填料吸收塔实验

合集下载

填料塔吸收实验(环境工程原理)

填料塔吸收实验(环境工程原理)

实验九 填料塔吸收实验一.实验目的1.了解填料吸收装置的设备结构及操作。

2.测定填料吸收塔的流体力学特性。

3.测定填料吸收塔的体积吸收总系数K Y α。

4.了解气体空塔流速与压力降的关系。

二.实验原理1.填料塔流体力学特性吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。

填料塔的流体力学特性是吸收设备的重要参数,它包括压强降和液泛规律。

测定填料塔的流体力学特性是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择适宜的气液负荷,因此填料塔的流体力学特性是确定最适宜操作气速的依据。

气体通过干填料(L=0)时,其压强降与空塔气速之间的函数关系在双对数坐标上为一直线,如左图中AB 线,其斜率为1.8~2。

当有液体喷淋时,在低气速时,压强降和气速间的关联线与气体通过干填料时压强降和气速间的关联线AB 线几乎平行,但压降大于同一气速下干填料的压降,如图中CD 段。

随气速的进一步增加出现载点(图中D 点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE 段。

当气速增大到E 点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E 称为泛点。

2.传质实验填料塔与板式塔内气液两相的接触情况有着很大的不同。

在板式塔中,两相接触在各块塔板上进行,因此接触是不连续的。

但在填料塔中,两相接触是连续地在填料表面上进行,需计算的是完成一定吸收任务所需填料的高度。

填料层高度计算方法有传质系数法、传质单元法以及等板高度法等。

气相体积吸收总系数K Y α是单位填料体积、单位时间吸收的溶质量,它是反映填料吸收塔性能的主要参数,是设计填料高度的重要数据。

本实验是用水吸收空气-氨混合气体中的氨。

混合气体中氨的浓度很低。

吸收所得的溶液浓度也不高。

气液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y 坐标系为直线)。

填料吸收塔实验

填料吸收塔实验

填料吸收塔实验【实验目的】1. 了解填料吸收塔的结构和流体力学性能。

2. 学习填料吸收塔传质能力和传质效率的测定方法。

【实验内容】1 •测定填料层压强降与操作气速的关系,确定填料塔在某液体喷淋量下的液泛气速。

2•采用水吸收二氧化碳,空气解吸水中二氧化碳,测定填料塔的液侧传质膜系数和总传质系数。

【实验原理】1 •气体通过填料层的压强降压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气液流 量有关,不同喷淋量下的填料层的压强降△ P 与气速u 的关系如图6-1-1所示:L 3> L 2 > L 1图6-1-1填料层的△ P 〜u 关系当无液体喷淋即喷淋量 L o =O 时,干填料的△ P 〜u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,△ P 〜u 的关系变成折线,并存在两个转折点,下转折点称为“载点” ,上转折点称为“泛点”。

这两个转折点将△ P 〜u 关系分为三个区段:恒持液量区、载液区与液泛区。

2 •传质性能吸收系数是决定吸收过程速率高低的重要参数,而实验测定是获取吸收系数的根本途径。

对于相同的 物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。

(1)膜系数和总传质系数根据双膜模型的基本假设,气相侧和液相侧的吸收质A 的传质速率方程可分别表达为L o =arK Hr△气膜G A = k g A( P A - p Ai)(6-1-7) 液膜 G A 二 k i A(C Ai - C A )式中:G A — A 组分的传质速率,kmoI s J ; 2A —两相接触面积,m ;P A —气侧A 组分的平均分压,Pa ; P Ai —相界面上A 组分的平均分压,Pa ; C A —液侧A 组分的平均浓度,kmol m C Ai —相界面上A 组分的浓度kmol m "k g —以分压表达推动力的气侧传质膜系数,kmol m^ s J Pa图6-1-2双膜模型的浓度分布图图6-1-3填料塔的物料衡算图以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为m s'。

填料塔吸收实验

填料塔吸收实验

实验一填料塔吸收实验一、实验目的1. 了解吸收过程的流程、设备结构,并掌握吸收操作方法。

2. 在不同空塔气速下,观察填料塔中流体力学状态。

测定气体通过填料层的压降与气速的关系曲线。

3. 通过实验了解ΔP—u曲线对工程设计的重要意义。

二、实验原理(填料塔的流体力学特性)吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。

它包括压强降和液泛规律。

测定填料塔的流体力学特性是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择适宜的气液负荷,因此填料塔的流体力学特性是确定最适宜操作气速的依据。

气体通过干填料(L=0)时,其压强降与空塔气速之间的函数关系在双对数坐标上为一直线,如图中AB线,其斜率为1.8~2。

当有液体喷淋时,在低气速时,压强降和气速间的关联线与气体通过AB线几乎平行,但压降大于同一气速下干填料的压降,如图中CD段。

随气速的进一步增加出现载点(图中D点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE段。

当气速增大到E点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E称为泛点。

三、装置及流程空气由风机供给进入空气缓冲罐再由阀调节空气流量,经空气转子流量计计量,并在管路中与氨(经转子流量计计量)混合后进入塔底,混合气在塔中经水吸收后,尾气从塔顶排出。

出口处有尾气稳压阀,以维持一定的尾气压力(约100-200mmH2O)作为尾气通过分析器的推动力。

自来水经转子流量计计量后,进入塔顶喷淋气喷出,塔底吸收液经排液管证液封。

氨气由氨瓶供给,缓慢开启氨瓶阀,二氨气即进入自动减压阀,稳压0.1Mpa 范围以内。

氨压表指示氨瓶内部压力,氨压表指示减压后的压力。

流程图如下所示1、氨气阀2、6氨压表3、减压阀4、氨瓶5、11温度计 7、空气缓冲罐 8、氨压表 9、15、28转子流量计 10、氨压计 12、空气缓冲罐 13、放净阀 14、空气调节阀 16、塔顶尾气压力计 17、填料支撑板 18、排液管 19、塔压降 20、填料塔 21、喷淋器 22、尾气稳压阀 23、尾气采样管 24、稳压瓶 25、采样考克 26、吸收分析盒 27、湿式体积流量计 29、放净阀 30、进水调节阀四、操作要点(1)测定于填料压强降时,塔内填料务必事先吹干,为开空气调解阀,开启气泵,缓慢调解改变空气流量6次左右,测定塔压降,得到ΔP 干—U 关系。

填料吸收塔实验报告

填料吸收塔实验报告

填料吸收塔实验报告一、实验目的本次填料吸收塔实验的主要目的是:1、了解填料吸收塔的结构和工作原理。

2、掌握吸收过程中气相和液相的流量控制方法。

3、测定填料层的压降与气速的关系,确定泛点气速。

4、研究不同液气比下的吸收效率,确定最佳液气比。

二、实验原理吸收是利用气体混合物中各组分在液体中溶解度的差异,使某些组分从气相转移到液相的过程。

在填料吸收塔中,气液两相在填料表面充分接触,实现物质传递。

根据亨利定律,在一定温度和压力下,气液平衡时,溶质在气相中的分压与在液相中的浓度成正比。

吸收速率取决于气液接触面积、两相的浓度差和传质系数。

填料的作用是增加气液接触面积,提高传质效率。

三、实验装置与流程实验装置主要由填料吸收塔、风机、储液槽、流量计、温度计、压力计等组成。

气体从风机进入吸收塔底部,自下而上通过填料层,与从塔顶喷淋而下的吸收液逆流接触。

吸收后的气体从塔顶排出,吸收液则流回储液槽,经循环泵再次送至塔顶喷淋。

通过调节气体流量和液体流量,可以改变气液接触状况和传质效果。

四、实验步骤1、检查实验装置的密封性,确保无泄漏。

2、向储液槽中加入适量的吸收液,并启动循环泵,使吸收液在系统中循环。

3、开启风机,逐渐调节气体流量,同时观察填料层的压降和泛点现象。

4、在不同的气体流量下,测定填料层的压降,并记录相关数据。

5、固定气体流量,改变液体流量,测定不同液气比下的吸收效率。

6、实验结束后,先关闭风机,再停止循环泵,清理实验装置。

五、实验数据记录与处理1、气体流量的测定采用转子流量计测量气体流量,记录不同时刻的读数,并计算平均值。

2、液体流量的测定使用涡轮流量计测量液体流量,同样记录数据并求平均值。

3、填料层压降的测定在不同的气体流速下,测量填料层两端的压力差,记录数据。

4、吸收效率的测定通过分析进出口气体中溶质的浓度,计算吸收效率。

将实验数据整理成表格形式,并绘制相关曲线,如填料层压降与气速的关系曲线、吸收效率与液气比的关系曲线等。

填料吸收塔实验报告

填料吸收塔实验报告

填料吸收塔实验报告一、实验目的。

本实验旨在通过填料吸收塔的实验操作,探究填料吸收塔在气液传质过程中的性能和特点,以及填料对气液传质效果的影响。

二、实验原理。

填料吸收塔是一种常用的气液传质设备,其原理是通过填料的大表面积来增加气液接触面积,从而提高气液传质效果。

在填料吸收塔中,气体在填料层中上升,与液体逆流相接触,从而实现气体的吸收。

三、实验步骤。

1. 将实验装置搭建完成,确保填料吸收塔处于稳定状态。

2. 将填料吸收塔内加入一定量的填料,并将试验液体注入塔底。

3. 开启气体进口阀门,使气体通过填料吸收塔,并与试验液体接触。

4. 观察气体在填料吸收塔中的传质情况,记录气体进入和出塔的流量,并测定出塔气体的成分。

5. 根据实验数据,分析填料吸收塔的传质效果,并对填料的种类和填充量进行评价。

四、实验结果。

经过实验操作和数据分析,我们得出以下结论:1. 填料吸收塔能够有效提高气体的传质效果,填料的种类和填充量对传质效果有显著影响。

2. 在相同填充量的情况下,不同种类的填料对气体的吸收效果有所差异,表面积大的填料吸收效果更好。

3. 填料吸收塔内气液接触时间和接触面积的增加,有利于提高气体的吸收效果。

五、实验结论。

通过本次实验,我们深入了解了填料吸收塔在气液传质过程中的特点和性能,以及填料对传质效果的影响。

填料吸收塔在工业生产中具有重要的应用价值,能够有效提高气体的吸收效果,减少环境污染。

六、实验总结。

填料吸收塔实验为我们提供了一个直观的实验平台,使我们能够深入了解填料吸收塔的工作原理和传质效果。

通过实验操作和数据分析,我们对填料吸收塔有了更深入的认识,这对我们今后的学习和工作具有重要意义。

七、参考文献。

1. 王明,刘亮. 填料吸收塔传质特性的研究[J]. 化工技术与开发, 2018(5): 45-50.2. 李华,张三. 填料吸收塔传质效果的模拟与分析[J]. 化学工程, 2017(3): 78-82.八、致谢。

实验五填料吸收塔实验

实验五填料吸收塔实验

实验五填料吸收塔实验一、实验目的及任务1.了解填料吸收装置的基本流程及设备结构;2.掌握总体积吸收系数的测定方法;3.了解气体空塔速度和喷淋密度对总吸收系数的影响;4.了解气体流速与压降的关系;5.测定规定条件下的总吸收系数;6.综合几个组的实验结果,分析操作条件对总吸收系数的影响;3.测定填料塔的流体力学性能。

二、基本原理2.1流体力学实验填料塔的压力降与泛点气速是填料塔设计与操作的重要流体力学参数。

气体通过填料层的压力降将随气液流量的变化而改变。

填料层的压力降△P/Z与空塔气速U的关系如图所示。

当无液体喷淋(L=0)时,△P/Z~U关系在双对数座标中为一斜率在1.8~2.0之间的直线。

如图中AB线。

当有一定的喷淋量时,(图中曲线1,2,3对应的流体喷淋量依次增大)。

△P/Z~U的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将△P/Z~U的关系线分为三个区段,即恒持液量区、载液区与液泛区。

当液体喷淋密度达到一定值(如L=L1)后,液体以液膜状流径填料表面,A1B1为恒持液区,此区段中空塔气速较低,气体流速对填料表面上覆盖的液膜厚度无明显影响,填料层内的持液量与空塔气速无关,仅随喷淋量的增加而增大。

此区段的△P/Z~U关系线与AB线平行,由于持液使填料层空隙率减小,故压降高于相同空塔气速下的干塔压降。

随着气速的增加,上升气流与下降液体间的摩擦力开始阻碍液体下流,使填料层的持液量随气速的增加而增加,此种现象称为拦液现象。

开始发生拦液现象时的空塔气速称为载点气速(如B1点)。

超过载点气速后,△P/Z~U关系线的斜率大于2。

在实测时,载点并不明显。

如果气速继续增大,由于液体不能顺利下流,而使填料层内持液量不断增多,以致几乎充满了填料层中的空隙,此时,压强降急据升高。

△P/Z~U关系线斜率可达10以上。

压强降曲线近于垂直上升的转折点称为泛点。

(如C1)达到泛点时的空塔气速称为液泛气速或泛点气速。

实验六:填料吸收塔性能测定实验

实验六 填料吸收塔性能测定实验一、实验目的1、了解填料吸收塔的结构和基本流程;2、熟悉填料吸收塔的操作;3、观察填料吸收塔的流体力学行为并测定在干、湿填料状态下填料层压降与空塔气速的关系4、测定总传质系数Ky ,并了解其影响因素。

二、实验原理气体吸收是常见的传质过程,它是利用液体吸收剂选择性吸收气体混合物中某种组分,从而使该组分从混合气体中得以分离的一种操作。

对稳定的低浓度物理吸收过程,根据吸收过程的物料衡算及传质速率方程有:m y Y Z A K Y Y V ∆⋅⋅⋅=-)(21故 my Y Z A Y Y V K ∆⋅⋅-=)(21式中:V ——通过吸收塔的惰性气体量即空气的摩尔流(kmol/h ) 1Y 、2Y ——气相入口(塔底)、出口(塔顶)溶质摩尔比(kmol 溶质/kmol 惰性气体)A ——塔的有效吸收面积即塔的截面积 (2m ) Z ——填料层高度(m )m Y ∆——对数平均推动力,211211*ln*)(Y Y Y Y Y Y Y m ---=∆ Y 1*为与塔底X 1成平衡的气相浓度,11*X P E Y =,其中:P 为塔底操作压强绝对大气压(atm ),E 为亨利系数,E=0.31143×1.047t可见,通过测定操作过程吸收系统的V 、Y 1、Y 2、A 、Z 及△Y m 即可计算出K Y 值。

三、实验装置1、本实验装置主要由吸收塔、空压机、流量计、U型压差计、、控制架等设备组成。

2、吸收塔采用填料塔,直径为80mm,塔体为透明有机玻璃,便于学生观察相关实验现象。

吸收实验采用丙酮为吸收介质,用水为吸收剂。

填料采用 φ10*10mm瓷拉西环,吸收前、后的尾气组成采样后由气相色谱分析(根据用户要求也可设计成计算机在线采样分析),或采用阿贝折光仪测定样品的折光率与标准曲线对照。

吸收塔的入口气量和入塔液相量均可通过控制阀任意调节,还可在实验时直接观察到各种填料塔的流体力学现象,包括沟流与液泛、淹塔等现象。

填料吸收塔实验

填料吸收塔的流体力学性能及其吸收总传质系数的测定讲稿一、实验目的1.了解填料吸收塔的结构和流程;2.了解吸收剂进口条件的变化对吸收操作结果的影响;3.了解填料吸收塔的流体力学特性,测定压降与空塔气速的关系;4.学习吸收总传质系数K Y a的测定方法。

二、实验内容1.在各种喷淋量下(包括喷淋量为零)测量气速和压降的关系,并记录塔内拦液和液泛的现象。

2. 固定液相流量和入塔混合气氨的浓度,在液泛速度以下取某一气相流量,测定气体进出口浓度,由此计算组分回收率η,传质推动力ΔY m和总传质系数K Y a。

内容拓展:(1)填料塔吸收的工业应用。

(2)填料塔技术的发展趋势。

(3)各种填料的认识(教具)和新型填料开发介绍。

三、基本原理1.气体通过填料层的压强降压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气液流量有关,不同喷淋量下填料层的压强降ΔP与空塔气速u的关系如下图所示:图1 填料层的ΔP~u关系当无液体喷淋即喷淋量L0=0时,干填料的ΔP~u的关系是直线,如图中的直线0。

当有一定的喷淋量时,ΔP~u的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将ΔP~u关系分为三个区段:恒持液量区、载液区与液泛区。

2.吸收塔的操作和调节吸收操作的结果最终表现在出口气体的组成Y2上,或组分的回收率η上。

在低浓度气体吸收时,回收率η可按下式计算:121211Y Y Y Y Y -=-=η 吸收塔的气体进口条件是由前一道工序决定的,吸收剂的进口条件:流率L 、温度T 、浓度X 2是控制和调节吸收操作的三要素。

3.吸收总传质系数的计算实验物系是清水吸收氨,惰性气体为空气,气体进口中氨浓度Y 1<10%,属于低浓度气体吸收。

传质速率式:m t Y A Y V a K N ∆⋅⋅= (1)物料衡算式:)()(2121X X L Y Y V -=- (2)相平衡式: mX Y = (3)(1)和(2)式联立得:mt Y Y V Y Y V a K ∆-=)(21 (4) 22112211ln )()(mX Y mX Y mX Y mX Y Y m -----=∆ (5) 式中t V ——填料层体积,m 3四、实验装置和流程(可先由同学介绍,再进行补充讲解,注意指出实验的关键之处)实验装置包括氨气钢瓶、风机、填料塔与尾气分析装置等,其流程如图所示。

填料吸收塔实验报告

填料吸收塔实验报告篇一:填料吸收塔实验报告填料吸收塔一、实验目的1.熟悉填料吸收塔的构造和操作。

2.测定气体通过干湿填料塔的压力降,进一步了解填料塔的流体力学特征。

3.测定填料吸收塔的吸收传质系数。

二、实验原理填料吸收塔一般要求控制回收率越高越好。

填料塔为连续接触式的气液传质设备,填料塔操作时液体从塔顶经分布器均匀喷洒至塔截面上,沿填料表面下流经塔底出口管排出,气体从支承板下方入口管进入塔内,在压力的作用下自下而上的通过填料层的空隙而由塔顶气体出口管排出。

填料层内气液两相成逆流流动,在填料表面的气液界面上进行传质,因此两相组成沿塔高边缘变化,由于液体在填料中有倾向塔壁的流动,故当填料层较高时,常将其分为若干段,在两段之间设置液体再分布装置,以利于流体的重新均匀分布。

填料的作用:1.增加气液接触面积。

满足(1)80%以上的填料润湿;(2)液体为分散相,气体为连续相。

2.增加气液接触面的流动。

满足(1)合适的气液负荷;(2)气液逆流。

三、实验步骤(1)将液体丙酮用漏斗加入到丙酮汽化器,液位高度约为液体计高度的2/3以上。

(2)关闭阀V3,向恒压槽送水,以槽内水装满而不溢出为度,关闭阀V5。

(3)启动空气压缩机,调节压缩机使包内的气体达到0.05~0.1Mpa时,打开V2,然后调节气动压力定值器,使进入系统的压力恒定在0.03Mpa。

(4)打开V4,调节空气流量(400L/H~500L/H); 打开V6,调节空气流量(5)室温大于15℃时,空气不需要加热,配制混合气体气相组成y1在12%~14%mol左右;若室内温度较低,可预热空气,使y1达到要求。

(6)要改变吸收剂温度来研究其对吸收过程的影响,则打开液体加热电子调节器,温度t3 (7)各仪表读数恒定5min以后,既可记录或取样分析有关数据,再按预先设计的试验方案调节有关参数。

(8)A1为取样测y1; A2为取样测y2;(9)阀V10为控制塔底液面高度,以保证有液封。

填料吸收塔实验实验报告

填料吸收塔实验实验报告填料吸收塔实验实验报告摘要:本实验旨在研究填料吸收塔在不同操作条件下的性能表现。

通过改变填料高度和液体流量,观察吸收塔对气体组分的吸收效果,并分析吸收效率与操作条件的关系。

实验结果表明,填料高度和液体流量对吸收效率有显著影响,适当调整操作条件可以提高吸收效果。

1. 引言填料吸收塔是一种常用的气液分离设备,广泛应用于化工、环保等领域。

其主要原理是通过将气体与液体接触,使气体中的组分被液体吸收。

填料作为吸收塔的重要组成部分,具有较大的表面积,可提供更多的接触面积,提高吸收效率。

本实验旨在探究填料高度和液体流量对吸收效率的影响,为填料吸收塔的优化设计提供参考。

2. 实验装置与方法实验装置包括填料吸收塔、气体供给系统、液体供给系统、液体收集器和分析仪器等。

实验过程中,首先调节气体流量和液体流量,并记录初始值。

然后,通过改变填料高度和液体流量,分别进行不同条件下的实验,并记录吸收效果。

最后,对实验结果进行分析和总结。

3. 实验结果与分析3.1 填料高度对吸收效果的影响在实验中,我们分别设置了不同的填料高度,观察吸收效果。

结果显示,随着填料高度的增加,吸收效果逐渐提高。

这是因为较高的填料高度能够提供更多的接触面积,增加气体与液体的接触机会。

因此,在实际应用中,应尽量选择较高的填料高度,以提高吸收效率。

3.2 液体流量对吸收效果的影响另一方面,我们也研究了液体流量对吸收效果的影响。

实验中,我们改变了液体流量,并观察吸收效果。

结果显示,随着液体流量的增加,吸收效果有所提高。

这是因为较大的液体流量能够提供更多的溶剂,增加气体组分与液体的接触机会。

因此,在实际应用中,应根据需要适当调整液体流量,以提高吸收效果。

4. 结论通过本实验的研究,我们得出以下结论:- 填料高度对吸收效果有显著影响,较高的填料高度能够提供更多的接触面积,增加吸收效率。

- 液体流量对吸收效果有一定影响,较大的液体流量能够增加气体与液体的接触机会,提高吸收效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 填料吸收塔实验
一、实验目的
1、 了解填料塔吸收装置的基本流程及设备结构;
2、 观察在不同空塔气速下,填料塔的流体力学状态;
3、 测定气体通过填料层的流体阻力;
4、 掌握总吸收系数的测定方法。

二、实验内容
⑴、填料塔流体力学特性:
填料塔流体力学特性包括压强降和液泛规律。

要计算填料塔需用动力时,必须知道压强降的大小,而要研究气液负载量时,则必须了解液泛的规律。

本实验可用空气与水进行测定。

在各项喷淋量(包括喷淋量为零),逐步增大气速,记录所需数据,至刚出现液泛时止,但必须注意勿使气速过分超过泛点,避免冲破填料。

⑵、吸收系数 的测定
吸收系数和传热系数相仿,根据吸收速率公式
()12A Y m
m
V Y Y G K A Y a Z Y -=
=
∆Ω∆
式中: A G ——单位时间被吸收气体组分量(kmol/s ) m Y ∆——气相总吸收系数(kmol/(m 2*s ))
A ——气液接触面积(m 2)
一个吸收设备的气相和液相进出口的组成,往往由工艺要求所决定。

这样一来 便为以给定,同样 也为生产任务所给定,所以吸收设备的大小(),只取决于吸收系数 ,吸收系数对于吸收计算正如传热系数对于传热计算一样,具有十分重要的意义。

测定吸收系数 ,只要将上式等式右边各项测出代入求得。

其中 ()12A G V Y Y =-
式中: V ——惰性气体流量(kmol/s ),直接由空气转子流量计测量;
12Y Y 、——分别为进出塔的气体浓度,进塔浓度由进气的氨与空气的比例计算,出塔浓度由尾气分析器测出。

式中: Z ——填料层高度(m );
Ω——填料塔塔截面积(m 2);
a ——单位体积填料的有效表面积(m 2/m 3),在一般操作条件,填料可视为完全润湿,因而a σ=(填料比表面积) 而 1
2
12
*
m Y Y Y Y Y dY Y Y
-∆=
-⎰
一般情况下,m Y ∆用图解积分法求得,如果平衡线是直线,则
()()
*
*
1
1
22
*11
*
22
m Y
Y Y
Y Y Y Y In
Y Y ---∆=
--
下表1及2分别代表塔底、塔顶。

*Y 表示平衡时气相浓度
*
*
1122,Y m x Y m x ==
相平衡常数 E m P
=
式中: E ——亨利系数,氨水溶液浓度<5%时的亨利系数E 为
水温 0 10 20 25 30 40 E (atm ) 0.293 0.502 0.778 0.947 1.25 1.935 P ——塔平均操作压强(atm )则 P=绝对大气压+塔顶表压+ 0.5塔压差
三、实验步骤
⑴填料塔流体力学特性操作
1、 进行填料塔流体力学特性实验不要开动氨气系统,使用水对空气进行操作即可。

2、 实验开始可先开动供水系统,开动供水系统的滤水器时要注意首先打开出水端阀门,再
慢慢打开进水阀,如果在出水端阀门关闭的情况下开进水阀,滤水器就可能超压。

3、 在正式实验之前一般要慢慢 加大气速到接近液泛后再回复到预定气速,目的是使填料
全部润湿一次。

4、 正式测定时固定某一喷淋量,测定每间隔气速下的填料压降,按实验记录表格记录数据。

⑵吸收系数测定操作
1、 先确定操作条件,准备好尾气分析器,用前面所介绍的方法开动水系统和空气系统,则
一切准备完毕后再开动氨气系统,实验完毕随即关闭氨气系统,以便可能节约氨气,空气系统的关闭方法也和前项介绍的一样。

2、 开动氨气系统时,首先将自动减压阀的弹簧放松,使自动减压阀处于关闭状态,然后打
开氨气瓶顶阀,此时,自动减压阀的高压压力表应有示值,下一步先管好氨气转子流量
计前的调节阀,此时,自动减压阀的弹簧,使阀门打开,同时注视低压氨气压力表,至压力表的示值达到0.5或0.8(kg/cm 2)时即可停止。

以后即可用转子流量计前的调节阀调节氨气流量。

关闭氨气系统的步骤与开动步骤相反。

3、 尾气分析的准备和测定操作
先洗净分析盒两个,各加入一定量的硫酸、指示剂,加蒸馏水到刻线处。

关好分析系统的调节旋转塞后将其中一个盒子装入分析系统管道内,并记下湿式流量计的初始值,至此分析器的准备工作完成。

测定时缓慢打开调节旋塞,使尾气通过分析器,要注意控制通过速度,过大尾气会将分析液带走,引起误差,过慢,则延长分析时间,待分析液变色立即关闭旋塞,此时读取湿式流量计的终示值,即完成一个样品的分析。

四、尾气浓度测定方法
进气浓度可以从氨流量计和空气流量计的计量计算出来,出塔液体的浓度可通过物料衡算得到,唯一要分析的是尾气浓度。

尾气分析器,由吸收盒和湿式气体流量计所组成。

吸收盒有快装接头,事先将一定浓度、一定体积的稀硫酸吸收液收入吸收盒内,并加入指示剂甲基红,分析时用快装接头接入管道内,
然后打开旋塞,让尾气通过吸收盒,尾气中的氨被吸收液吸收,其余部分(空气),由湿式气体流量计计量,当指示剂变色时,表示吸收终点到达,随即关闭旋塞,并读取湿式气体流量计终示值。

因为事先放入的吸收液浓度和体积是已知的,故空气总量是多少即可反映尾气浓度,空气量越大表示浓度越低。

测定时要注意控制阀门的开度大小,务使尾气成单个气泡连续不断进入吸收盒,如果开度过大,尾气成团通过,则吸收不完全,开度过小,则分析时间过长。

五、有关数据整理两点说明
⑴标准状态下空气流量及氨气流量计算式 标准状态下空气流量
01
Q Q = (NM 3
/h)
标准状态下氨气流量
01
Q Q = (NM 3/h)
式中: 0Q ——转子流量计示值(即为标定流量)
00P T ——标准状态压力温度(0760P m m H g = 0273T K =) 22P T 及11P T ——分别表示使用状态和标定状态的压力和温度
(1760P m m H g = 1293T K =)
10τ 及20τ分别表示标准状态下标定气体和被测定气体的重度(kg/m 3

⑵尾气浓度2Y 的计算
尾气通过吸收器,当其中的硫酸被尾气中的氨刚好完全中和时,若所通过的空气体积为V 0空 [毫升](标准状态),被吸收的氨的体积为0V 氨[毫升](标准状态),则尾气浓度2Y 为:
020V Y V =
氨空
式中: V 0空——由湿式气体流量计测量,再换算为标准状态; 0V 氨——被吸收的氨的体积(标准状态)
0V 氨值可根据加入吸收管的硫酸溶液体积和浓度求出:330=22.12V V N ⨯氨
式中: 3V ——加入吸收管中的硫酸溶液体积[毫升] 3N ——硫酸液的当量浓度[毫克当量/毫升]
式中22.1是1毫克分子氨在标准状态下的体积[毫升/毫克分子],这是因为标准状态下氨的重度=0.7708[毫克/毫升],又1毫克分子氨的重量是17.03毫克,所以1毫克分子氨在标
准状态下的体积为
1
17.03=22.1
0.7708
⨯[毫升/毫克分子];2是一毫克分子硫酸消耗两毫克
分子氨气。

六、实验记录
⑴填料流体阻力实验记录实验日期:
实验介质:
塔内径:
大气压强:
空气流量计算标定状态:实验填料种类及规格:填料高度:
填料比表面积:
水温:
空气平均密度: .
⑵吸收实验记录
实验日期:
填料种类及规格:
吸收剂:
填料高度:
氨气纯度:
填料比表面积σ= m2/m3
2
2、进气浓度Y1计算:
3、塔氨水溶液浓度x1计算:。

相关文档
最新文档