数形结合思想在函数中的应用

合集下载

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用【摘要】二次函数教学中,数形结合思想的应用是非常重要的。

通过将数学与几何相结合,可以帮助学生更深入地理解二次函数的概念和特性。

通过实例分析和图形展示,学生能够直观地看到二次函数的图像与方程之间的关系,从而加深对这一知识点的理解。

通过实践操作,学生可以更好地掌握数学知识,提升他们的实际运用能力。

数形结合思想不仅可以提升学生的学习兴趣和效果,还可以帮助他们从多角度理解数学知识,提高数学素养。

在二次函数教学中,充分利用数形结合思想是非常有益的,可以有效提升学生的学习水平和综合素质。

【关键词】二次函数、数形结合、教学、图形、特性、实例分析、数学、几何、理解、实践操作、学习兴趣、学习效果、多角度、数学素养。

1. 引言1.1 二次函数教学的重要性二次函数作为高中数学中的重要内容之一,在学生数学学习中具有重要的地位。

学会了二次函数的相关知识,可以帮助学生理解和掌握高中数学中的很多概念和方法,为以后的学习打下坚实的基础。

二次函数的教学内容丰富多样,不仅可以帮助学生提高数学的解题能力,还可以培养学生的数学思维和创新能力。

二次函数具有许多独特的特性和规律,通过学习二次函数,可以让学生在数学上有更深入的认识和了解。

二次函数也广泛应用于生活和科学领域,学会了二次函数相关知识可以帮助学生更好地理解和解决实际问题。

二次函数教学的重要性不言而喻。

只有深入理解和掌握二次函数的相关知识,才能在数学学习中取得更好的成绩,为将来的发展打下坚实的基础。

二次函数的教学不仅具有重要的理论意义,更具有重要的实践意义。

通过深入的学习和实践,可以帮助学生更好地理解和应用二次函数相关知识,提高数学素养和解决实际问题的能力。

1.2 数形结合思想的意义数形结合思想在二次函数教学中扮演着至关重要的角色。

通过将数学与几何相结合,可以帮助学生更直观地理解抽象的数学概念,提高他们的学习兴趣与学习效果。

在二次函数这一抽象概念中,数形结合思想可以将函数的数学性质与图形的几何特征相联系,使学生更全面地理解二次函数的本质。

高中数学中数形结合思想在函数解题中的运用

高中数学中数形结合思想在函数解题中的运用

高中数学中数形结合思想在函数解题中的运用(一)数形结合在求函数定义域方面的应用例1:求函数y =的定义域. 解析:若要解决该函数的定义域,则有23200x x x ⎧-+≥⎨≠⎩,要解决此类不等式的解集, 需要借助图像,如右图:由图像可以看出,若要2320x x -+≥,只需1,x ≤或2x ≥,再由0x ≠,得出该函数的定义域即为:()(][),00,12,-∞+∞. 小结:随着学生做题熟练程度的增强,二次不等式的求解已不用再画图。

因此在求函数定义域方面,多见于画数轴选择出取值范围。

(二)数形结合在求函数值域方面的应用例2:求函数(]223,1,2y x x x =--∈-的值域. 解析:看到所求函数为二次函数,由于函数是非单调的,所以并不能代端点值去求出值域,因此需要借助图像来观察,如右图:借助图像的直观表达可知道,具有区间范围的该二次函数的图像应为黄色区域部分,此函数的最小值是在对称轴处取得,即当1x =时,4y =-。

从而该函数的值域为:(]0,4-。

小结:对于此类问题是学生的常见出错点,学生们习惯于直接带入端点值得出其值域,因此对于给定区间上的二次函数值域问题,培养学生数形结合的思想是非常重要的。

(三)数形结合在函数单调性方面的应用例3:已知2()2(1)2f x x a x =+-+在(],4-∞上是减函数,求实数a 的取值范围。

解析:函数解析式中含有字母,因此函数在坐标系内的具体位置不能固定,需要画图分析,看何种情况才能满足题干要求:通过图像分析可知:若要满足函数在给定区间上为单调函数,只能是后两种情况,也就是函数图像的对称轴不能出现在所给区间内,从而解题找到突破口。

所给函数对称轴方程:1x a =- ,由图像分析可知,需有a 14-≥,从而a 5≥。

小结:该类问题常见于二次函数中,因其单调性与对称轴的位置有关,故通常画图分析更能直观得出题目所需情况,从而快速得出结论。

(四)数形结合在函数奇偶性方面的应用例4:已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.试求当0x <时,函数()f x 的解析式。

数形结合思想在二次函数中的应用

数形结合思想在二次函数中的应用
2
① a a a a
2 ①有两个不相等的实数根;②有两个相等的实数根;③无实数根? 思考: 抛物线 y = ax + bx + c ( a ≠ 0 )与直线 y = kx + b 的交点个数? m=4 m>4 m<4 2 b − 4ac > 0 ⇔ 有2个交点 2 b − 4ac = 0 ⇔ 有1个交点 直线y=m y b 2 − 4ac < 0 ⇔ 没有交点 4
x
图2
什么没变? 什么没变?
3、如图2,把此抛物线先绕它的顶点旋转180°,则该抛物 y = ( x + 1) 2 + 4 线对应的解析式为________________; 若把新抛物线再向右平移2个单位,向下平移3个单位,
y = ( x − 1) 2 + 1 右 则此时抛物线对应的函数解析式为______________。 左“+”右
“-”
y
B 4
抛物线的平移本质上就是把握点的平移 点的平移 抛物线的平移
-1 o 1A源自x图2数形结合
1.若A(-1, y1 ),B( − 2,y2)是抛物线y = a ( x − 1) 2 + c(a > 0)上的两点, 则y1 ___ y2 (填 >, < 或 =)。 <
变式1:若A(-1, y1 ),B(4,y2)是抛物线y = a ( x − 1) 2 + c(a > 0)上的两点, 则y1 ___ y2 (填 >, < 或 =)。 < 变式 2:若 A(m, y1 ),B(m + 2,y2)是抛物线 y = a ( x − 1) 2 + c ( a > 0)上的两点, 当m取何值时,则 y1 = y2 ? y1 > y2 ?

数形结合思想在函数中的运用

数形结合思想在函数中的运用

题型四、与数形结合有关的综合问题
例 4:已知函数 f ( x) lg x ,若存在互不相等的实数 a , b ,使得
f (a) f (b) ,求 ab 的值.
lg x , 0 x 10 变式:已知函数 f ( x) 1 ,若实数 a, b, c 互 x 6, x 10 2
题型二、比较数的大小问题
例 2:若 a 30.6 , b log3 0.6 , c 0.6 3 ,则 a, b, c 的大小关系为 (用“ ”连接)
变式:已知函数 f ( x) 2x x , g ( x) x log2 x , h( x) x3 x 的 零点分别为 a, b, c ,则 a, b, c 的大小关系为 .
镇江市实验高级中学2014届高三数学二轮复习
数形结合思想在函数中的运用
数形结合是通过“以形助数” (将所研究的代数问题转化 为研究其对应的几何图形)或“以数解形” (借助数的精确性 来阐明形的某种属性) ,把抽象的数学语言与直观的图形结合 起来思考,也就是将抽象思维与形象思维有机地结合起来, 解决问题的一种数学思想方法.它能使抽象问题具体化,复杂 问题简单化,在数学解题中具有极为独特的策略指导和调节 作用.
.
题型三、求函数的最值与参变量的范围问题
1 例 3:记 min a, b 为 a , b 两数的最小值.若 t min x, ,则 2x
t 的最大值为
变式:已知函数 y
.
x 1
2
x 1
的图象与函数 y kx 2 的图象恰有两个 .
交点,则 k 的取值范围为
具体地说,数形结合的基本思路是:根据数的结构 特征,构造出与之相应的几何图形,并利用图形的特性 和规律,解决数的问题;或将图形信息全部转化为代数 信息,使解决形的问题转化为数量关系的讨论.

数形结合思想在函数解题中的应用

数形结合思想在函数解题中的应用

数形结合思想在函数解题中的应用摘要:数形结合思想是数学教学重视数学思想培养之一。

高中数学教学和学习中,灵活地应用数形结合思想可以更好地对于数的概念以及形的特征把握,可以化抽象为具体,能通过数与形快速解决问题。

解决数学问题关键的一大利器是利用数形结合思想关键词:数形结合思想;函数;解题1. 阐述数形结合思想在高中数学的教与学的过程中要重视合理的转化数与形,实现将难懂的的数学问题的性质清晰表现处理。

寻找到潜藏在数与形之间的对应关系是数形结合思想的本质所在,常见的我们是把数转化成形,从而直观形象的解决问题,同时大家不要忽略有时学会形转化成数。

这是因为过于直观和具体的形,无法凝练出具有一般性的特征。

充分理解数与形互化关系,把形转化成为数,答案通过计算得出。

总而言之,数形结合是高中数学重要的数学思想之一,学会数学互化的重要思想。

本文主要讨论的是数形结合的思想在函数解题中的应用:研究单调性,求函数的最值,函数的零点问题等。

2.数形结合思想在函数性质中的应用新课改更注重学生的自主学习,自己提练信息,所以出题更偏爱将函数的几种性质综合在一起考查学生。

如果学生只是从代数的角度去解题,那无疑会增加解题的难度,如果能利用图形的直观性,能大大的提高解题效果。

我们要引导学生解题的要充分利用数形结合的思想。

(1)数形结合思想在函数单调中的应用例1.设函数f(x)=若函数f(x)在区间(a,a+1)上单调递增,求实数a取值范围解析:函数f(x)的图象如图所示,由图象可知f(x)在(a,a+1)上单调递增,需满足a≥4或a+1≤2,即a≤1或a≥4.总结:单调性是函数的重要性质之一,它的主要应用是用来求解最值,求解不等式,比较大小,求参数等,不管哪一种应用,能画出函数的图像,通过图像中的单调得出答案,能大大的提高解题效率,充分体现了数形结合思想的重要性(2)数形结合思想在函数最值中的应用例题1:定义max{a,b,c}为a,b,c中的最大值,设M=max{2x,2x-3,6-x},求M的最小值解析:画出函数M={2x,2x-3,6-x}的图象(如图),由图可知,函数M在点A(2,4)处取得最小值22=6-2=4,故M的最小值为4.总结:函数的最值是函数中比较热点的题目。

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用二次函数教学中的“数形结合”思想的应用二次函数作为高中数学中的重要内容之一,其教学一直备受学生和教师的关注。

在二次函数教学中,要求学生不仅要能够掌握相关的概念和定理,还要能够应用所学的知识解决实际问题。

“数形结合”思想在二次函数教学中的应用显得尤为重要。

本文将针对二次函数教学中的“数形结合”思想进行分析和探讨,以期能够更好地引导学生理解和掌握二次函数的相关知识。

一、探究二次函数图像的特点在二次函数教学中,学生首先需要了解二次函数的图像特点。

一般来说,二次函数的图像是一个抛物线,其开口方向由二次项系数的正负性决定,开口向上的抛物线代表二次项系数大于0,开口向下的抛物线代表二次项系数小于0。

二次函数的顶点坐标、对称轴方程、零点坐标等也是学生需要掌握的内容。

通过学习这些内容,学生可以初步认识二次函数图像的特点,从而为后续的学习打下基础。

在教学中,可以通过让学生观察二次函数图像的变化,来引导他们探究二次函数图像的特点。

可以让学生改变二次函数的系数,观察对图像的影响,从而深入理解二次函数的图像特点。

老师还可以通过实例演示的方式,引导学生进一步理解二次函数图像的特点,激发学生的学习兴趣,提高他们对二次函数图像特点的理解能力。

二、数形结合的实际应用在学生掌握了二次函数的图像特点后,就可以引入“数形结合”思想,让学生将数学知识与实际问题相结合,进行实际应用。

可以通过实际问题来引导学生分析和解决问题,从而培养学生的数学建模能力和解决问题的能力。

通过实际问题的应用,还可以让学生更加直观地理解二次函数的意义和应用价值,提高他们对数学知识的兴趣和学习积极性。

在教学中,老师可以鼓励学生提出问题、进行实验和观察,从而引导他们进行自主探究。

通过这样的方式,学生可以更加深入地理解二次函数的相关知识,同时也可以培养其独立思考和问题解决的能力。

在探究性学习的过程中,老师要给予适当的指导和帮助,促进学生的学习成果,从而提高他们的学习效果。

数形结合思想在函数与方程中的应用

数形结合思想在函数与方程中的应用

数形结合思想在函数与方程中的应用数形结合思想,就是把代数中的数与几何中的形结合起来理解问题,通过数与形的相互转化来解决数学问题的思想.数形结合思想在高考数学中占有重要地位。

下面练习利用数形结合思想解决函数与方程问题(一)数形结合在函数中的应用例1.定义在R上的奇函数f(x)满足f(x+1)=f(-x),当x∈时,f(x)=log(x+1),则f(x)在区间内是( )2A.减函数且f(x)>0B.减函数且f(x)<0C.增函数且f(x)>0D.增函数且f(x)<0解析由f(x+1)=f(-x)可知,函数f(x)的图象关于直线x=对称,又函数f(x)为奇函数,故f(x+1)=f(-x)=-f(x),∴f(x+2)=f(x),即函数f(x)的周期为2,又当x∈时,f(x)=log(x+1),故可得到函数f(x)的大致图象如图所示.由图象可知选B.2答案 B例2.已知函数y=的图象与函数y=kx的图象恰有两个交点,则实数k的取值范围是________.解析y===函数y=kx过定点(0,0).由数形结合可知:0<k<1或1<k<k,OC∴0<k<1或1<k<2.答案 (0,1)∪(1,2)例3.已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是( )A.9B.10C.11D.18解析:在坐标平面内画出y=f(x)与y=|lg x|的大致图象(如图),由图象可知,它们共有10个不同的交点,因此函数F(x)=f(x)-|lg x|的零点个数是10,故选B.答案 B[点评] 解决本题的关键是在同一坐标系中准确画出两函数的图象,有几个交点,原函数就有几个零点.1.数形结合在方程中的应用例4.已知点在函的图象上,且.求方程解的个数。

思路分析方程解的个数问题,用数形结合思想,其实是画出图像求图像交点个数答案:3解析:,画出及的图像,方程解的个数既为函数图像交点的个数,由图像知原方程有3个解。

数形结合思想在函数中的应用

数形结合思想在函数中的应用

数形结合思想在函数中的应用(江苏省泰州市海军中学杨金宝 225300)数形结合是数学研究的重要方法之一,是转化的数学思想的重要体现。

数形结合包括代数问题几何解和几何问题代数解两个方面,前者初中阶段有解析法和构造几何图形法,后者包括方程法和函数法。

本文从两方面探讨数形结合思想在初中数学中的应用。

(一)数形结合的简介中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。

”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。

“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。

(二)函数数形结合的应用1、图形信息的获取,建立适当的代数模型。

不少函数问题以图形的形式出现,图形中包含丰富的代数知识,仔细观察图形、图像、把握图形的特点、找出图形中的信息是解决问题的关键所在。

例1:某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头。

假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图像如图。

请结合图像,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
观察点到对称轴的距离判断函数值大 小:当抛物线开口向上,距离对称轴距 离越大,函数值越大;当抛物线靠开口 向下,距离对称轴距离越大,函数值越 小。
1
x
随堂检测
1.图为函数 y1 x 2 4 x - 1和y 2 4 的函数图象, x 观察函数图象,解决下 列问题。 为 __________ _ 解集为 _______
y 4
-3
-1 O 1
x
y ( x 1)2 4
方法理解
问题1. 结合图象思考: 方程-(x+1)2+4=0有几个实数解? 方程-(x+1)2+4=1有几个实数解? 方程-(x+1)2+4=5有几个实数解?
无实数解
y 4
1 0 y=-(x+1)2+4 1 O x 1 x -1 2 -3 1
恒成立,则a的取值范围是_____
变式训练 进一步探究函数图象发现: (1)函数图象与x轴有_____个交点,
所以对应的方程x²-2|x|=0有___个
不相等的实数根。 (2)方程x²-2|x|=2有___个不相
等的实数根。
(3)关于x的方程x²-2|x|=a有4个 不相等的实数根时,a的取值范 围是______
转化 不等式问题(数) 函数问题(形)
B
y 4
A -3 方法归纳:确定不等式解集的一般步骤: 找准交点的个数 -1 O 1 思考:不等式解集的确定?
确定各交点的横坐标 比较函数图象的高低 ④写出解集
x
典例讲解 例1 观察函数y=x²-2|x|的图象,解决下列问题。 (1)方程x²-2|x|=0的解______ (2)不等式x²-2|x|<0的解集___ (3)不等式x²-2|x|>3的解集___ (4)如果不等式m为何值时, 方程-(x+1)2+4=m ①有两个不相等的实数根; ②有两个相等的实数根; ③没有实数根?
思考:方程与函数的关系是什么?
方法归纳:方程解的个数 2+4 即为两个函数图象交点的 m y=-(x+1) 个数;方程的解就是交点 的横坐标
y 4
1 -1 O 1 y=m
变式2:若A(2,y1 ),B(4,y2)是抛物线y a( x 1) 2 c(a 0)上的两点, 则y1 __ y2
当m取何值时,则 y1 y2 ?
变式 3 :若 A(m,y1),B(m 2,y2)是抛物线 y a(x 1)2 c(a 0)上的两点,
思考:比较函数值大小的方法? 利用函数对称性:
( 1 )满足 y1 y 2的所有 x的值
(2)不等式 x 3 4 x 2 x 4>0的
-3
转化 方程问题(数) 函数问题(形)
x
问题3:结合图象思考 若直线y1=kx+m与抛物线y2=ax2+bx+c交于 A(1,0),B(-1,4)两点. 观察图象填空: (1)方程ax2+bx+c=kx+m x1=-1,x2 的解为 .=1 (2)不等式ax2+bx+c>kx+m 的解集为 -1<x<1 . (3)不等式ax2+bx+c<kx+m 的解集为 x<-1或x>1 .
例2.若A(-1,y1 ),B( 2,y2)是抛物线y a( x 1) 2 c(a 0)上的两点, 则y1 ___ < y2 (填 , 或 )。
变式1:若A(-1,y1 ),B(4,y2)是抛物线y a( x 1) 2 c(a 0)上的两点,
< y (填 , 或 )。 则y1 ___ 2
数形结合思想
在函数问题中的应用
复习目标
1.能根据函数的图象判断方程的解或不等式的解集
2.会利用函数的对称性和增减性来判断函数值的大小 关系
3.在探究过程中学会用数形结合的方法解决中考所涉 及的选择或填空题及第21题 4.在解题过程中渗透数形结合的数学思想
读图识图 如图是抛物线y=ax2+bx+c(a≠0) 的图象,请 尽可能多的说出此函数的性质。
相关文档
最新文档