函数中的数形结合思想

合集下载

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用【摘要】二次函数教学中,数形结合思想的应用是非常重要的。

通过将数学与几何相结合,可以帮助学生更深入地理解二次函数的概念和特性。

通过实例分析和图形展示,学生能够直观地看到二次函数的图像与方程之间的关系,从而加深对这一知识点的理解。

通过实践操作,学生可以更好地掌握数学知识,提升他们的实际运用能力。

数形结合思想不仅可以提升学生的学习兴趣和效果,还可以帮助他们从多角度理解数学知识,提高数学素养。

在二次函数教学中,充分利用数形结合思想是非常有益的,可以有效提升学生的学习水平和综合素质。

【关键词】二次函数、数形结合、教学、图形、特性、实例分析、数学、几何、理解、实践操作、学习兴趣、学习效果、多角度、数学素养。

1. 引言1.1 二次函数教学的重要性二次函数作为高中数学中的重要内容之一,在学生数学学习中具有重要的地位。

学会了二次函数的相关知识,可以帮助学生理解和掌握高中数学中的很多概念和方法,为以后的学习打下坚实的基础。

二次函数的教学内容丰富多样,不仅可以帮助学生提高数学的解题能力,还可以培养学生的数学思维和创新能力。

二次函数具有许多独特的特性和规律,通过学习二次函数,可以让学生在数学上有更深入的认识和了解。

二次函数也广泛应用于生活和科学领域,学会了二次函数相关知识可以帮助学生更好地理解和解决实际问题。

二次函数教学的重要性不言而喻。

只有深入理解和掌握二次函数的相关知识,才能在数学学习中取得更好的成绩,为将来的发展打下坚实的基础。

二次函数的教学不仅具有重要的理论意义,更具有重要的实践意义。

通过深入的学习和实践,可以帮助学生更好地理解和应用二次函数相关知识,提高数学素养和解决实际问题的能力。

1.2 数形结合思想的意义数形结合思想在二次函数教学中扮演着至关重要的角色。

通过将数学与几何相结合,可以帮助学生更直观地理解抽象的数学概念,提高他们的学习兴趣与学习效果。

在二次函数这一抽象概念中,数形结合思想可以将函数的数学性质与图形的几何特征相联系,使学生更全面地理解二次函数的本质。

函数中的数形结合思想

函数中的数形结合思想


/0


一 —

l0


与函数 y l g的图像 的交 点个数 为 1 =o g ;
( )若 la e 3 < < 时 ,y W与 y x有两个交 点 ,故 = =
函数 y W与 函数 y lg = =o ̄的图像的交点个数为 2 .
于是 .正确的答案为 A .
例2函 数 等 的 图像大致为 ( )
1 4
攀黼
方程为 y 。 。 n )( 。,因为过原点 ,得 ( 。・ 1 )
而 。 ,所 以 l = n 。 1
幕 ;





从而 e ,那么 :
( )若 a e 1 > 时 ,y W与 y x没有 交点 ,故 函数 = = y W与函数 y l 的图像 的交 点个 数为 0 = =o  ̄ ; ( )若 a e 2 = 时 ,y W与 y x相切 ,故 函数 y W = = =
潮翻
函数中的数形结合思想
■ 艾龙彪
学 有
“ 数少形 时缺直观 ,形少数时难入微” ,它准确地 告诉我们 :数形结合 ,相得益彰 :利用数 、式进行深 入细致 的分析 ;利用 图形直观又可 以看 出数 、式的内 在关系 ;数形结合思想是重要 的数学思想 ,它是分析 问题 的思路基 础. 因此 ,每年高考 一定会 重点考 查 . 本文主要谈 一下函数 中的数形结合思想.
例 3 当 a l ,函数 _ 与 函数 y lg . >时 y = =o, , x的图像
的交点个数 ( ) A 可能是 0个 、1 . 个或 2个
B 只可 能 是 2个 . C 只可 能 是 0个 . D 可以是 3 . 个 解 析 : 定 与 y 相 切 于 (。 。,则 切 线 假 = ,Y)

试述初三数学函数教学中数形结合的创新思想

试述初三数学函数教学中数形结合的创新思想

试述初三数学函数教学中数形结合的创新思想初三数学函数教学中,数形结合是一种创新的教学思想。

它旨在通过将数学知识与几何形状相结合,帮助学生更直观地理解和应用函数概念,提高他们的数学思维能力和问题解决能力。

数形结合能够帮助学生深入理解函数的几何意义。

在传统的函数教学中,学生往往只注重函数的代数表达式和运算规则,而忽略了函数的几何意义。

而数形结合则将函数概念与几何形状联系起来,在图形中展示函数的变化规律,帮助学生直观地理解函数的含义和性质。

通过画出函数图像,学生可以观察到函数的增减性、最值点等特征,从而更好地理解函数的单调性和极值。

数形结合可以激发学生的创新思维。

在数形结合的教学过程中,学生需要运用几何形状和变换的知识,将数学概念与实际问题相结合,进行问题的拓展和推广。

当学生已经掌握了线性函数的概念和图像特征后,教师可以提出一个拓展问题:如何确定一个函数的斜率与两条平行直线的斜率之间的关系?通过观察和比较不同直线的图像,学生可以可能发现斜率与平行关系的规律,从而培养他们的发现问题和解决问题的能力。

数形结合可以促进学生的多元智能发展。

根据霍华德·加德纳的多元智能理论,人类的智能包括语言智能、逻辑数学智能、空间智能等多个方面。

传统的函数教学往往只注重逻辑数学智能的培养,而忽略了其他智能的发展。

而数形结合则能够通过绘制图形、观察图像等方式,激发学生的空间智能和视觉智能,使学生能够以多种方式理解和运用数学知识。

通过绘制函数图像,学生可以用图形的方式展示数学概念和关系,培养他们的空间智能和创造力。

数形结合还可以提高学生对数学的兴趣和学习动力。

图形具有直观性和形象性的特点,能够使抽象的数学概念变得具体可见,从而增加学生对数学的兴趣和投入程度。

通过举一反三、巧解题目等方式,鼓励学生主动探究和发现数学问题的解题方法,激发他们的好奇心和求知欲。

当学生发现只有斜率为负的函数图像才与x轴相交时,他们可能会对这个有趣的性质产生兴趣,并主动探索更多类似的问题,提高他们的学习动力和主动性。

函数教学中渗透数形结合思想论文

函数教学中渗透数形结合思想论文

函数教学中渗透数形结合的思想函数是高中数学的主要内容之一,它是一条纽带,把高中数学的各个分支紧紧地连在一起。

高中数学课程标准指出:“数学作为教育的组成部分,在发展和完善人的教育活动中、在形成人们认识世界的态度和思想方法方面,在推动社会进步和发展的进程中起着重要作用。

”数学知识本身固然重要,但是对学生后续的学习、生活和工作长期起作用,并使其终身受益的是数学思想方法。

如果说知识和技能是数学学习的基础,而数学思想方法则是数学的灵魂和精髓。

在函数的教学中,渗透数形结合的思想方法是很好的时机。

数形结合,主要指的是数与形之间的一一对应关系,就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。

数形结合的思想方法,就是把数学问题中的数量关系与空间形式结合起来进行思维的思想方法。

我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。

”通过对《函数单调性》《指数函数》的备课研究,我设计函数单调性的教学目标为:“通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力。

”指数函数的能力目标:“体会数形结合思想、分类讨论思想,增强学生识图用图的能力。

”事实证明,在函数的教学中,运用数形结合的思想方法能起到很好的教学效果。

1、数形结合,有利于激发学生学习兴趣数学的一个重要特点就是它具有抽象性。

运用数形结合的思想方法,是遵从学生的认知规律,可以让学生体验从特殊→一般→特殊的认知过程,了解函数的实际背景。

课堂教学只有遵循了学生的认知规律,才能促使学生的思维得到发展。

因此,在教学函数的单调性这一内容时,我先引导学生观察两组图像,让学生直观体验函数图像在区间上升和下降的区别。

引出了函数单调性的定义。

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用数形结合思想在二次函数教学中的应用是非常重要的。

二次函数是高中数学中的重要内容,它在解决实际问题时,往往需要将数学知识与几何图形相结合,才能更好地进行分析和解决。

在讲解二次函数的基本概念时,可以借助几何图形进行解释。

通过绘制抛物线的图像,让学生直观地感受到二次函数的特点和性质。

可以引导学生观察图像的特点,如顶点、对称轴、开口方向等。

通过观察图像,学生可以更深入地理解二次函数的定义和性质。

数形结合思想在解决二次函数的最值问题时也能起到很大的帮助。

当需要求一个二次函数在一定区间内的最大值或最小值时,可以通过分析几何图像的形状来确定最值的位置。

如果是一个开口向上的抛物线,最小值即为顶点的纵坐标;如果是一个开口向下的抛物线,则最大值为顶点的纵坐标。

通过这种数形结合的思想,学生不仅可以快速找到最值的位置,还能够对最值的意义有更深入的理解。

数形结合思想在解决二次函数方程的根的个数和位置问题时也很有用。

通过绘制抛物线的图像,可以让学生观察到抛物线与x轴交点的个数和位置与方程的根的个数和位置是一致的。

如果抛物线与x轴只有一个交点,那么方程也只有一个实根;如果抛物线与x轴有两个交点,那么方程有两个实根;如果抛物线与x轴没有交点,那么方程没有实根。

通过这种数形结合的思想,学生可以更好地理解二次函数方程根的个数与位置的关系。

数形结合思想在解决二次函数的图像变换问题时也能起到很大的帮助。

在讲解平移变换时,可以通过移动抛物线的顶点,让学生理解平移变换对函数图像的影响;在讲解伸缩变换时,可以通过改变抛物线的开口程度,让学生理解伸缩变换对函数图像的影响。

通过这种数形结合的思想,学生可以更直观地理解各种函数变换的效果和特点。

数学中考复习:数形结合思想PPT课件

数学中考复习:数形结合思想PPT课件

距水平面的高度是4米,离柱子OP的距离为1米。 (1)求这条抛物线的解析式; y
(2)若不计其它因素,水池
A
的半径至少要多少米,才能
使喷出的水流不至于落在池 外?
P 3
4
O 1B 水平面 x
5. 已知一次函数y=3x/2+m和 y=-x/2+n的图象都经过点A(﹣2,0),且与 y轴分别交于B、C两点,试求△ABC的面积。
∴S△ABC=1/2×BC×AO=4
6.某机动车出发前油箱内有42升油,行驶若干小时
后,途中在加油站加油若干升。油箱中余油量Q(升)
与行驶时间t(小时)之间的函数关系如图所示,根
据下图回答问题:
(1)机动车行驶几小时后加油?答:_5_小时
(2)加油前余油量Q与行驶时间t的函数关系式
是:_Q=__42_-_6_t Q(升)
中考复习
数形结合思想
2024/9/19
1
谈到“数形结合”,大多与函数问 题有关。
函数的解析式和函数的图象分别从
“数”和“形”两方面反应了函数的性 质,
函数的解析式是从数量关系上反应 量与量之间的联系;
函数图象则直观地反应了函数的各
种性质,使抽象的函数关系得到了形象 的显示。
“数形结合思想”就是通过数量与
B、M = 0
C、M < 0
D、不能确定
运用数形结合的方法,将 -1 0 1
x
函数的解析式、图象和性
质三者有机地结合起来
1.二次函数y=ax2+bx+c的图象如图所
示.下列关于a,b,c的条件中,
不正确的是 ( D ) y
(A)a<0,b>0,c<0
(B)b2-4ac<0
(C)a+b+c<0

数形结合思想在函数解题中的应用

数形结合思想在函数解题中的应用

数形结合思想在函数解题中的应用摘要:数形结合思想是数学教学重视数学思想培养之一。

高中数学教学和学习中,灵活地应用数形结合思想可以更好地对于数的概念以及形的特征把握,可以化抽象为具体,能通过数与形快速解决问题。

解决数学问题关键的一大利器是利用数形结合思想关键词:数形结合思想;函数;解题1. 阐述数形结合思想在高中数学的教与学的过程中要重视合理的转化数与形,实现将难懂的的数学问题的性质清晰表现处理。

寻找到潜藏在数与形之间的对应关系是数形结合思想的本质所在,常见的我们是把数转化成形,从而直观形象的解决问题,同时大家不要忽略有时学会形转化成数。

这是因为过于直观和具体的形,无法凝练出具有一般性的特征。

充分理解数与形互化关系,把形转化成为数,答案通过计算得出。

总而言之,数形结合是高中数学重要的数学思想之一,学会数学互化的重要思想。

本文主要讨论的是数形结合的思想在函数解题中的应用:研究单调性,求函数的最值,函数的零点问题等。

2.数形结合思想在函数性质中的应用新课改更注重学生的自主学习,自己提练信息,所以出题更偏爱将函数的几种性质综合在一起考查学生。

如果学生只是从代数的角度去解题,那无疑会增加解题的难度,如果能利用图形的直观性,能大大的提高解题效果。

我们要引导学生解题的要充分利用数形结合的思想。

(1)数形结合思想在函数单调中的应用例1.设函数f(x)=若函数f(x)在区间(a,a+1)上单调递增,求实数a取值范围解析:函数f(x)的图象如图所示,由图象可知f(x)在(a,a+1)上单调递增,需满足a≥4或a+1≤2,即a≤1或a≥4.总结:单调性是函数的重要性质之一,它的主要应用是用来求解最值,求解不等式,比较大小,求参数等,不管哪一种应用,能画出函数的图像,通过图像中的单调得出答案,能大大的提高解题效率,充分体现了数形结合思想的重要性(2)数形结合思想在函数最值中的应用例题1:定义max{a,b,c}为a,b,c中的最大值,设M=max{2x,2x-3,6-x},求M的最小值解析:画出函数M={2x,2x-3,6-x}的图象(如图),由图可知,函数M在点A(2,4)处取得最小值22=6-2=4,故M的最小值为4.总结:函数的最值是函数中比较热点的题目。

试述初三数学函数教学中数形结合的创新思想

试述初三数学函数教学中数形结合的创新思想

试述初三数学函数教学中数形结合的创新思想在初中数学学习的过程中,函数是一个重要的概念。

而在教学中,数形结合被广泛应用于函数教学中,可以起到很好的创新作用。

下面将从以下几个方面阐述函数教学中数形结合的创新思想。

一、数形结合可以帮助学生深入理解函数的概念在函数的教学中,初学者往往难以理解函数的本质。

而数形结合可以帮助学生通过可视化的方式来理解函数的概念。

例如,在函数的图像上进行探究,可以使学生通过对图像性质的分析,从而更深入的理解函数的意义。

同时,通过绘图和观察,可以让学生对不同种类的函数有着更加直观的认识。

数形结合也可以帮助学生学习数学建模。

例如,在一个实际问题中,如果用函数来描述其中的关系,那么可以根据问题中的特点来选择函数的类型,并且利用函数的性质来解决问题。

通过将函数与实际问题相结合,学生可以体验到数学的实用性,也可以更加深入地理解函数的本质。

三、数形结合可以丰富函数的应用场景数形结合还可以帮助学生找到函数的应用场景。

由于函数在现实中有着广泛的应用,所以数形结合可以通过实际问题的分析,让学生感受到函数的实际意义,在设计问题解决方案的过程中感受到数学的实用性。

四、数形结合可以提高学生的学习兴趣和动力在教学中,数形结合的创新思想往往可以让教学内容与学生生活相关联起来,这样会让学生觉得学习变得更加有趣和有意义。

当学生学会了利用函数进行数学建模,以及解决实际问题的方法,他们就会感受到数学的实际意义,从而进一步深入学习数学。

总之,数形结合在函数教学中的创新思想,可以帮助学生更好地理解函数的概念,学会数学建模以及应用场景,以及提高学习兴趣和动力。

因此,在教学中,教师要注重使用数形结合的方式,以摆脱传统教学方法的固有模式,从而增强学生的学习积极性和创造性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数中的数形结合思想“数少形时缺直观,形少数时难入微”,它准确地告诉我们:数形结合,相得益彰;利用数、式进行深入细致的分析;利用图形直观又可以看出数、式的内在关系;数形结合思想是重要的数学思想,它是分析问题的思路基础. 因此,每年高考一定会重点考查,本文主要谈一下函数中的数形结合思想.一、函数中的由数到形由数到形是函数中数形结合的第一步,面对一个函数可以思考到其图形的特征,并能抓住这个特征进行深入分析,只有如此,才可能在函数中应用到数形结合思想.例1.设a<b,函数y=(x-a)2(x-b)的图像可能是()解析:看看函数式,可以发现x→+∞时,y→+∞,再看图形特征,立即排除A、B;再看a<x<b时,y<0,再看图形,排除D,于是选C.点评:本题将函数式的特征与图形特征对照分析,很快排除了干扰支,产生正确结论.例2.函数y=的图像大致为()解析:首先由函数的定义域可得ex≠e-x?圯x≠-x?圯x ≠0,看看图形,立即排除C、D.再由y′==-<0,即函数递减,选A.点评:本题若是想先作出图形,再对照选项选出结论的话,可能永远无法达到目的,由数到形,为我们求解此类问题开辟新的通道.二、初等函数图形的应用初等函数是我们接触到最为基础的函数,也是最为重要的函数,高考对其考查也相当频繁,因此,掌握初等函数的图形应用是在函数中应用数形结合思想的重要基础.例3.当a>1时,函数y=ax与函数y=logax的图像的交点个数()A.可能是0个、1个或2个B.只可能是2个C.只可能是0个D.可以是3个解析:假定y=ax与y=x相切于(x0,y0),则切线方程为y-a=a(lna)&#8226;(x-x0),因为过原点,得x0=,而x0=y0=a,所以=a,从而a=e,那么:(1)若a>e时,y=ax与y=x没有交点,故函数y=ax与函数y=logax的图像的交点个数为0;(2)若a=e时,y=ax与y=x相切,故函数y=ax与函数y=logax的图像的交点个数为1;(3)若1于是,正确的答案为A.点评:本题凭主观易错选答案C,当我们对图形能够深入的分析以后会发现真正的正确答案却是A.例4.设函数f(x)定义在实数集上,它的图像关于直线x=1对称,且当x≥1时,f(x)=3x-1,则有()A.f()< f()< f()B.f()< f()< f()C.f()< f()< f()D.f()< f()< f()解析:建立在x≥1时,f(x)=3x-1,且f(x)的图像关于直线x=1对称的基础上可得f(x)的图像如右.欲比较f(),f(),f()大小,主要看,,与对称轴的距离,易得f()< f()< f(),选B.点评:本题借助图像会很轻松地产生结论,倘若没有图像,可能要在“黑暗”中摸索更长一段时间.三、抽象函数图形的应用只有函数符号而没有具体函数式的函数,我们称为抽象函数.对于抽象函数,我们要根据所给出的条件对其图形进行分析、判断,可以发现图形的特征,并利用这些特征.例5.设f ′(x)是函数f(x)的导函数,将y=f(x)和y=f ′(x)的图像画在同一个直角坐标系中,不可能正确的是()解析:由于y=f(x)的单调性决定了f ′(x)是否大小零,可以看出A有可能正确,其中直线是y=f ′(x)的图像;B、C都有可能正确,x轴上方的是y=f ′(x)的图像;D不可能正确,故选D.点评:本题要将函数与其对应的图像性质紧密结合在一起,通过函数与导函数图像之间的关系产生结论.例6.若函数f(x)的反函数为f-1(x),则函数f (x-1)与f -1 (x-1)的图像可能是()解析:由于f(x)与f -1(x)的图像关于y=x对称,而f (x-1)与f -1 (x-1)的图像是分别将f(x)与f -1(x)的图像向右平移一个单位而得到,显然,对称性不改变,观察选项知正确答案为C.点评:“数”与“形”的关系是十分微妙的,本题如果你追求先作出图形再产生结论的话,此题你将永远无法完成.通过“数”的关系,产生“形”的关系,再利用“形”的关系产生结论,“数”与“形”的转化非常完美.四、函数图形性质的应用函数的图像性质主要指单调性、奇偶性、对称性及图形的平移换等.这些性质是函数的重要性质也是各类考试经常命题考查的性质,因此,我们必须能够将这些性质灵活应用.例7.已知函数f(x)=x2+4x,x≥04x-x2,xf(a),则实数a的取值范围是()A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-2,1)D.(-∞,-2)∪(1,+∞)解析:作出f(x)=x2+4x,x≥04x-x2,x<0的图像,如下图:由图像可知f(x)在定义域内是增函数于是,由f(2-a2)>f(a),得2-a2>a?圯-2点评:本题通过图形,立即发现函数是增函数,从而将函数值的不等关系转化为二次不等式,方便、快捷地产生了结论.例8.把函数f(x)=x3-3x的图像C1向右平移u个单位长度,再向下平移v个单位长度后得到图像C2.若对任意的u>0,曲线C1与C2至多只有一个交点,则v的最小值为()A.2B.4C.6D.8解析:设曲线C2的解析式为y=(x-u)3-3(x-u)-v则方程(x-u)3-3(x-u)-v=x3-3x,即3ux2(u3-3u+v)≤0,即v≥-u3+3u对任意u>0恒成立,于是v≥-u3+3u的最大值,令g(u)=-u3+3u(u>0),则g(u)=-u2+3=-(u-2)(u+2). 由此知函数g(u)在(0,2)上为增函数,在(2,+∞)上为减函数,所以当u=2时,函数g(u)取最大值,即为4,于是v≥4.点评:本题通过函数的单调性,顺利产生函灵敏的最大值,结合最大值产生结论.函数性质的利用为求解辅平了道路.五、注重函数图形的变换函数图形的对称变换、平移变换等,是函数图形变换的常用技法.有些函数问题的求解,其重心就在于图形的这些变换,抓到了,可求.否则,望题兴叹.例9.若x1满足2x+2x=5,x2满足2x+2log2(x-1)=5,x1+x2=()A.B.3C.D. 4解析:由2x+2x=5?圯2x-1=-x,令y1=2x-1,y2=-x,则x1是两函数图像交点的横坐标.又由2x+2log2(x-1)=5?圯log2(x-1)=-x,再令y3=log2(x-1),则x2两函数y1,y3图像交点的横坐标.由于y1=2x-1与y3=log2(x-1)的图像关于y=x-1对称,结合图像,易知x1+x2=2x0,联立y=x-1与y=-x得2x0=,选C.点评:本题不仅要会画图,更重要的是善于分析图形的关系,若你能得到两个图像关于对称,结论也就基本产生了.例10.设函数f0(x)=x,f1(x)=f0(x)-1,f2(x)=f1(x)-2,则函数y=f2(x)的图像与x轴所围成的图形中的封闭部分的面积为.解析:若想一下子作出y=f2(x)的图像很不容易,当我们了解了y=f(x)及y=f(x)的图像之间的关系以后按照顺序f0(x)=x→y= f0(x)-1→f1(x)=f0(x)-1→f0(x)=x →y=f0(x)-1→f1(x)=f0(x)-1→y=f1(x)-2→f2(x)=f1(x)-2作图形变换,就容易作出y= f2(x)的图像.易得答案为7.点评:本题又是如何利用图形的呢?只须按要求一步一步地进行变换,很快就可以得到了图形,有了图形再产生结论,真是易如反掌.六、合理构造,巧妙应用图形不是说每一题的图形都是十分清楚的,很多时候是要根据题中的条件进行构造,当构造成功时,结论自然也就产生了.例11.若f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,则满足(x+1)f(x-1)>0的x范围为.解析:注意到奇函数,同时注意到在(-∞,0)上是增函数,又f(-2)=0,于是,构造一个草图,结合草图转化不等式.由(x+1)f(x-1)>0?圯x+1>0,f(x-1)>0或x+1-1,-22或x2,即x的范围为{x|x2}.点评:本题的求解草图提供了很大帮助,草图是如何构造的呢?奇函数的图像关于原点对称,偶函数的图像关于轴对称,这是我们必须知道的.例12.函数f(x)=-的最大值为.解析:对已知函数进行变形,得f(x)=-可以构造为动点(x,x2)到两定点(3,2),(0,1)的距离之差,由于动点(x,x2)的轨迹为抛物线y=x2,如图易得连结(3,2),(0,1)并延长交抛物线于点A,此时,两点(3,2),(0,1)之间的距离,即为所求的最大值,其值为.点评:本题的构造构造难度较大、灵活性也较大,当完成这种构造之后,结论也就差不多产生了,当然,没有这种构造想产生结论真的相当难.七、数形结合的隐性应用数形结合的高级阶段是数形结合的隐性应用,整个求解过程并未看见图形在哪里?但结论的产生还真的离不开图形.例13.若x∈[0,1]时,22x-7解析:由22x-7设f(x)=x&#8226;lg+lg,由x∈[0,1]时,f(x)<0恒成立得:f(1)<0,f(0)<0?圯lg+lg<0,lg<0?圯lg<0,01,0点评:建立在f(x)<0恒成立的基础上,如何能产生f(1)<0,f(0)<0呢?是抓住了线段的特点,利用了线段的这一特点促使结论产生.例14.设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意[0,1]的上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.(Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f (x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;(Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(Ⅰ)所确定的含峰区间的长度不大于0.5+r;(Ⅲ)选取x1,x2∈(0,1),x1<x2,由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34(区间长度等于区间的右端点与左端点之差).解析:(I)当f(x1)≥f(x2)时,假设x*?埸(0,x2),则x1f(x1),这与f(x1)≥f(x2)矛盾,所以x*∈(0,x2),即(0,x2)是含峰区间.同理可证:当f(x1)≤f(x2)时,(x1,1)是含峰区间.(II)当f(x1)≥f(x2)时,含峰区间的长度为l1=x2;当f(x1)≤f(x2)时,含峰区间的长度为l2=1-x1;由题意得x2≤0.5+r,1-x1≤0.5+r,于是1+x2-x1≤1+2r,即x2-x1≤2r.又x2-x1≥2r,所以x2-x1=2r,那么x1=0.5-r,x2=0.5+r.显然,存在x1,x2使得所确定的含峰区间的长度不大于0.5+r.(III)对先选择的x1,x2,x1<x2,由(II)可知x1+x2=1.在第一次确定的含峰区间为(0,x2)的情况下,x3的取值应满足x3+x1=x2,x2=1-x1,x3=1-2x1,当x1>x3时,含峰区间的长度为x1;由条件x1-x3≥0.02,得x1≥0.34. 因此,为了将含峰区间的长度缩短到0.34,只要取x1=0.34,x2=0.66,x3=0.32.点评:本题设计的是一道研究性实验题,求解过程中始终将函数的图形联系在一起,为了缩短含峰区间的长度,始终要注意到“峰”的位置,必须注意函数图形的隐形应用.没有数形结合,就不可能产生本题中的三个结果.数形结合思想作为数学中的重要思想方法在函数中的体现远非就这么一点,这里只是起到“点睛”作用,更丰富、更精彩的应用还待同学们留心观察和总结.(作者单位:中山市第一中学)责任编校徐国坚“本文中所涉及到的图表、公式、注解等请以PDF格式阅读”。

相关文档
最新文档