离散数学-最小生成树
离散数学 图论-树

中序遍历(次序:左-根-右) 前序遍历(次序:根-左-右) 后序遍历(次序:左-右-根) b 中序遍历: c b e d g f a I k h j 前序遍历: a b c d e f g h i k j 后序遍历: c e g f d b k i j h a
例:给定二叉树,写出三种访问 结点的序列
是否为根树
(a) (no)
(b) (no)
(c) (yes)
从树根到T的任意顶点v的通 路(路径)长度称为v的层数。 v5的层数为 层。
层数最大顶点的层数称为树 高.将平凡树也称为根树。 右图中树高为( )。
v1
v2 v3
v4 v8v5Fra bibliotekv6v7 v10
v9
在根树中,由于各有向边的方向是一 致的,所以画根树时可以省去各边上的所 有箭头,并将树根画在最上方.
等长码:0-000;1-001;2-010;3-011;4-100; 5-101;6-110;7-111. 总权值: W2=3*100=300
4、二叉树的周游(遍历)
二叉树的周游:对于一棵二叉树的每一个结点都访问一次且 仅一次的操作 1)做一条绕行整个二叉树的行走路线(不能穿过树枝) 2)按行走路线经过结点的位臵(左边、下边、右边) 得到周游的方法有三种: 中序遍历(路线经过结点下边时访问结点) 访问的次序:左子树-根-右子树 前序遍历(路线经过结点左边时访问结点) 访问的次序:根-左子树-右子树 后序遍历(路线经过结点右边时访问结点) 访问的次序:左子树-右子树-根
2、根树中顶点的关系
定义:设T为一棵非平凡的根树, v2 ∀vi,vj∈V(T),若vi可达vj,则称vi为 vj的祖先,vj为vi的后代; v4 v5 若vi邻接到vj(即<vi,vj>∈E(T),称 vi为vj的父亲,而vj为vi的儿子 v8 若vj,vk的父亲相同,则称vj与vk是兄 弟
《离散数学》课件-第16章树

18
16.3 根树及其应用
19
定义(有向树)设D是有向图,如果D的基图是无向 树,则称D为有向树。
在有向树中最重要的是根树。 定义16.6(根树)一棵非平凡的有向树,如果恰有 一个顶点的入度为O,其余所有顶点的入度均为1,则称该 树为根树。 入度为0的顶点称为树根,入度为1出度为0的顶点称 为树叶,入度为1出度不为0的点称为内点,内点和树根统 称为分支点。 树根到一个顶点的有向通路的长度称为该顶点的层数。 层数最大顶点的层数称为树高。 平凡树也称为根树。
2
16.1 树及其性质
3
定义16.1(树和森林) 连通且无回路的无向图称为无向树,简称为树,常用
T表示树。 平凡图为树,称为平凡树。 非连通且每个连通分支是树的无向图称为森林。 T中度数为1的顶点(悬挂顶点)称为树叶,度数大于
1的顶点称为分支点。 称只有一个分支点,且分支点的度数为n-1的n(n≥3)
定义16.8(子树)设T为一棵根树,则其任一顶点v 及其后代导若将层数相同的顶点都 标定次序,则称T为有序树。
根据每个分支点的儿子数以及是否有序,可将根树 分成如下若干类:
定义(跟树分类)设T为一棵根树 (1)若T的每个分支点至多有r个儿子,则称T为r叉 树。又若r叉树是有序的,则称它为r叉有序树。 (2)若T的每个分支点恰好有r个儿子,则称T为r叉 正则树。又若r叉正则树是有序的,则称它为r叉正则有 序树。 (3)若T为r叉正则树,且每个树叶的层数均为树高, 则称T为r叉完全正则树。又若r叉完全正则树是有序的, 则称它为r叉完全正则有序树。
8
平均编码长度为:L = ∑ P( i )× l( i ) = 2.53bit i=1
离散数学7-树

(b)
(a)
V5
2
1
V7
8
9
V2
V4
2
3
V8
5
V1
V1
V4
V5
1
3
V7
V6
8
V4
2
V8
5
6
V1
1
V5
6
V7
V6
8
3
V8
5
6
V7
9
V3
(e)
V3
(f)
(g)
22
V2
V3
(h)
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
23
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
成圈。
首先证明T无简单回路。对n作归纳证明。
(i) n=1时,m=n-1=0,显然无简单回路;
(ii)假设顶点数为n-1时无简单回路,现考察顶点数是n的情况:此时至少有一
个顶点v其次数d(v)=1。因为若n个顶点的次数都大于等于2,则不少于n条边,但这与
m=n-1矛盾。
删去v及其关联边得到新图T’,根据归纳假设T’无简单回路,再加回v及其关联
边又得到图T,则T也无简单回路。
再由图的连通性可知,加入任何一边后就会形成圈,且只有一个圈,否则原图
中会含圈。
9
二. 基本定理——证明
证明(4):(3)(4),即证一个无圈图若加入任一边就形成圈,
则该图连通,且其任何一边都是桥。
若图不连通,则存在两个顶点vi和vj,在vi和vj之间没有路,若
加边(vi,vj)不会产生简单回路,但这与假设矛盾。由于T无简单回
国家开放大学《离散数学(本)》形考任务4参考答案

国家开放大学《离散数学(本)》下载作业参考答案一、公式翻译题(每小题4分,共16分)1.将语句“我会英语,并且会德语.”翻译成命题公式.参考答案:设p.我学英语Q:我学法语则命题公式为:pΛQ2.将语句“如果今天是周三,则昨天是周二.”翻译成命题公式.参考答案:设P:今天是周三Q:昨天是周二则命题公式为:P→Q3.将语句“C3次列车每天上午9点发车或者10点发车”翻译成命题公式.参考答案:设P:C3次列车每天上午9点发车Q:C3次列车每天上午10点发车则命题公式为:┐(P↔Q)4.将语句“小王是个学生,小李是个职员,而小张是个军人.”翻译成命题公式.参考答案:设P:小王是个学生Q:小李是个职员R:而小张是个军人则命题公式为:P∧Q∧R二、计算题(每小题12分,共84分)1.设集合A={{a}, a, b },B={a, {b}}试计算:(1)A⋂B;(2)A ⋃ B;(3)A-(A⋂B)参考答案:(1)A ⋂B ={a}(2)A ⋃ B ={{a},a,b{b}}(3)A -(A ⋂B )={{a},a,b}-{a}={a,b}2.设集合A ={2, 3, 6, 12, 24, 36},B 为A 的子集,其中B ={6, 12},R 是A 上的整除关系,试(1)写出R 的关系表达式;(2)画出关系R 的哈斯图;(3)求出B 的最大元、极大元、最小上界.参考答案:(1)R={<2,2>,<2,6>,<2,12>,<2,24>,<3,3>,<3,6>,<3,12>,<3,24>,<6,6>,<6,12>,<6,24>,<12,12>,<12,24>,<24,24>}(2)关系R 的哈斯图(3)B 的最大元素:12极大元素:12最小上届:123.设G =<V ,E >,V ={v 1, v 2, v 3, v 4},E ={(v 1,v 2) , (v 1,v 3) , (v 1,v 4) , (v 2,v 3) , (v 3,v 4)},试(1)给出G 的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出其补图的图形。
离散数学作业5[答案]
![离散数学作业5[答案]](https://img.taocdn.com/s3/m/17079e443968011ca30091a8.png)
一、填空题1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15 .2.设给定图G(如右由图所示),则图G的点割集是{f,c} .3.设G是一个图,结点集合为V,边集合为E,则G的结点度数等于边数的两倍.4.无向图G存在欧拉回路,当且仅当G连通且所有结点的度数全为偶数.5.设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和大于等于n-1 ,则在G中存在一条汉密尔顿路.6.若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为W≤|S|.7.设完全图Kn 有n个结点(n≥2),m条边,当n为奇数时,Kn中存在欧拉回路.8.结点数v与边数e满足e=v-1 关系的无向连通图就是树.9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4 条边后使之变成树.10.设正则5叉树的树叶数为17,则分支数为i = 4 .二、判断说明题(判断下列各题,并说明理由.)1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路..不正确,图G是无向图,当且仅当G是连通,且所有结点度数均为偶数,这里不能确定图G是否是连通的。
2.如下图所示的图G存在一条欧拉回路.错误.因为图G为中包含度数为奇数的结点.3.如下图所示的图G不是欧拉图而是汉密尔顿图.解:错,既不是欧拉图也不是汉密尔顿图,欧拉图要求所有结点度数均为偶数,这里结点bd各有三个节点;汉密尔顿图要求每一对结点度数之和大于等于总结点数,这里不满足。
4.设G是一个有7个结点16条边的连通图,则G为平面图.错,没有提到面5.设G是一个连通平面图,且有6个结点11条边,则G有7个面.对,由欧拉定理得到:结点-边+面=2 ,即为连通平面图,这里6-11+7=2三、计算题1.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试(1) 给出G的图形表示;(2) 写出其邻接矩阵;(3) 求出每个结点的度数;(4) 画出其补图的图形.解:(1)G的图形如图十二(2)邻接矩阵:图十二⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡111111111111(3)v1,v2,v3,v4,v5结点的度数依次为1,2,4,3,2(4)补图如图十三:2.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.解:(1)G的图形表示如图十四:图十四(2)邻接矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1111111111111111(3)粗线表示最小的生成树,如图十五如图十五最小的生成树的权为1+1+2+3=7:3.已知带权图G如右图所示.(1) 求图G的最小生成树;(2)计算该生成树的权值.4.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.四、证明题1.设G 是一个n 阶无向简单图,n 是大于等于3的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等.2.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k 条边才能使其成为欧拉图.证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k 是偶数.又根据定理4.1.1的推论,图G 是欧拉图的充分必要条件是图G 不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图. 故最少要加2k 条边到图G 才能使其成为欧拉图.。
离散数学实验报告

离散数学实验报告姓名:学号:班级:实验地点:实验时间:1实验目的和要求运用最小生成树思想和求最小生成树程序解决实际问题。
实际问题描述如下:八口海上油井相互间距离如下表,其中1号井离海岸最近,为5km。
问从海岸经1号井铺设油管把各井连接起来,怎样连油管长度最短(为便于检修,油管只准在油井处分叉)?2实验环境和工具实验环境:Windows 7 旗舰版工具:Dev-C++ 5.8.33实验过程3.1算法流程图3.2程序核心代码//油管铺设问题 Prim算法实现#include <iostream>#include<iomanip>using namespace std;#define MAXV 10#define INF 32767 //INF表示∞typedef int InfoType;typedef struct{int no; //顶点编号InfoType info; //顶点其他信息} VertexType; //顶点类型typedef struct{ //图的定义float edges[MAXV][MAXV]; //邻接矩阵int vexnum; //顶点数VertexType vexs[MAXV]; //存放顶点信息} MGraph; //图的邻接矩阵类型/*输出邻接矩阵g*/void DispMat(MGraph g){int i,j;for (j=0;j<g.vexnum;j++)if (g.edges[i][j]==INF)cout<<setw(6)<<"∞";elsecout<<setw(6)<<g.edges[i][j];cout<<endl;}}void prim(MGraph g,int v){ //从顶点V0出发,按Prim算法构造G的最小生成树//输出最小生成树的每条边及其权值float Vlength[MAXV];int i, j, k;int cloest[MAXV];float min;float sum = 0.0;for(i=0;i<g.vexnum;i++){Vlength[i]=g.edges[v][i];cloest[i]=v;}min=INF; //min为其中最大的一条边=MAXVfor(j=0;j<g.vexnum;j++){ //找n-1条边if(Vlength[j]!=0&&Vlength[j]<min){min=Vlength[j];k=j;}}cout<<"连接油井<"<<cloest[k]+1<<","<<k+1<<">"<<"长度为:"<<min<<endl;sum+=min;Vlength[k]=0;Vlength[cloest[k]]=0;for(j=0;j<g.vexnum;j++){ //选择当前代价最小的边if(g.edges[k][j]!=0&&g.edges[k][j]<Vlength[j]){ Vlength[j]=g.edges[k][j];cloest[j]=k;}}}cout<<"管道总长度为:"<<sum<<endl;}int main(){int i,j,u=3;MGraph g;float A[MAXV][10];g.vexnum=8;for (i=0;i<g.vexnum;i++)for (j=0;j<g.vexnum;j++)A[i][j]=INF;A[0][1]=1.3; A[0][2]=2.1; A[0][3]=0.9;A[0][4]=0.7; A[0][5]=1.8; A[0][6]=2.0;A[0][7]=1.8; A[1][2]=0.9; A[1][3]=1.8;A[1][4]=1.2; A[1][5]=2.8; A[1][6]=2.3;A[1][7]=1.1; A[2][3]=2.6; A[2][4]=1.7;A[2][5]=2.5; A[2][6]=1.9; A[2][7]=1.0;A[3][4]=0.7; A[3][5]=1.6; A[3][6]=1.5;A[3][7]=0.9; A[4][5]=0.9; A[4][6]=1.1;A[4][7]=0.8; A[5][6]=0.6; A[5][7]=1.0;A[6][7]=0.5;for (i=0;i<g.vexnum;i++)for (j=0;j<g.vexnum;j++)A[j][i]=A[i][j];for (i=0;i<g.vexnum;i++) /*建立图的邻接矩阵*/ for (j=0;j<g.vexnum;j++)g.edges[i][j]=A[i][j];cout<<endl;cout<<"各油井间距离:\n";DispMat(g);cout<<endl;cout<<"最优铺设方案:\n";prim(g,0);cout<<endl;return 0;}3.3运行结果3.4运行结果分析程序实现了输出需要铺设管道的油井编号,并给出了每条管道长度以及总长度,基本实现了题目要求。
离散数学大作业——编程实现最小生成树
离散数学大作业——编程实现最小生成树学院:电子工程学院班级:021051学号:*********名:***一、最小生成树概念:设G=(V,E)是无向连通带权图,即一个网络。
E中每条边(v,w)的权为c[v,w]。
所有生成树G’上各边权的总和最小的生成树称为G的最小生成树。
二、prim算法(贪心思想)设图G =(V,E),其生成树的顶点集合为U。
1.把v0放入U。
2.在所有u∈U,v∈V-U的边(u,v)∈E中找一条最小权值的边,加入生成树。
3.把2找到的边的v加入U集合。
如果U集合已有n个元素,则结束,否则继续执行2其算法的时间复杂度为O(n^2)三、程序源代码# include<stdio.h># include<malloc.h># define m 6# define n 11 typedef struct {int i,tag;char s;}vertice;typedef struct {int a,b,tag;int weight;}edge;vertice v[m];edge e[n];void inititate();void sort();void chuli();int biaoji( edge *s); void print();void main() {inititate();sort();chuli();print();}void inititate() {int i;printf("输入图的%d个顶点:\n",m);for(i=0;i<m;i++) {v[i].i=i+1;v[i].tag=0;scanf("%c",&v[i].s);getchar();}printf("\n输入%d条边的两端顶点及权:\n",n);for(i=0;i<n;i++) {scanf("%d %d %d",&e[i].a,&e[i].b,&e[i].weight);e[i].tag=0;}}int biaoji( edge *s) {int i,j;i=s->a;j=s->b;if(v[i].tag==0 || v[j].tag==0) {v[i].tag=1;v[i].tag=1;s->tag=1;return 1;}return 0;}void print() {int i,j=0;printf("\n最小生成树的边为:\n");for(i=0;i<n&&j<m-1;i++)if(e[i].tag==1) {printf("<%d-%d> ",e[i].a,e[i].b);j++;}printf("\n\n");}void sort() {edge s;int i,j;for(i=0;i<n-1;i++) {for(j=i+1;j<n;j++) {if(e[i].weight>e[j].weight) {s=e[i];e[i]=e[j];e[j]=s;}}}}void chuli() {int i,j=0;edge *s;for(i=0;i<n&&j<m;i++) {s=&e[i];if(biaoji(s)==1)j++;}}四、实验结果输入图的6个顶点:1 2 3 4 5 6输入11条边的权及两端顶点:1 2 11 4 61 6 91 3 112 3 22 4 33 5 83 6 74 5 104 6 45 6 5最小生成树的边为:<1-2> <2-3> <2-4> <4-6> <5-6> Press any key to continue。
离散数学-第10章 树
避圈法
1
1
2
6
5
2
6
5
3
4
3
4
➢ 由于生成树的形式不惟一,故上述两棵生成树 都是所求的。
➢ 破圈法和避圈法的计算量较大,主要是需要找 出回路或验证不存在回路。
2023/11/30
算法10.2.3
求连通图G = <V, E>的生成树的广度优先搜索算法: (1)任选s∈V,将s标记为0,令L = {s},V = V-
(a)
(b)
(c)
(d)
(e)
2023/11/30
定义10.3.2
一棵非平凡的有向树,如果恰有一个结点的入度为 0,其余所有结点的入度均为1,则称之为根树 (Root Tree)或外向树(Outward Tree)。入度为0的 结点称为根(Root);出度为0的结点称为叶(Leaf); 入度为1,出度大于 0的结点称为内点(Interior Point) ; 又 将 内 点 和 根 统 称 为 分 支 点 (Branch Point)。在根树中,从根到任一结点v的通路长度, 称为该结点的层数(Layer Number);称层数相同的 结点在同一层上;所有结点的层数中最大的称为根 树的高(Height)。
2023/11/30
例10.2.5
利用广度优先搜索算法求下图的生成树。
1(a) 3(e) bd
4(gd1)(a) 3(e) bd
4(gh)
0(a-)
2e(b0)(a-)
h 3(e)
4(jh2e)(b)
h
4(h) j
3(e)
cf 1(a) 2(c)
3(ie1)(ca)
f 2(c)
【离散数学讲义】8.树与生成树53
2.弦:图G中,不在其生成树里的边,称作弦. 所有弦的集合,
称为该生成树的补.
v1
定理2 :连通图G中至少有一棵生成树.
v2
v3
证明:如果G中无回路, 则G本身就是树. v4
v5
如果G中有回路,可以通过反复删去回路
中的边,使之既无回路,又连通.就得到生成树.
思考题:设G是有n个结点,m条边的连通图, 问要删去多少
为该结点的层次. 同一层次的结点称为兄弟结点.
7.树高:从树根到各个叶结点的路径中, 最长路径的长度,
称为该树的高度(树高).
三.举例: a)语法树
主语
句子
谓语短语
冠词 形容词 名词 动词
宾语
The little
b)算术表达式树 ((a+b)÷c)×(d-e)
19
42,58 24,34,42 19,23,24,34
17,17,19,23,24
11,13,17,17,19,23
7,10,11,13,17,19,23 5,5,7,11,13,17,19,23
2,3,5,7,11,13,17,19,23
23 24
34
11 13 17 17
7 10
55
23
5. 最优树的应用举例
34 6 6 v6
Kruskal算法: 设G是有n个结点,m条边(m≥n-1)的连通图. S=Φ i=0 j=1
将所有边按照权升序排序: e1, e2, e3,… ,em
S=S∪{ai} j=j+1
|S|=n-1 Y 输出S 停 N
N
取ej使得
ai=ej i=i+1
离散数学最小生成树例题
离散数学最小生成树例题(实用版)目录1.最小生成树的概念和性质2.最小生成树的算法原理3.最小生成树的算法举例4.最小生成树的应用实例正文一、最小生成树的概念和性质最小生成树(Minimum Spanning Tree,简称 MST)是指在一个加权连通图中,选择一些边,使得所有节点都能被联通,并且边代价之和最小。
最小生成树具有以下性质:1.树中的边是最短的边:在生成树中,任意两个节点之间的边都是最短的边,即不存在比这条边更短的边能连接这两个节点。
2.树是没有圈的:最小生成树显然不应该有圈,因为如果有圈,可以通过删除圈中的一条边来形成一个更小的生成树。
二、最小生成树的算法原理求解最小生成树的经典算法有 Kruskal 算法和 Prim 算法。
这里我们以 Prim 算法为例介绍最小生成树的算法原理。
Prim 算法的基本思想是从一个初始节点开始,不断地寻找与当前生成树距离最近的节点,将其加入到生成树中,直到所有节点都加入到生成树中为止。
在寻找距离最近的节点时,我们需要使用贪心策略,即每次都选择距离最近的节点。
为了判断一个节点是否已经加入了生成树,我们可以使用并查集数据结构。
三、最小生成树的算法举例这里我们以一个简单的例子来说明 Prim 算法的求解过程。
假设有一个图,共有 4 个节点,5 条边,边的权值分别为 1, 2, 3, 4, 5。
我们选择节点 1 作为初始节点,按照 Prim 算法的步骤,可以得到最小生成树的权值为 9,生成树如下所示:```1 --2 --3 -- 4```四、最小生成树的应用实例最小生成树在实际应用中有很多实例,如网络路由、数据压缩、图像处理等。
这里我们以网络路由为例,介绍最小生成树的应用。
在网络中,为了提高传输效率,我们需要在网络中建立一条最短路径。
通过求解最小生成树,我们可以得到网络中的最短路径,从而为数据包的传输提供指导。
在求解最小生成树时,我们可以将网络中的节点看作是图的顶点,边看作是图的边,边的权值看作是节点之间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五实验名称:得到最小生成树实验目的:1.熟悉地掌握计算机科学技术常用的离散数学中的概念、性质和运算;通过实验提高学生编写实验报告、总结实验结果的能力;使学生具备程序设计的思想,能够独立完成简单的算法设计和分析。
2.掌握图论中的最小生成树及Prim 和 Kruskal 算法等,进一步能用它们来解决实际问题。
实验内容:输入一个图的权矩阵,得到该图的生成树,用Kruskal算法的最小生成树,用Prim算法的最小生成树。
Kruskal算法假设T中的边和顶点均涂成红色,其余边为白色。
开始时G中的边均为白色。
1)将所有顶点涂成红色;2)在白色边中,挑选一条权最小的边,使其与红色边不形成圈,将该白色边涂红;3)重复2)直到有n-1条红色边,这n-1条红色边便构成最小生成树T的边集合。
Prim算法假设V是图中顶点的集合,E是图中边的集合,TE为最小生成树中的边的集合,则prim算法通过以下步骤可以得到最小生成树:1)初始化:U={u 0},TE={f}。
此步骤设立一个只有结点u 0的结点集U和一个空的边集TE作为最小生成树的初始形态,在随后的算法执行中,这个形态会不断的发生变化,直到得到最小生成树为止。
2)在所有u∈U,v∈V-U的边(u,v)∈E中,找一条权最小的边(u 0,v 0),将此边加进集合TE中,并将此边的非U中顶点加入U中。
此步骤的功能是在边集E中找一条边,要求这条边满足以下条件:首先边的两个顶点要分别在顶点集合U和V-U 中,其次边的权要最小。
找到这条边以后,把这条边放到边集TE中,并把这条边上不在U中的那个顶点加入到U中。
这一步骤在算法中应执行多次,每执行一次,集合TE和U都将发生变化,分别增加一条边和一个顶点,因此,TE和U是两个动态的集合,这一点在理解算法时要密切注意。
3)如果U=V,则算法结束;否则重复步骤2。
可以把本步骤看成循环终止条件。
我们可以算出当U=V时,步骤2共执行了n-1次(设n为图中顶点的数目),TE中也增加了n-1条边,这n-1条边就是需要求出的最小生成树的边。
附:程序源代码:#include<iostream.h>#include<string.h>main(){system("color 9c");cout<<"请输入图的点数:\n";int n;cin>>n;char c1='a';cout<<"系统自动生成点为:\n";int i,j,k;cout<<c1;for(i=1;i<n;i++)cout<<","<<(char)(c1+i);int a[n][n];cout<<"\n请输入图的权矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>a[i][j];cout<<"\n\n此图的邻接矩阵为:\n ";for(i=0;i<n;i++)cout<<(char)(c1+i)<<" ";cout<<endl;for(i=0;i<n;i++){cout<<(char)(c1+i)<<" ";for(j=0;j<n;j++)if(a[i][j])cout<<"1"<<" ";elsecout<<"0"<<" ";cout<<endl;}int m=0;k=0;for(i=0;i<n;i++)for(j=0;j<n;j++)if(a[i][j]&&i<j)m++;int b[m][3];for(i=0;i<n;i++) //找出边和权 for(j=0;j<n;j++)if(a[i][j]&&i<j){b[k][0]=i;b[k][1]=j;b[k++][2]=a[i][j];}int t;for(i=0;i<m-1;i++) //排序for(j=i+1;j<m;j++)if(b[i][2]>b[j][2])for(k=0;k<3;k++){t=b[i][k];b[i][k]=b[j][k];b[j][k]=t;}for(i=0;i<m;i++)cout<<"("<<(char)(c1+b[i][0])<<","<<(char)(c1+b[i][1])<<","<<b[i][2]< <")";cout<<endl;int c[n-1][3],d[n];for(k=0;k<3;k++)c[0][k]=b[0][k];d[0]=b[0][0];d[1]=b[0][1];k=1;int k1=2,k2,k3,m1=0;for(i=1;i<m;i++){for(j=0;j<3;j++)c[k][j]=b[i][j];k++;k3=k1;for(k2=0;k2<k1;k2++)if(b[i][0]==d[k2])m1++;if(!m1)d[k1++]=b[i][0];elsem1=0;for(k2=0;k2<k1;k2++)if(b[i][1]==d[k2])m1++;if(!m1)d[k1++]=b[i][1];elsem1=0;if(k>=k1){k--;k1=k3;}if(k==n)break;}cout<<"用Kruskal算法得到的最小生成树为:\n{";int count=0;for(i=0;i<n-2;i++){cout<<"("<<(char)(c1+c[i][0])<<","<<(char)(c1+c[i][1])<<"),";count+=c[i][2];}cout<<"("<<(char)(c1+c[n-1][0])<<","<<(char)(c1+c[n-1][1])<<")}\n"; count+=c[n-1][2];cout<<"最小权和为:"<<count<<endl<<endl;for(k=0;k<3;k++)c[0][k]=b[0][k];b[0][2]=0;d[0]=b[0][0];d[1]=b[0][1];k1=2;k2=0;k3=0,m1=1;while(k1<=n){for(i=1;i<m;i++)if(b[i][2]){for(j=0;j<k1;j++)if(b[i][0]==d[j])k2++;for(j=0;j<k1;j++)if(b[i][1]==d[j])k3++;if(k2&&!k3){d[k1++]=b[i][1];for(k=0;k<3;k++)c[m1][k]=b[i][k];b[i][2]=0;m1++;k2=0;goto h;}else if(!k2&&k3){d[k1++]=b[i][0];for(k=0;k<3;k++)c[m1][k]=b[i][k];b[i][2]=0;m1++;k3=0;goto h;}else{k2=k3=0;}}h:;}cout<<"用Prim算法得到的最小生成树为:\n{";count=0;for(i=0;i<n-2;i++){cout<<"("<<(char)(c1+c[i][0])<<","<<(char)(c1+c[i][1])<<"),";count+=c[i][2];}cout<<"("<<(char)(c1+c[n-1][0])<<","<<(char)(c1+c[n-1][1])<<")}\n"; count+=c[n-1][2];cout<<"最小权和为:"<<count<<endl<<endl;system("pause");}。