迪杰斯特拉最短路径算法

合集下载

C语言迪杰斯特拉实现最短路径算法

C语言迪杰斯特拉实现最短路径算法

C语言迪杰斯特拉实现最短路径算法迪杰斯特拉(Dijkstra)算法是一种用于在加权图中寻找从起点到终点的最短路径的算法。

它使用贪心算法的原理,每次选择权重最小的边进行扩展,直到找到终点或者无法扩展为止。

下面是C语言中迪杰斯特拉算法的实现。

```c#include <stdio.h>#include <stdbool.h>//定义图的最大节点数#define MAX_NODES 100//定义无穷大的距离#define INFINITY 9999//自定义图的结构体typedef structint distance[MAX_NODES][MAX_NODES]; // 节点间的距离int numNodes; // 节点数} Graph;//初始化图void initGraph(Graph* graph)int i, j;//设置所有节点之间的初始距离为无穷大for (i = 0; i < MAX_NODES; i++)for (j = 0; j < MAX_NODES; j++)graph->distance[i][j] = INFINITY;}}graph->numNodes = 0;//添加边到图void addEdge(Graph* graph, int source, int destination, int weight)graph->distance[source][destination] = weight;//打印最短路径void printShortestPath(int* parent, int node)if (parent[node] == -1)printf("%d ", node);return;}printShortestPath(parent, parent[node]);printf("%d ", node);//执行迪杰斯特拉算法void dijkstra(Graph* graph, int source, int destination) int i, j;//存储起点到各个节点的最短距离int dist[MAX_NODES];//存储当前节点的父节点int parent[MAX_NODES];//存储已访问的节点bool visited[MAX_NODES];//初始化所有节点的距离和父节点for (i = 0; i < graph->numNodes; i++)dist[i] = INFINITY;parent[i] = -1;visited[i] = false;}//设置起点的距离为0dist[source] = 0;//寻找最短路径for (i = 0; i < graph->numNodes - 1; i++)int minDist = INFINITY;int minNode = -1;//选择距离最小的节点作为当前节点for (j = 0; j < graph->numNodes; j++)if (!visited[j] && dist[j] < minDist)minDist = dist[j];minNode = j;}}//标记当前节点为已访问visited[minNode] = true;//更新最短距离和父节点for (j = 0; j < graph->numNodes; j++)if (!visited[j] && (dist[minNode] + graph->distance[minNode][j]) < dist[j])dist[j] = dist[minNode] + graph->distance[minNode][j];parent[j] = minNode;}}}//打印最短路径及距离printf("Shortest Path: ");printShortestPath(parent, destination);printf("\nShortest Distance: %d\n", dist[destination]); int maiGraph graph;int numNodes, numEdges, source, destination, weight;int i;//初始化图initGraph(&graph);//输入节点数和边数printf("Enter the number of nodes: ");scanf("%d", &numNodes);printf("Enter the number of edges: ");scanf("%d", &numEdges);graph.numNodes = numNodes;//输入边的信息for (i = 0; i < numEdges; i++)printf("Enter source, destination, and weight for edge %d: ", i + 1);scanf("%d %d %d", &source, &destination, &weight);addEdge(&graph, source, destination, weight);}//输入起点和终点printf("Enter the source node: ");scanf("%d", &source);printf("Enter the destination node: ");scanf("%d", &destination);//执行迪杰斯特拉算法dijkstra(&graph, source, destination);return 0;```上述代码中,我们首先定义了一个图的结构体,里面包括节点间的距离矩阵和节点数。

迪杰斯特拉最短路径算法

迪杰斯特拉最短路径算法

迪杰斯特拉最短路径算法迪杰斯特拉最短路径算法是一种求解从一点到其它所有点间的最短距离的经典算法。

这个算法的基本思想是通过一个当前最短距离的顶点集来求出从起点到其它所有顶点的最短路径。

迪杰斯特拉最短路径算法通常用于有权图中计算最短路径,即每条边都有一个权值。

算法思路迪杰斯特拉最短路径算法的核心思路在于维护一个记录起点到图中每个顶点的最短距离的数组dist[],同时维护一个标记数组mark[]用于标记每个顶点是否已经被访问过。

首先将起点标记为已访问,并将其到其它所有顶点的距离初始化为无穷大。

然后遍历起点所有的邻居节点,更新其邻居节点到起点的距离,并将邻居节点标记为已访问,接着从未标记为访问过的节点中选取距离最小的节点作为下一个处理节点,直到所有的节点都被访问。

算法的详细流程如下:1.从起点s开始,将起点距离初始化为0,其它点的距离初始化为无穷大。

2.标记起点为已访问。

3.对起点s的所有邻居节点进行松弛操作:对于起点到邻居节点v的距离dist[v],如果经过当前处理节点u的路径长度比原来的距离更短,则更新dist[v]和标记mark[v]。

4.从未标记为访问过的节点中选取距离最小的节点作为下一个处理节点。

5.对下一个处理节点进行松弛操作,以此类推,直到所有节点都被访问。

算法优化迪杰斯特拉最短路径算法存在一些优化算法,使得算法更加高效。

以下介绍几种优化算法:1.堆优化在每一次选取距离最小的未访问节点的过程中,可以使用堆优化算法将选取节点的时间复杂度从O(n)优化到O(logn)。

堆优化可以使用最小堆或者斐波那契堆。

2.早期退出如果当前处理的节点u到起点s的距离已经比dist[u]更大,那么就不需要继续处理u的邻居节点了。

这种情况下,可以提前结束算法,因为后面的处理节点不可能比u更优。

3.双向搜索通常来说,单向搜索是从起点向终点搜索,而双向搜索是从起点和终点同时搜索。

对于有向无环图,双向搜索可以大大降低时间复杂度,因为搜索过程中相遇的点一定是最短路径上的点。

迪杰斯特拉算法求最短路径表格

迪杰斯特拉算法求最短路径表格

迪杰斯特拉算法求最短路径表格Dijkstra算法是一种用于求解图中单源最短路径的贪心算法,它是由荷兰计算机科学家艾兹赫尔·迪杰斯特拉在1956年发明的,因此被命名为迪杰斯特拉算法。

算法思路:Dijkstra算法将图中的每个顶点分别标记为已知最短路径的顶点或未知最短路径的顶点。

在每次循环中,从未知最短路径的顶点中选择一个顶点,加入已知最短路径的顶点中,并更新所有其邻居的距离值。

具体步骤:1. 创建一个一维数组dist, 记录源点到其他点的距离2. 创建一个一维数组visited, 标记顶点是否已被加入已知最短路径的集合S3. 将源点加入已知最短路径的集合S中,并将dist数组的源点位置赋为04. 循环n次(n为图中顶点数目),每次从未加入S集合的顶点中选择dist值最小的顶点u,将u加入S集合,并更新其邻居的dist值5. 循环结束后,dist数组中保存的即为源点到各个顶点的最短路路径。

以下是迪杰斯特拉算法求最短路径表格的实现过程```public static int dijkstra(int[][] graph, int source, int dest) {int[] dist = new int[graph.length]; // 表示源点到各个顶点的最短距离boolean[] visited = new boolean[graph.length]; // 标记当前顶点是否加入已知最短路径的集合Sfor (int i = 0; i < graph.length; i++) {dist[i] = Integer.MAX_VALUE; // 将所有顶点的最短距离初始化为无穷大visited[i] = false; // 将所有顶点标记为未访问}dist[source] = 0; // 源点到自身的距离为0for (int i = 0; i < graph.length-1; i++) {int u = findMinDist(dist, visited); // 选择未加入S集合顶点中dist值最小的顶点visited[u] = true; // 将u加入S集合for (int v = 0; v < graph.length; v++) { //更新u的邻居v的dist值if (!visited[v] && graph[u][v] != 0 && dist[u] != Integer.MAX_VALUE&& dist[u] + graph[u][v] < dist[v]) {dist[v] = dist[u] + graph[u][v];}}}return dist[dest]; //返回源点到目标顶点的最短距离}public static int findMinDist(int[] dist, boolean[] visited){ int minDist = Integer.MAX_VALUE;int minIndex = -1;for (int i = 0; i < dist.length; i++) {if(!visited[i] && dist[i] < minDist){minDist = dist[i];minIndex = i;}}return minIndex;}public static void main(String[] args) {int[][] graph ={{0,2,4,0,3},{2,0,3,0,0},{4,3,0,1,0},{0,0,1,0,2},{3,0,0,2,0}};int source = 0;int dest = 4;int shortestPath = dijkstra(graph, source, dest);System.out.println("源点" + source + "到目标顶点" + dest +"的最短距离为:" + shortestPath);}```实现结果:源点0到目标顶点4的最短距离为:3顶点 | 0 | 1 | 2 | 3 | 4---- | ---- | ---- | ---- | ---- | ----dist | 0 | 2 | 4 | 3 | 3通过以上实现可以发现,迪杰斯特拉算法求最短路径表格的具体实现过程比较简单,但是需要注意的是在实现过程中需要特别注意对数组的定义和边界值的判断,避免出现数组越界和程序错误的情况。

迪杰斯特拉求最短路径算法

迪杰斯特拉求最短路径算法

通过使用迪杰斯特拉算法,我们可以找到这些最短 路径,从而帮助决策者做出更好的决策
在这些应用中,我们需要找到从一个地点到另一个 地点的最短路径,以便优化成本、时间和路线等
应用
Tarjan
Robert E. "A Class of Algorithms for Decomposing Disconnected Graphs". Journal of the ACM (JACM) 16.3 (1969): 430-447
在图论中,我们通常用节点表示地点,用边表 示两个地点之间的路径。每条边都有一个与之 相关的权重,表示从一个地点到另一个地点的 距离。迪杰斯特拉算法可以找到从源节点(出 发节点)到目标节点(目的地)的最短路径,即 使在图中存在负权重的边
算法步骤
算法步骤
初始化
01
将源节点的距离设置为0,将所有其他节点的距离
设置为正无穷。创建一个空的优先队列,并将源节
点放入队列
从优先队列中取出距离最小的节点
02
这个节点就是当前最短路径的起点
遍历从这个节点出发的所有边
03
对于每条边,如果通过这条边到达的节点的距离可
以通过当前节点更新(即新距离小于原距离),那么
就更新这个节点的距离,并将其加入优先队列
如果队列中仍有节点
04
回到步骤2。否则,算法结束
算法步骤
这个算法的时间复杂度是O((E+V)logV),其中 E是边的数量,V是节点的数量
这是因为每个节点和每条边都需要被处理和比 较,而这个过程是在一个优先队列中进行的,
需要O(logV)的时间复杂度
优点和缺点
优点和缺点
迪杰斯特拉算 法的优点在于 它可以在大多 数情况下找到 最短路径,而 且实现起来相 对简单

Dijkstra算法

Dijkstra算法

最短路径—Dijkstra算法Dijkstra算法1.定义概览Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。

主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

注意该算法要求图中不存在负权边。

问题描述:在无向图G=(V,E) 中,假设每条边E[i] 的长度为w[i],找到由顶点V0 到其余各点的最短路径。

(单源最短路径)2.算法描述1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S 中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。

在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。

此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:a.初始时,S只包含源点,即S={v},v的距离为0。

U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

c语言最短路径的迪杰斯特拉算法

c语言最短路径的迪杰斯特拉算法

c语言最短路径的迪杰斯特拉算法Dijkstra的算法是一种用于查找图中两个节点之间最短路径的算法。

这个算法可以应用于有向图和无向图,但是它假设所有的边都有正权值,并且不包含负权值的边。

以下是一个简单的C语言实现:c复制代码#include<stdio.h>#define INF 99999#define V 5 // 顶点的数量void printSolution(int dist[]);void dijkstra(int graph[V][V], int src);int main() {int graph[V][V] = { { 0, 4, 0, 0, 0 }, { 4, 0, 8, 11, 7 },{ 0, 8, 0, 10, 4 },{ 0, 11, 10, 0, 2 },{ 0, 7, 4, 2, 0 } };dijkstra(graph, 0);return0;}void dijkstra(int graph[V][V], int src) { int dist[V];int i, j;for (i = 0; i < V; i++) {dist[i] = INF;}dist[src] = 0;for (i = 0; i < V - 1; i++) {int u = -1;for (j = 0; j < V; j++) {if (dist[j] > INF) continue;if (u == -1 || dist[j] < dist[u]) u = j;}if (u == -1) return;for (j = 0; j < V; j++) {if (graph[u][j] && dist[u] != INF && dist[u] + graph[u][j] < dist[j]) {dist[j] = dist[u] + graph[u][j];}}}printSolution(dist);}void printSolution(int dist[]) {printf("Vertex Distance from Source\n"); for (int i = 0; i < V; i++) {printf("%d \t\t %d\n", i, dist[i]);}}这个代码实现了一个基本的Dijkstra算法。

迪杰斯特拉算法介绍

迪杰斯特拉算法介绍

迪杰斯特拉算法介绍迪杰斯特拉(Dijkstra)算法是典型最短路径算法,⽤于计算⼀个节点到其他节点的最短路径。

它的主要特点是以起始点为中⼼向外层层扩展(⼴度优先搜索思想),直到扩展到终点为⽌。

基本思想通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

此外,引进两个集合S和U。

S的作⽤是记录已求出最短路径的顶点(以及相应的最短路径长度),⽽U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。

然后,从U中找出路径最短的顶点,并将其加⼊到S中;接着,更新U中的顶点和顶点对应的路径。

然后,再从U中找出路径最短的顶点,并将其加⼊到S中;接着,更新U中的顶点和顶点对应的路径。

... 重复该操作,直到遍历完所有顶点。

操作步骤(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。

(2) 从U中选出"距离最短的顶点k",并将顶点k加⼊到S中;同时,从U中移除顶点k。

(3) 更新U中各个顶点到起点s的距离。

之所以更新U中顶点的距离,是由于上⼀步中确定了k是求出最短路径的顶点,从⽽可以利⽤k来更新其它顶点的距离;例如,(s,v)的距离可能⼤于(s,k)+(k,v)的距离。

(4) 重复步骤(2)和(3),直到遍历完所有顶点。

单纯的看上⾯的理论可能⽐较难以理解,下⾯通过实例来对该算法进⾏说明。

迪杰斯特拉算法图解以上图G4为例,来对迪杰斯特拉进⾏算法演⽰(以第4个顶点D为起点)。

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!第1步:将顶点D加⼊到S中。

此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。

dijkstra最短路径算法

dijkstra最短路径算法

图解迪杰斯特拉(Dijkstra)最短路径算法目录前言一、最短路径的概念及应用二、Dijkstra迪杰斯特拉1.什么是Dijkstra2.逻辑实现总结前言无论是什么程序都要和数据打交道,一个好的程序员会选择更优的数据结构来更好的解决问题,因此数据结构的重要性不言而喻。

数据结构的学习本质上是让我们能见到很多前辈在解决一些要求时间和空间的难点问题上设计出的一系列解决方法,我们可以在今后借鉴这些方法,也可以根据这些方法在遇到具体的新问题时提出自己的解决方法。

(所以各种定义等字眼就不用过度深究啦,每个人的表达方式不一样而已),在此以下的所有代码都是仅供参考,并不是唯一的答案,只要逻辑上能行的通,写出来的代码能达到相同的结果,并且在复杂度上差不多,就行了。

一、最短路径的概念及应用在介绍最短路径之前我们首先要明白两个概念:什么是源点,什么是终点?在一条路径中,起始的第一个节点叫做源点;终点:在一条路径中,最后一个的节点叫做终点;注意!源点和终点都只是相对于一条路径而言,每一条路径都会有相同或者不相同的源点和终点。

而最短路径这个词不用过多解释,就是其字面意思:在图中,对于非带权无向图而言,从源点到终点边最少的路径(也就是BFS广度优先的方法);而对于带权图而言,从源点到终点权值之和最少的路径叫最短路径;最短路径应用:道路规划;我们最关心的就是如何用代码去实现寻找最短路径,通过实现最短路径有两种算法:Dijkstra迪杰斯特拉算法和Floyd弗洛伊德算法,接下来我会详细讲解Dijkstra迪杰斯特拉算法;二、Dijkstra迪杰斯特拉1.什么是DijkstraDijkstra迪杰斯特拉是一种处理单源点的最短路径算法,就是说求从某一个节点到其他所有节点的最短路径就是Dijkstra;2.逻辑实现在Dijkstra中,我们需要引入一个辅助变量D(遇到解决不了的问题就加变量[_doge]),这个D我们把它设置为数组,数组里每一个数据表示当前所找到的从源点V开始到每一个节点Vi的最短路径长度,如果V到Vi有弧,那么就是每一个数据存储的就是弧的权值之和,否则就是无穷大;我们还需要两个数组P和Final,它们分别表示:源点到Vi的走过的路径向量,和当前已经求得的从源点到Vi的最短路径(也就是作为一个标记表示该节点已经加入到最短路径中了);那么对于如下这个带权无向图而言,我们应该如何去找到从V0到V8的最短路径呢;在上文中我们已经描述过了,在从V0到V8的这一条最短路径中,V0自然是源点,而V8自然是终点;于是我根据上文的描述具现化出如下的表格;在辅助向量D中,与源点V0有边的就填入边的权值,没边就是无穷大;构建了D、P和Final,那么我们要开始遍历V0,找V0的所有边中权值最短的的边,把它在D、P、Final中更新;具体是什么意识呢?在上述带权无向图中,我们可以得到与源点有关的边有(V0,V1)和(V0,V2),它们的权值分别是1和5,那么我们要找到的权值最短的的边,就是权值为1 的(V0,V1),所以把Final[1]置1,表示这个边已经加入到最短路径之中了;而原本从V0到V2的距离是5,现在找到了一条更短的从V0 -> V1 -> V2距离为4,所以D[2]更新为4,P[2]更新为1,表示源点到V2经过了V1的中转;继续遍历,找到从V0出发,路径最短并且final的值为0的节点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计说明书 NO.1
课程设计说明书 NO2
沈阳大学
短路径长度必是D
[j]= Min{ D
[i]
| V
i
∈V-S },其中D
[i]
要么是弧( V, V
i
)上的权
值,或者是D
[k]( V
k
∈S)和弧( V
k
, V
i
)上的权值之和
算法描述如下:
1)令arcs表示弧上的权值。

若弧不存在,则置arcs为∞(在本程序中为MAXCOST)。

S为已找到的从V 出发的的终点的集合,初始状态为空集。

那么,从V 出发到图上其
余各顶点V
i 可能达到的长度的初值为D=arcs[Locate Vex(G, V
i
)],V
i
∈V
2)选择V
j ,使得D
[j]
=Min{ D | V
i
∈V-S } ;
3)修改从V出发的到集合V-S中任一顶点V
k
的最短路径长度。

3.2 问题描述
在无向图G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短值。

具体位置及距离分布如下图所示:
图1初始位置及距离
3.3 算法思想
按路径长度递增次序产生算法:
把顶点集合V分成两组:
沈阳大学
课程设计说明书 NO.10
参考文献要列出5篇以上,格式如下:
[1]谢宋和,甘勇.单片机模糊控制系统设计与应用实例[M].北京:电子工业出版社, 1999.5:20-25
(参考书或专著格式为:
著者.书名[M].版本(第1版不注).出版地:出版者,出版年月:引文所在页码)
[2]潘新民,王燕芳.微型计算机控制技术[M],第2版.北京:电子工业出版社, 2003.4:305-350
(1本书只能作为1篇参考文献,不能将1本书列为多个参考文献)
[5]卜小明,龙全求.一种薄板弯曲问题的四边形位移单元[J].力学学报, 1991,23(1):53-60
(参考期刊杂志格式为:
作者.论文题目[J].期刊名,出版年,卷号(期号):页码)(期刊名前不写出版地)
[6]Mastri A R. Neuropathy of diabetic neurogenic bladder[J]. Ann Intern Med, 1980, 92(2):316-318
[7]范立南,韩晓微,王忠石等.基于多结构元的噪声污染灰度图像边缘检测研究[J].武汉大学学报(工学版), 2003,49(3):45-49
[8] index.asp
(一般情况下不要用网址作为参考文献,如果用,最多1个)
注:[M]表示参考的是书籍;[J]表示参考的是学术期刊的论文;如果参考会议论文集中的论文用[C]。

要求:
图注(黑体五号),位于图的下方,与图一起居中。

表注(黑体五号),位于表的上方方,与表一起居中。

表格:三线表
全部打印在A4纸,各级标题四号宋体加粗,正文文字小四号宋体,程序五号times new roman,字数3000字以上,15页以上。

严禁抄袭,如有雷同者,均按不及格论处
注:本页不用打印。

相关文档
最新文档