)-(c)得: ( Aijk l ii jj k k l l Aijkl ) Bk l 0 由于 Bk l 是任意的,从上式可得: Aij k l 上式表明, Aijkl 为一个四阶张量。
T Ti1i2 in ei1 ei2 ein Ti1i2 in i1i1 ei1 i2 i2 ei2 in in ein i1i1 i2 i2 in in Ti1i2 in ei1 ei2 ein Ti1i2 in ei1 ei2 ein

弹性力学-第二章 张量基础知识

弹性力学-第二章 张量基础知识

′ x1 = a11 x1 + a12 x2 + a13 x3
′ x2 = a21 x1 + a22 x2 + a23 x3 ′ x3 = a31 x1 + a32 x2 + a33 x3
张量基础知识§ 第二章 张量基础知识§2-1
坐标系和矢量
e′ = Aije j i
表示
i 为自由指标,j 为哑标 为自由指标,
x3
(2.2)
e3 x1
e1 e2
x2
张量基础知识§ 第二章 张量基础知识§2-1
坐标系和矢量
A:求和约定、 A:求和约定、哑指标 求和约定 S = a1 x1 + a2 x2 + ⋯ an xn
= ∑ ai xi = ∑ a j x j = ∑ ak xk
i =1 j=1 k =1 n n n
显然, 与求和无关,可用任意字母代替。 显然,指标 i, j, k 与求和无关,可用任意字母代替。 为简化表达式,引入Einstein求和约定: Einstein求和约定 为简化表达式,引入Einstein求和约定:每逢某个指 标在一项中重复一次 就表示对该指标求和, 重复一次, 标在一项中重复一次,就表示对该指标求和,指标取 遍正数1 这样重复的指标称为哑标 哑标。 遍正数1,2,…,n。这样重复的指标称为哑标。 于是 or or
i, j, k为顺序排列 为顺序排列 i, j, k为逆序排列 为逆序排列 i, j, k有两个相等 有两个相等 (2.5)
例如: 例如:
e123 = e231 = e312 = 1 e321 = e213 = e132 = −1 e111 = e121 = e232 = ⋯ = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

+ T•22 T•32
T•23 T•33
+ T•11 T•31
T•13 T•33
=
1 2
⎣⎡
G :T
G :T − T ⋅⋅T ⎦⎤
=
1 2
⎡⎣T•mmT•nn
− T•pqT•qp ⎤⎦
=
1 2
δ
ijpqT•jiT•qp
[共有 6 项相加,前后指标一样为正,不一样为负;指标 m, n 和 p, q 可以互换但乘积不
而一般: Ωi• j

−Ω
j •i

Ω
• i
j

−Ω
•i j
Ω ⋅ u = −u ⋅ Ω
(2) 不变量:
η1Ω = 0 ;η3Ω = 0 (对角元为零)
5
( ) ( ) ( ) η2Ω
=
0 − Ω1•2
Ω1•2 0
+
0 − Ω•23
Ω•23 0
+
0 − Ω1•3
Ω1•3 0
=
Ω1•2
2+
Ω•23
2+
变,所以要乘 1/2]
T•11 T•12 T•13
η3 = T•21
T•22
T•23
=
1 3!
εMT
⊗T
⊗TMε
=
1 6
δ limjknT•l iT•mjT•nk
=
1 6
ε
ijk ε lmnT•l iT•mjT•nk
T•31 T•32 T•33
[共有 6 项相加,前后指标均为顺序或逆序为正,一正一逆为负,有非序为零; l, m, n 均顺 序和均逆序的排列有 6 种,同样 i, j, k 也有六种,组合共有 36 种,除去重复的只有 6 种, 所以要乘 1/6]
( ) ⇒ 因为 N 对称,所以 a ⋅ N ⋅ a − a ⋅ N ⋅ a = λ − λ a ⋅ a = 0
⇒ λ − λ = 0 ⇒ λ 为实数。
主方向正交
1) 无重根 λ1 > λ2 > λ3 时: N ⋅ a1 = λ 1a1 → a2 ⋅ N ⋅ a1 = λ1 a2 ⋅ a1 ; N ⋅ a2 = λ 2a2 → a1 ⋅ N ⋅ a2 = λ2 a1 ⋅ a2
(4) [T ⋅ a,b,c] = [a,T ⋅ b,c] = [a,b,T ⋅ c] =η1 [a,b,c] [T ⋅ a,T ⋅ b,c] = [a,T ⋅ b,T ⋅ c] = [a,T ⋅ b,T ⋅ c] =η2 [a,b,c]
[T ⋅ a,T ⋅ b,T ⋅ c] =η3 [a,b,c]
i j
βj 1′
δβi1′
=
0

β N 1′ i i •j

λδ
i j
β 1′ i
=
0;
β Nj i 1′ • j

λδ
i j
βj 1′
=
0
( ) ( ) ⇒
N•i j

λδ
i j
β 1′ i
= 0;
N
i •
j

λδ
i j
βj 1′
=0
( ) ( ) ⇒ 同理1′ 推广到 i′ :
N•i j

λδ
i j
β i′ i
=0;
N
i •
j

λδ
i j
βj i′
=0

使转换系数
βii′和Fra bibliotekβj i′
有非零解的条件:
N
i •
j

λδ
i j
=0
⇒ 求极值的计算等同于求特征值的计算。
2. 实反对称二阶张量 Ω
(1)
定义: Ωij
= −Ω ji 、 Ωij
=
−Ω
ji

Ω
i •
j
=
−Ω
•i j

Ωi•
j
=
−Ω
j •i

i =1
i =1
i =1
定理:[T ⋅ u, T ⋅ v, T ⋅ w] = detT [u, v, w]
[ det T 为两个平行六面体的体积比,三维空间中 3 个矢量是否线性相关取决与它们的混合积
是否为零] 正则与退化
det T ≠ 0 的二阶张量-正则二阶张量;否则为退化的二阶张量
(1) T 为正则 ⇔ u(i) (i=1,2,3) 性无关,则T ⋅ u(i) 也线性无关。
= 1。( i′
不求和)

β β N = N 1′
1′ j i
•1′
i 1′ • j
为例:
( ) ⇒
J
=
β β N 1′ j i i 1′ • j
−λ
β βi 1′ 1′ i
−1

max
( ) ( ) ⇒ δJ
=
β N 1′ i i •j

λδ
βi 1′
ji
δβ1′j
+
β Nj i 1′ • j

λδ
张量分量的数值随坐标改变而变化,但其某些组合却是不随坐标变化的标量---不变量。
(1) T 通过与自身 T 、 G 、 ε 进行缩并,得到的标量就是不变量:
G
:T
=
G ⋅⋅T
=
δ
jiT
j i
=
T
i i
T
⋅ ⋅T
=
T
ijT
j i
=
tr(T
⋅T )
εMT
⊗T
⊗T

=
εε ijk
T lmn
ilT
mj T
、 Ni• j
=
N•ji

(而一般: N•i j

N
j •i

N
• i
j

N •i j
在相同的,混变分量的转置 ≠ 系数矩阵的转置)
N ⋅u=u⋅N
(4) 反对称张量 Ω = −ΩT
性质: Ωij
=
−Ω 、 Ω ij ji
=
−Ω
ji
Ω 、 i •j
=
Ω − Ω 、 •i
•j
j
i
=
−Ω•ij ,
(而一般:
(3) 坐标、主分量的求法:
( ) N ⋅a = λ a ⇒
N
i •
j
− λδ
i j
ai = 0 ⇒ a j (主坐标系下,主方向矢量 a 经变换后方向不变)
非零解
Ni •j

λδ
i j
=
λ3

λ
η2 N 1
+ λη2N

ηN 3
=0
三个根均是实根:
设有复根: λ
=
λ1
+ iλ2 ,由
N
i •
j
a
j
N
i •

j

iN
i •
j
β
j
=
λ1α i − λ2β i
− i λ1β i + λ2α i
=
λ1 − iλ2
α i − iβ i
⇒ N ⋅ a = λ a ⇒ λ = λ1 − iλ2 也是复根.
⇒ N ⋅a =λ a → a ⋅ N ⋅a = λ a ⋅a; N ⋅a = λ a → a⋅N ⋅a = λ a ⋅a
空间任意一组迪卡尔坐标系均是主坐标系。
4
(4) 对应的线性变换
N 将 N 主方向上的矢量 ai 映射为平行自身方向的矢量,且放大 Ni 倍: N ⋅ ai = Niai
(5) Ni 是对角元的极值:
求对角元的极值:
N i′ •i′
=
β β N i′ j i i i′ • j
且满足:
β βi i′ i′ i
2.4 二阶张量的标准形
1. 实对称张量 N
(1)
定义: Nij
=
N ji 、 N ij
=
N
ji

N
i •
j
=
N
•i j

Ni•
j
=
N•ji
,而一般:
N
i •
j

N•ji 、 Ni• j
=
N
•i j
N ⋅u=u⋅N
3
(2) 对任一实对称 2 阶张量,总能找到一组正交标准化基: ei
N = N1e1e1 + N2e2e2 + N3e3e3 , Ni 为主分量, ei 为主方向。
•i j
gi
g
j
=T
ji gi g j
协、逆变分量指标交换,混变分量互相交换
= Tij g j gi
= Ti• j g j gi
=
Ti •i
g
j
gi
= T ij g j gi
也可以分量不动,并矢交换
(3) 对称张量 N = N T
性质: Nij
=
N ji 、 N ij
=
N
ji 、 N•i j
=
N
•i j
=
(λ1
+ iλ2 )ai

ai
必为复数: ai
=αi
+ iβ i
( ) ( ) ⇒
N
i •
j
α
j
+ iβ
j
= (λ1 + iλ2 ) α i + iβ i
相关文档
最新文档