第三章立讲义体的投影

合集下载

第三章立体的投影

第三章立体的投影

第三章立体的投影(一)教学内容1. 基本平面几何体三面投影的特征,几何元素投影分析2.基本平面几何体三面投影的对应规律3. 基本平面几何体表面上点、线的投影4. 圆柱体、圆锥体、球体的几何要素及其投影5. 圆柱面、圆锥面、球面上取点取线的投影作图方法(二)教学要求1. 熟练画出基本几何体(平面立体、曲面立体)的三视图2. 掌握根据基本几何体的两个视图,想出它们的空间几何形状和位置3. 掌握根据基本几何体的两面投影,画出它们的第三个投影4. 掌握根据基本几何体的已知投影,画出已知表面上点、线的未知投影三、建筑形体的基本表达方法1.多面正投影图当物体的形状和结构比较复杂时,仅用三面投影图表达是难以满足要求的,为此,在制图标准中规定了多种表达方法,绘图时可根据工程形体的形状特征选用。

对于建筑形体往往要同时采用几种方法,才能将其内外结构表达清楚。

从图3-4a)中我们可以看出,将物体放在六个相互垂直的平面中,将从前向后、从上向下、从左向右、从后向前、从下向上、从右向左六个方向看到画在平面图纸上的六个基本投影图,得到物体的平面投影图。

用正投影法绘制的物体的图形称为视图。

对于形状简单的物体,一般用三个视图就可以表达清楚,而对于复杂的房屋建筑,各个方向的外形变化较大时,往往采用三个以上的视图才能完整表达其形状结构。

如图3-5所示的房屋形体,可由不同方向投射,从而得到有五个视图的多面正投影图。

绘制建筑房屋的视图,从前方投射的A向视图为正立面图,应尽量反映出物体的主要特征,从上方投射的B向视图为平面图,从左方投射的C向视图为左侧立面图,从右方投射的D向视图为右侧立面图,从后方投射的E向视图为背立面图。

2.镜像投影图镜像投影是物体在镜面中的反射图形的正投影,该镜面应平行于相应的投影面,如图3-6a所示。

用镜像投影法绘制的平面图应在图名后注写“镜像”二字,以便读图时识别,如图3-6b。

镜像投影图可用于表示某些工程的构造,在装饰工程中应用较多,如吊顶平面图,是将地面看作一面镜子,得到吊顶的镜像平面图。

第三章_立体的投影

第三章_立体的投影

20319/.10/2完4 善轮廓。
工业制图课件
一、平面与圆锥相交所得截交线形状

三角形
椭圆
双曲线加直线段
2019/10/24
工业制图课件
抛物线加直线段
二、圆锥的截断
根据截平面与圆锥轴线的相对位置不同,截交线有五种形状。
PV
PV θ
PV
PV
PV θ
垂直于轴线 θ = 90°
圆2019/10/24
e



db
工业制图课件
例例1:1圆: 圆锥锥被被正正垂垂面面截截断断,, 完成完三成视三图视。图。
1' 7‘ (8') 3‘(4’) 5' (6 ')
9‘ (10')
2'
1• 0 6• • 4 • 8
1 2
2019/10/24
9•

5

3
•7
1"
如何找椭圆另一根
4"8"• 6" •
• 7" 轴的端点(即最前、
2019/10/24
工业制图课件
取点的方法
1)轮廓线上取点 2)利用积聚投影 3)纬圆上取点
面上取点必需先取线。取线为圆的这一方法, 对于回转面来说,具有普遍的意义。
2019/10/24
工业制图课件
4.42..22.2 曲曲面面体体的的截截交交
(1) 曲面体截交线的性质:
截交线是截平面与回转体表面的共有线。
截交线的形状取决于回转体表面的形状及 截平面与回转体轴线的相对位置。
截交线都是封闭的平面图形(封闭曲线或由直线 和曲线围成)。

第3章-基本立体的投影

第3章-基本立体的投影

第3章 基本立体的投影
3.2.2 圆锥
1. 圆锥面的形成 圆锥面是由一条直母线绕与它相交的轴线旋转而 成的。圆锥体由圆锥面和底面组成。 2. 圆锥的投影 图3-4表示一直立圆锥,它的正面投影和侧面投影 为同样大小的等腰三角形。正面投影s′a′和s′b′是圆锥面 的最左和最右素线的投影,它们把圆锥面分为前、后 两半;侧面投影s″c″和s″d″是圆锥面最前和最后素线的 投影,它们把圆锥面分为左、右两半。
第3章 基本立体的投影
图3-4(b)中,已知K点的正面投影k′,求点 K的其他两个投影。可用辅助圆法作图,即过 点K在锥面上作一水平辅助纬圆,该圆与圆锥 的轴线垂直,点K的投影必在纬圆的同面投影 上。作图时,先过k′作平行于X轴的直线,它 是纬圆的正面投影,再作出纬圆的水平投影。 由k′向下作垂线与纬圆交于点k,再由k′及k求 出k″。因点K在锥面的右半部,所以k″不可见。第3章 基ຫໍສະໝຸດ 立体的投影2. 棱柱表面上的点
在平面立体表面上的点,实质上就是平面上的点。 正六棱柱的各个表面都处于特殊位置,因此在表面上的 点可利用平面投影的积聚性来作图。
如已知棱柱表面上M点的正面投影m′,求水平、侧 面投影m、m″。由于正面投影m′是可见的,因此M点必 定在棱柱的前半部平面ABCD上,而平面ABCD为铅垂 面,水平投影abcd具有积聚性,因此m必在abcd上。根 据m′和m,由点的投影规律可求出m″,如图3-1(b)所示。
第3章 基本立体的投影
3.2 曲面立体
由一母线绕轴线回转而形成的曲面称为回转面, 由回转面或回转面与平面所围成的立体称为曲面立体。 母线在回转面上的任一位置称为素线。常见的曲面立 体有圆柱、圆锥和圆球等。
第3章 基本立体的投影
3.2.1 圆柱 1. 圆柱面的形成 圆柱面是由一条直母线绕与它平行的轴线旋转而

机械制图教案——第3章 立体的投影

机械制图教案——第3章 立体的投影

第3章立体的投影一、本章重点:1.平面立体和曲面立体投影的画法,及立体表面点的投影。

2.立体与平面相交其交线的画法,既求截交线。

3.两回转体轴线垂直相交其交线的画法。

4.立体的尺寸标注。

二、本章难点:1.圆球和圆环的投影及表面上点的投影。

2.圆锥、圆球被平面截切后,截交线的画法。

3.求作相贯线。

三、本章要求:通过本章的学习,要掌握基本体的三面投影画法,基本体表面点的投影,能够分析和绘制常见的截交线和两回转体轴线相交时的相贯线,掌握立体的尺寸标注的方法。

四、本章内容:§3-1 平面立体的投影一、棱柱棱柱体由若干个棱面及顶面和底面组成,它的棱线相互平行。

顶面和底面为正多边形的直棱柱,称为正棱柱。

常见的棱柱有三棱柱、四棱柱、六棱柱等。

1.棱柱的三视图2.棱柱表面上的点二、棱锥棱锥的底面为多边形,各侧面为若干具有公共顶点的三角形。

从棱锥顶点到底面的距离叫做锥高。

当棱锥底面为正多边形,各侧面是全等的等腰三角形时,称为正棱锥。

常见的棱锥有三棱锥、四棱锥、六棱锥。

1. 棱锥的三视图2.棱锥表面上的点§3-2曲面立体的投影曲面立体的表面是由一母线绕定轴旋转而成的,故称曲面立体,也称为回转体。

常见的回转体有圆柱、圆锥、圆球和圆环等。

一、圆柱1.圆柱面的形成圆柱面可看作一条直线AB围绕与它平行的轴线OO回转而成。

OO称为回转轴,直线AB称为母线,母线转至任一位置时称为素线。

这种由一条母线绕轴回转而形成的表面称为回转面,由回转面构成的立体称为回转体。

2.圆柱的三视图3.圆柱表面上的点二、圆锥1.圆锥面的形成圆锥面可看作由一条直母线围绕和它相交的轴线回转而成。

2.圆锥的三视图3.圆锥表面上的点三、圆球1.圆球面的形成圆球面可看作一圆(母线),围绕它的直径回转而成。

2.圆球的三视图3.圆球表面上的点四、圆环1.圆环的形成圆环面可看作由一圆母线,绕一与圆平面共面但不通过圆心的轴线回转而成。

图中的回转轴是铅垂线。

第3讲 立体的投影

第3讲 立体的投影
组成的空间折线,每一段是平面体 的棱面与另一平面体棱面的交线。
2.作图方法
求交线的实质——用贯穿点法作平面体各棱线与另一平 面体各表面的交点。
• 分析平面体各棱线与另一平面体表面的是否相交,从 而确定空间折线的边数。
• 求出各棱线与另一平面体表面的交点。
• 用直线连接各交点,并判断可见性。
返回
[例1] 求作两三棱柱相贯的正面投影
• 补充中间点。
确定交线的 弯曲趋势
[例1] 圆柱与圆柱相贯,求其相贯线。






● ●
● ●



●●●
求两圆空柱间相及贯投线影的分投析影:: •投影表影与小面积该圆取利聚圆柱点用为重轴。积圆合线聚,。垂性相直法贯于,线H在面的圆,水柱水平平投 • 大☆圆找柱特轴殊线点垂直于W面,侧面 投影☆积补聚充为中圆间,点相贯线的侧面投 影在☆该光圆滑重连合。接
[例1] 圆柱与圆柱相贯,求其相贯线。
[例2] 圆柱与圆柱孔相贯,求其相贯线。
● ●
● ●
● ●
[例2] 圆柱与圆柱孔相贯,求其相贯线。
相贯线的变化规律
交线向大圆 柱一侧弯
交线为两条平面 曲线(椭圆)
[例3] 补全正面投影
● ●
● ●


●●●●来自●●●




● ●

● ●






●●●
X
O
YW
YH
返回
三面投影与三视图
1.视图的概念
视图就是将立体向投
影面投射所得的图形。通

第三章立体的投影 1

第三章立体的投影 1
回节目录
1.圆柱体
(1)形成
圆柱面可以看成是由一直线段绕与它平行的轴线回转而 成,圆柱体的表面是由圆柱面和上、下底面围成的。
轴线 纬圆 素线
(a)圆柱体形成立体图
(b)圆柱体投影直观图 回节目录
(2)圆柱的投影
分析:圆柱轴线为铅垂线时,顶圆、底圆为水平面,圆柱面为 铅垂面,素线为相互平行的铅垂线。
圆柱的投影: • 轴线、圆的中心线用点 画线表示; • 水平投影积聚为圆; • 正面投影和侧面投影均 为矩形。
圆柱体的投影 回节目录
对W面转向轮廓线 对V面转向轮廓线
(3)圆柱表面上取点
已知圆柱面上两点Ⅰ和Ⅱ的正面投影1′和(2′),求作其余 两面投影。
(2') 1' (2")
分析:圆柱面上的点,利用 投影积聚性求出一面上的投 影,利用“三等”关系求另 一面上的投影;特殊素线上 的点,可直接利用素线求出。
轴线
母线
圆环的形成 回节目录
(2)圆环的投影及表面取点 画投影图: 1)画中心线和轴线; 2)画V投影中平行于V面的素线圆;
3)画V面上、下两条轮廓线; 4)画H面面投影中最大轮廓线圆、 最小轮廓线圆和中心圆,完成作 图。 b a
圆环的投影 回节目录
a'
b'
圆环面取点:
圆环面取点,必须利用纬圆法求解。
1
1"
2
圆柱体的投影 回节目录
2.圆锥体
(1)形成
圆锥体——一直线绕与它相交的轴线回转而成。由圆锥面和底 面圆围成,圆锥面上所有素线均交于锥顶。
轴线
素线
纬圆
(a)圆锥体形成立体图
(b)圆锥体投影直观图 回节目录

立体的投影

立体的投影
(3)画法 首先画出圆柱在各个投影位置上的轴线和底圆的对称中心线,其 次画出投影为圆的圆的视图——俯视图,最后根据圆柱高及投影的 外形轮廓素线画出其余两个视图。注意:绘制回转体投影时,必须 画出轴线和对称中心线。根据国家标准的规定,轴线和对称中心线 应采用细点画线画出,且要超出轮廓线2~5 mm,如图3.6c所示。 (4)圆柱表面上取点 轴线处于特殊位置的圆柱,其圆柱面在与轴线垂直的投影面上的
图3.11 圆球表面取点
(a)
(b)
由于圆球的三个投影均无积聚性。所以在圆球表面上取点,除属于转向轮廓线上的特殊 点可直接求出之外,其余处于一般位置的点,都须用辅助圆法作出,并表明可见性。 如图3.11a所示,已知圆球表面上一点M的正面投影m’,求其水平投影m和侧面投影m”。根 据m’的位置和可见性,可知M点位于前半球的左上部位。为找出M点的水平投影m,可过 M点作纬圆(正平圆、水平圆、侧平圆)求解。如过m’作纬圆与圆球正面投影(圆)交于 点1’、2’,以1’2’为直径在水平投影上作水平圆,则点M的水平投影m必在该纬圆上,再由 m’和m求出m”,m和m”均为可见。又如图3.11b所示给出了根据球面上点N和K的水平投影 n和k,求出n’、n”和k’、k”的作图过程,请自行分析。 4.圆环 (1)圆环的形成
图3.2 正六棱柱的投影及表面取点
为了作图方便,将正六棱柱放置成如图3.2b所示的轴线与H面垂直的位置,上下底面与H 面平行,为水平面,其水平投影反映实形,另外两面投影为直线;正六棱柱的六个侧面中, 前后两个是正平面,正面投影反映实形;其余四个侧面均为铅垂面;六条侧棱均为铅垂线。 图3.2c为正六棱柱的三视图。 棱柱的投影特性是:与轴线垂直的投影面上的投影为一多边形,它反映棱柱底面的实形; 另两个投影都是由粗实线或虚线组成的矩形线框,它反映侧面的实形或类似形。 作图步骤如图3.3所示:

第3章立体的投影

第3章立体的投影

第3章立体的投影电子教案:3.1 基本立体的投影基本立体可分为平面立体和曲面立体。

表面均为平面的基本立体称为平面立体。

常见的有棱柱、棱锥,如图3-1所示。

表面由曲面和平面或完全由曲面组成的基本立体称为曲面立体。

最常见的曲面立体是回转体,包括圆柱、圆锥、球、圆环等,如图3-2所示。

将基本体放在三投影面体系中进行投射时,为了画图、读图的方便,通常将其“放平,摆正”。

放平——就是让基本体的底面处于平行面位置。

摆正——是在放平的基础上,让其余各面尽可能处于平行面或垂直面位置。

在以后画组合体视图或零件图时也要遵循这个原则。

图3-1 平面立体图3-2曲面立体3.1.1 平面立体的投影及其表面取点在投影图上表示平面立体就是把组成立体的平面和棱线表示出来,然后判别其可见性,把看得见的棱线投影画成实线,看不见的棱线投影画成虚线。

1.棱柱(1) 棱柱的投影常见的棱柱有正四棱柱和正六棱柱,图3-3(a)所示一正六棱柱,由六个相同的矩形棱面和上下底面(正六边形)所围成。

将其放平摆正后,上、下底面为水平面,其水平投影反映实形,另外两面投影积聚为直线。

正六棱柱的六个棱面中,前后两个面是正平面,正面投影反映实形;其余四个棱面均为铅垂面。

如图3-3(b)所示,作图过程如图3-4所示。

(a)(b)图3-3正六棱柱的投影及表面取点图3-4 正六棱柱的画图方法和步骤棱柱的投影特性是:在与棱线垂直的投影面上的投影为一多边形,它反映棱柱上、下底面的实形;另两个投影都是由粗实线或虚线组成的矩形线框,它反映棱面的实形或类似形。

(2) 在棱柱表面上取点在棱柱表面上取点,其原理和方法与在平面内取点相同。

该例中正六棱柱的各个表面都处于特殊位置,因此在其表面上取点均可利用平面投影积聚性的原理作图,并判别其可见性,如图3-3(b)所示。

2.棱锥(1) 投影分析和画法常见的棱锥有正三棱锥和正四棱锥,图3-5(a)所示为一正三棱锥,锥顶为S,其底面为等边△ABC,是水平面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(a) 直观图
已知六棱柱ABCD侧表面上点M的V面投影m″, 求该点的H面投影m和W面投影m″。
a′ b′
m
m
d′
c′
A
B
M
D
C
(a) 直观图
a(d) m b(c)
(b) 投影图
点的可见性判别: 若点所在平面的投
影可见,点的投影可 见;若平面的投影积 聚成直线,点的投影 也可见。
平面立体投影可见性的判别规律
作图:
(m' )
n'
m" (n")
1. 棱柱的投影
1. 棱柱的投影 分析:正六棱柱由顶面、底面和六个侧棱面组成。正六棱
柱的顶面、底面为水平面,在俯视图中反映实形。
作图:
(a) 直观图 图3-2 正六棱柱的投影
(b) 投影图
2. 棱柱表面上点的投影
由于棱柱的表面都是平面,所以在棱柱的表面上取 点与在平面上取点的方法相同。
A
B
M
D
C
Z
作图方法2
注意: 分清直线所在表面,求
s'
出与所有棱线的交点。
m
c' S
s"
a' b'
s'
s"
m
m
M
ቤተ መጻሕፍቲ ባይዱ
m
A X
C a" O (c")
B
b"
a
sc
m
b
(a) 直观图
a' b'
c' a"(c") b"
as
c
m
b
(b) 投影
3. 棱锥台
棱锥台——由平行于棱底的平面截去锥顶一部分形 成的立体,顶面与底面是相互平行的相似多边形,各侧 面为等腰梯形。
平面体的投影特征:
⑴体的三面投影图之间保持三等关系,适应整体和每一局部。 ⑵体上各组成平面的投影,一般表现为一个封闭的线框,特殊
积聚为一直线。 ⑶投影图上各线框的分界线,表示物体表面发生变化(凹、凸
或转折)
一、 棱柱
直棱柱——顶面和底面是两个全等且相互平行的多边 形(特征面),各侧面为矩形。 正棱柱——顶面和底面为正多边形的直棱柱。
•工程上常见的回转体有圆柱、圆锥、球、圆环等。
(a) 圆柱
(b) 圆锥
(c) 圆球
图3-6 常见的回转体
(d) 圆环
• 绘制回转体的投影,即是绘制回转体的回转面和 平面的投影,也就是绘制回转体的轮廓线、尖顶 的投影以及转向轮廓线。
一、圆柱-----由圆柱面、顶面、底面围成
圆柱面---一直线绕与它平行 的轴线回转而成。
§3-4 相贯体的投影
§3-1 平面立体
平面立体——由若干个平面围成的实体。
工程上常用的平面立体是棱柱(主要是直棱柱)和棱锥 (棱台)。
棱柱
棱锥
棱台
图3-1 平面立体
•平面立体侧表面的交线称为棱线。 •若平面立体所有棱线互相平行,称为棱柱。 •若平面立体所有棱线交于一点,称为棱锥。
•绘制平面立体的投影,即是绘制平面立体上所有 平面的投影,也就是绘制平面立体上各平面间的交 线(棱线)和各顶点(棱线的交点)的投影。
Z s'
作图:
s′
s"
c' S
s"
a' b'
A X
C
a"
O (c")
a′
c′ a"
b′
(c")
b"
a
c
B
b"
s
a
sc
b
(a) 直观图
b
Y
图3-3 正三棱锥的投影
(b) 投影
2. 棱锥表面上点的投影
已知棱面SAB上点M的正面投影m‘和棱面SAC上点N的
水平投影n,求作M、N两点的其余投影。
s'
m
a' b'
第三章立体的投影
精品jing
概 述: 立体包含基本立体和组合体。柱、锥、球、圆环等
几何体是组成机件的基本体,基本体的组合称组合体,本 章着重研究基本体、切割体和相贯体的形体特征,立体的 投影与作图方法,在立体表面上作点、作线的方法与三视 图的画法。
§3-1 平面立体
§3-2 回转体
§3-3 切割体的投影
——如果点或直线在一般位置平面内,则需过 已知点的一个投影作辅助线,求出其它投影。
§3-2 回转体
回转体-----由回转面或回转面和平面围成的立体
母线
(a)
(b)
图3-5 回转体和回转面的形成
轴线
•一动线绕一定线回转一周后形成的曲面称为回转面。
•形成回转面的定线称为轴线,动线称为母线,母线在 回转面上任意位置称为素线。
二、 棱锥
棱锥——底面是多边形,各侧面为若干具有公共顶点 的三角形。 正棱锥——底面为正多边形,各侧面是全等的等腰三角 形的棱锥。
1. 棱锥的投影
S
A
C
B
1. 棱锥的投影
分析:正三棱锥由底面和三个侧棱面组成。正三棱锥的底面为水平面,在 俯视图中反映实形。后侧棱面为侧垂面,在左视图中积聚为一斜线。左 、右侧棱面是一般位置平面,在三个投影面上的投影为类似形。
正棱锥台——由正棱锥截得的棱台。
四棱锥台的投影
(a) 直观图
(b) 投影 图3-4 四棱锥台的投影
小结
1.平面立体投影的作图可归结为绘制平面(立 体表面)和(棱)线投影的作图。
2.在立体表面上取点、取线的方法与在平 面上取点、取线的方法相同。
——如果点或直线在特殊位置平面内,则作图 时,可充分利用平面投影有积聚性的特点,由 一个投影求出其另外两个投影;
A X
a
Z
采用平面上取点法
c' S
作图方法1 s"
s'
(n ) m
M
C O
B
m
a" (c")
b"
sc
m
b
(a) 直观图
a' b'
c'
a
n
s
c
m
b
(b) 投影
s"
n m
a"(c") b"
2. 棱锥表面上点的投影
已知棱面SAB上点M的正面投影m'和棱面SAC上点N
的水平投影n。求作M、N两点的其余投影。
图3-8 圆柱的投影
作圆柱投影图
圆柱的投影特性: • 回转轴线用点划线表示; • 水平投影积聚为一圆; • 正面投影和侧面投影均
为矩形。
图3-8 圆柱的投影
2.圆柱面上取点 已知圆柱面上M点和N点的正面投影,求水平投影和侧面
投影。
分析:点在圆柱面上,利 用水平投影积聚性,可以 求出点M和点N的水平投 影。
1)在平面立体的每一投影中,其外形轮廓线都是 可见的。
2)在平面立体的每一投影中,外形轮廓线内的直 线的可见性,相交时可利用交叉两直线的重影点来 判别。
3)在平面立体的每一投影中,外形轮廓线内,若 多条棱线交于一点,且交点可见,则这些棱线均可 见,否则均不可见。
4)在平面立体的每一投影中,外形轮廓线内,两 可见表面相交,其交线为可见。两不可见表面的交 线为不可见。
圆柱立体分析:当圆柱的轴线 是铅垂线时,圆柱面上的所 有素线都是铅垂线,顶面和 底面为水平面。
图3-7 圆柱的形成
1.圆柱的投影
转向轮 廓素线
圆柱的投影分析: • 顶面、底面的水平投影重
合为一圆,正面投影和侧 面投影分别重影为两直线; • 圆柱面的水平投影积聚为 一圆,正面投影和侧面投 影分别画出转向轮廓素线 的投影。
相关文档
最新文档