高中数学选修2-1--命题及其关系-公开课教案1
高中数学命题及其关系教案5 新人教A版选修2-1

原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互第二课时 1.1.2 命题及其关系(二)教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.教学重点:四种命题的概念及相互关系.教学难点:四种命题的相互关系.教学过程:一、复习准备:指出下列命题中的条件与结论,并判断真假:(1)矩形的对角线互相垂直且平分;(2)函数232y x x =-+有两个零点.二、讲授新课:(师生共析→学生说出答案→教师点评)②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)同位角相等,两直线平行;(2)正弦函数是周期函数;(3)线段垂直平分线上的点与这条线段两个端点的距离相等.(学生自练→个别回答→教师点评)2. 教学四种命题的相互关系:①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系.②四种命题的相互关系图:③讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系. ④结论一:原命题与它的逆否命题同真假;结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系.⑤例2 若222p q +=,则2p q +≤.(利用结论一来证明)(教师引导→学生板书→教师点评)3. 小结:四种命题的概念及相互关系.三、巩固练习:1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假.(1)函数232y x x =-+有两个零点;(2)若a b >,则a c b c +>+;(3)若220x y +=,则,x y 全为0;(4)全等三角形一定是相似三角形;(5)相切两圆的连心线经过切点.2. 作业:教材P9页第2(2)题P10页第3(1)题。
1.1.命题-人教B版选修2-1教案

1.1.命题-人教B版选修2-1教案1. 教学目标1.了解命题的概念及特点;2.学会使用真假命题、命题联结词等概念;3.能够将复杂的语句转化为命题;4.能够判断命题的真假。
2. 教学重点1.命题的概念及特点;2.真假命题、命题联结词等概念;3.将复杂语句转化为命题;4.命题的真假判断。
3. 教学难点1.较为复杂的命题联结符的使用;2.复杂语句的转化为命题;3.命题的判断。
4. 教学方法1.讲解法;2.示范法;3.练习法;4.分组讨论法。
5. 教学过程5.1. 导入新课通过几个小问题引入命题的概念,引起学生对本节课的兴趣。
5.2. 讲解命题首先给学生介绍命题的概念及特点。
并通过实例讲解命题的基本成分:命题主语和命题谓语,以及对命题的符号化表示。
5.3. 命题联结词接着,介绍命题联结词,包括合取、析取、蕴含和等价。
并给出实例,让学生了解命题联结词的使用方法。
5.4. 恒真命题与矛盾命题介绍恒真命题和矛盾命题的概念及特点,以及在实际生活中的应用。
并通过实例和练习让学生理解。
5.5. 判断复杂命题讲解如何将复杂的语句转化为命题,并演示如何通过真假命题和命题联结词,将复杂命题转化为简单命题。
并通过练习让学生掌握方法。
5.6. 命题的真假判断讲解如何通过真值表等方法判断命题的真假,并进行实例演练。
通过练习让学生掌握方法。
5.7. 总结课程对本节课内容进行总结,强调学生需要掌握的知识和技能。
6. 教学评估通过作业、小测验和课堂讨论等方式对学生的命题知识进行评估,检测学生的掌握程度和理解情况。
7. 拓展阅读为了加深学生对命题的理解和应用,可以为学生提供相关的阅读材料和实例分析,让学生进一步提高应用能力和分析能力。
8. 教学反思通过教学反思,总结本节课的优点和不足,为下节课的教学做好准备。
人教课标版高中数学选修2-1:《命题及其关系》教案-新版

1.1 命题及其关系一、教学目标(一)学习目标1.了解命题的定义,理解命题的条件和结论,能把命题改写成“若p,则q”的形式.2.能判断命题的真假.(二)学习重点命题的概念、命题的构成.(三)学习难点分清命题的条件、结论和判断命题的真假.二、教学设计(一)课前设计1.预习任务(1)在数学中,把用语言、符号或式子表达的,可以的陈述句叫做命题.其中的语句叫做真命题,的语句叫做假命题.(2)命题一般可以用表示,如.预习自测1.判断下列语句中哪些是命题?哪些不是命题?(1)2+2是有理数;(2)1+1>2;(3)2100是个大数;(4)968能被11整除;(5)非典型性肺炎是怎样传播的?【知识点】命题的概念.【数学思想】【解题过程】因为(1)(2)(4)都可以判断真假,且为陈述句;(3)中的“大数”是一个模糊的概念,无法判断其真假,所以不是命题;(5)中的语句是疑问句,所以不是命题.【思路点拨】略【答案】(1)(2)(4)均是命题;(3)(5)不是命题2.将下列命题改写成“若p,则q”的形式,并判断真假.(1)等腰梯形的两条对角线相等;(2)平行四边形的两条对角线互相垂直.【知识点】命题的概念.【数学思想】【解题过程】(1)若一个梯形是等腰梯形,则它的两条对角线相等.根据等腰梯形的性质显然为真命题.(2)若一个四边形是平行四边形,则它的两条对角线互相垂直.平行四边形两条对角线互相平分,只有为菱形时对角线才互相垂直,所以为假命题.【思路点拨】等腰梯形、平行四边形性质的理解.【答案】(1)若一个梯形是等腰梯形,则它的两条对角线相等.真命题.(2)若一个四边形是平行四边形,则它的两条对角线互相垂直.假命题.3.下列四个命题中,真命题是()A.a>b,c>d⇒ac>bd B.a<b⇒a2<b2C.11a b⇒a>b D.a>b,c<d⇒a-c>b-d【知识点】命题的真假.【数学思想】【解题过程】A.当a、b为正数,c、d为负数时不成立;B.当a、b中有一个为0时不成立;C.当a、b为负数时不成立;D.正确.【思路点拨】不等式的基本性质,常用举反例的方法.【答案】D.4.命题“若a>0,则二元一次不等式x+ay-1≥0表示直线x+ay-1=0的右上方区域(包含边界) ”的条件p:______________,结论q:______________.它是________命题(填“真”或“假”).【知识点】命题的概念.【数学思想】【解题过程】条件“a>0”;结论“二元一次不等式x+ay-1≥0表示直线x+ay-1=0的右上方区域(包含边界)”.显然为真命题.【思路点拨】命题条件标志性词为“若”,结论标志性词为“则”.【答案】a>0;二元一次不等式x+ay-1≥0表示直线x+ay-1=0的右上方区域(包含边界);真.(二)课堂设计教学过程设计2.问题探究探究一分析语句,理解命题●活动①归纳提炼概念请同学们随意说一句完整的话,每个小组可以派一名同学说,如:(1)我是中国人.(2)我家住在北京.(3)你吃饭了吗?(4)两条直线平行,内错角相等.(5)画一个45°的角.(6)平角与周角一定不相等.找出哪些是判断某一件事情的句子?(抢答)学生答:(1),(2),(4),(6).教师给出命题的概念,并举例.命题:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.分析(3),(5)为什么不是命题.教师分析以上命题中,紧抓两个关键点:一是“陈述句”,二是“可以判断真假”,这两个条件缺一不可.【设计意图】从生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程.●活动②概念辨析,巩固概念在数学课中,只研究数学命题,请学生举几个数学命题的例子,每组再选一个同学说.(不要让说过的再说)如:(1)对顶角相等.(2)等角的余角相等.(3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线.(4)如果a>0,b>0,那么a+b>0.(5)当a>0时,|a|=a.(6)小于直角的角一定是锐角.在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题.(7)a>0,b>0,a+b=0.(8)2与3的和是4.有些学生可能给予否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解.【设计意图】通过概念辨析,加深对集合内涵与外延的理解,突破重点.●活动③分析命题的构成,改写命题的形式.例如:“两条直线平行,同位角相等.”这个命题由哪些部分构成的?分析此命题的构成.前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论.已知事项为“题设”,由已知推出的事项为“结论”.定义:从构成来看,所有的命题都由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常我们把这种形式的命题中的p叫做命题的条件,q叫做命题的结论.请同学们将下列命题写成写成“若p,则q”的形式.①对顶角相等.②两条直线平行,内错角相等.③等角的补角相等.以上三个命题的改写由学生进行,对②要更改为“如果两条平行线被第三条直线所截,那么内错角相等.”提示学生注意:题设的条件要全面、准确.如果条件不止一个时,要一一列出.如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:“如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直.”【设计意图】加深学生对命题形式的理解.探究二分析命题,理解真、假命题●活动①归纳提炼概念请同学们分析两个命题的不同之处.(1)若a>0,b>0,则a+b>0.(2)若a>0,b>0,则a+b<0.相同之处:都是命题.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论.不同之处:(1)中的结论是正确的,(2)中的结论是错误的.教师及时指出:同学们发现了命题的两种情况.结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题.假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题.注意:(1)真命题中的“一定成立”不能有一个例外;(2)假命题中“结论不成立”是指“不能保证结论总是正确”;(3)注意命题与假命题的区别,如:“延长直线AB”.这本身不是命题.也更不是假命题.(4)命题是一个判断,判断的结果就有对错之分.因此就要引入真假命题,强调真假命题的大前提,首先是命题.【设计意图】让学生理解真假命题的概念.●活动②运用概念,判断真假命题.例1 请判断以下命题的真假.(1)若ab>0,则a>0,b>0.(2)两条直线相交,只有一个交点.(3)如果n是整数,那么2n是偶数.(4)如果两个角不是对顶角,那么它们不相等.(5)直角是平角的一半.【知识点】命题的真假.【数学思想】【解题过程】(1)若ab>0,则a<0,b<0也成立;(4)不是对顶角的两个角也可能相等,如同位角等.【思路点拨】举反例.【答案】(1)(4)都是假命题,(2)(3)(5)是真命题.总结:怎样辨别一个命题的真假.(1)实际生活问题,实践是检验真理的唯一标准.(2)数学中判定一个命题是真命题,要经过证明.(3)要判断一个命题是假命题,只需举一个反例即可.【设计意图】让学生运用真假命题的概念判断命题的真假,巩固概念.●活动③巩固基础,检查反馈例2 在空间,下列命题正确的是( )A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【知识点】点线面位置关系、命题.【解题过程】A 中平行投影可能平行,A 为假命题.B 、C 中的两个平面可以平行或相交,为假命题.由线面垂直的性质知,D 为真命题.【思路点拨】通过点线面的知识和命题的概念判断.【答案】D .同类训练 下列四个命题中,真命题是( )A .a b >,c d >ac bd ⇒>B .22a b a b <⇒< C. 11a b a b<⇒> D .a b >,c d a c b d <⇒->- 【知识点】不等式的性质、命题.【数学思想】【解题过程】可以通过举反例的方法说明A 、B 、C 为假命题.【思路点拨】通过不等式的性质和命题的概念判断.【答案】D .●活动④ 强化提升,灵活运用例3 命题“若a >0,则二元一次不等式x +ay -1≥0表示直线x +ay -1=0的右上方区域(包含边界)”的条件p :________,结论q :_________.它是________命题(填“真”或“假”).【知识点】不等式的性质、命题.【数学思想】【解题过程】a >0时,设a =1,把(0,0)代入x +y -1≥0得-1≥0不成立,∴x +y -1≥0表示直线的右上方区域.∴命题为真命题.【思路点拨】通过不等式的性质和命题的概念判断.【答案】 a>0 二元一次不等式x +ay -1≥0表示直线x +ay -1=0的右上方区域(包含边界) 真同类训练 把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)当14m >时,方程mx 2-x +1=0无实根; (2)平行于同一平面的两条直线平行.【知识点】一元二次方程根的性质、点线面的位置关系、命题.【解题过程】根据命题的形式改写命题,根据一元二次方程根的性质、点线面的位置关系判断.【思路点拨】通过不等式的性质和命题的概念判断.【答案】(1)命题可改写为:若14m>,则mx2-x+1=0无实根.因为当14m>时,Δ=1-4m<0,所以是真命题.(2)命题可改写为:若两条直线平行于同一平面,则它们互相平行.因为平行于同一平面的两条直线可能平行、相交或异面,所以是假命题.●活动④介绍一个不辨真伪的命题.“每一个大于4的偶数都可以表示成两个质数之和”.(即著名的哥德巴赫猜想) 我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确.我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”.即已经证明了“1+2”,离“ 1+1”只差“一步之遥”.所以这个命题的真假还不能做最好的判定.【设计意图】让学生了解数学文化,激发学生的学习兴趣.3.课堂总结知识梳理1.一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.命题是由条件和结论两部分构成,均可写成“若p,则q”的形式.3.如果命题的条件通过推理可以得到命题的结论,这样的命题称为真命题;如果命题的条件通过推理不可以得到命题的结论,这样的命题称为假命题.重难点归纳1.命题与真、假命题的关系.2.抓住命题的两部分构成,判断一些语句是否为命题.3.命题中的题设条件,有两个或两个以上,写“如果”时应写全面.4.判断假命题,只需举一个反例,而判断真命题,数学问题要经过证明.(三)课后作业基础型自主突破1.下列语句中命题的个数为()①{0}∈N;②他长得很高;③地球上的四大洋;④5的平方是20.A.0 B.1C.2 D.3【知识点】命题的概念.【数学思想】【解题过程】①④是命题,②③不是命题.地球上的四大洋是不完整的句子.【思路点拨】理解命题的概念.【答案】C.2.若a>1,则函数f(x)=a x是增函数()A.不是命题B.是真命题C.是假命题D.是命题,但真假与x的取值有关【知识点】命题真假的判断,指数函数.【数学思想】【解题过程】当a>1时,指数函数f(x)=a x是增函数,故“若a>1,则函数f(x)=a x是增函数”是真命题.【思路点拨】指数函数的单调性.【答案】B.3.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是()A.m⊂α,n⊂α,m∥β,n∥β⇒α∥βB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.n∥m,n⊥α⇒m⊥α【知识点】命题真假的判断,空间中点线面的位置关系.【数学思想】【解题过程】验证排除法:A选项中缺少条件m与n相交;B选项中两平行平面内的两条直线m与n关系不能确定;C选项中缺少条件n⊄α.【思路点拨】空间中点线面的位置关系.【答案】D.4.给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②若a>b>0,c>d>0,则ac>bd;③对角线相等的四边形是矩形;④若xy=0,则x、y中至少有一个为0. 其中是真命题的是()A.①②③B.①②④C.①③④D.②③④【知识点】命题真假的判断,不等式,一元二次方程,平面几何.【数学思想】【解题过程】①中Δ=4-4(-k)=4+4k>0,所以①为真命题;②由不等式的乘法性质知命题正确,所以②为真命题;③如等腰梯形对角线相等,不是矩形,所以③是假命题;④由等式性质知命题正确,所以④是真命题,故选B.【思路点拨】常见命题真假的判断.【答案】B.5.对于向量a、b、c和实数λ,下列命题中的真命题是()A.a·b=0,则a=0或b=0 B.若λa=0,则λ=0或a=0C.若a2=b2,则a=b或a=-b D.若a·b=a·c,则b=c【知识点】命题真假的判断,向量.【数学思想】【解题过程】A选项中可能有a⊥b;C选项中a2=b2说明|a|=|b|,a与b并不一定共线,D选项中a·b=a·c说明a·(b-c)=0,则a⊥(b-c) .【思路点拨】向量的运算性质.【答案】B.6.命题“平行四边形的对角线既互相平分,也互相垂直”的结论是()A.这个四边形的对角线互相平分B.这个四边形的对角线互相垂直C.这个四边形的对角线既互相平分,也互相垂直D.这个四边形是平行四边形【知识点】命题的形式.【数学思想】【解题过程】该命题的条件是“一个四边形是平行四边形”,结论是“这个四边形的对角线既互相平分,也互相垂直”.【思路点拨】命题的条件和结论.【答案】C.能力型师生共研7.给出下列四个命题:①若a>b>0,则1a>1b;②若a>b>0,则a-1a>b-1b;③若a>b>0,则2a+ba+2b>ab;④若a>0,b>0,且2a+b=1,则2a+1b的最小值为9.其中正确命题的序号是________.(把你认为正确命题的序号都填上) 【知识点】命题真假的判断,不等式.【数学思想】【解题过程】①在a>b>0两端同乘以1ab可得1b>1a,故①错;②由于1()aa-1()bb--=(a-b)0)11(>+ab,故②正确;③由于2a+ba+2b-ab=22(2)b ab a b-+<0,即2a+ba+2b<ab,故③错;④由2a+1b=)12(ba+·(2a+b)=5+2ba+2ab≥5+22ba·2ab=9,当且仅当2ba=2ab,即a=b=13时取得等号,故④正确.【思路点拨】不等式的性质和比较大小的方法.【答案】②④.8.设a是已知的平面向量且a≠0.关于向量a的分解,有如下四个命题:①给定向量b,总存在向量c,使a=b+c;②给定向量b和c,总存在实数λ和μ,使a=λb+μc;③给定向量b和正数μ,总存在单位向量c,使a=λb+μc.④给定正数λ和μ,总存在单位向量b和单位向量c,使a=λb+μc.上述命题中的向量b、c和a在同一平面内,且两两不共线,则真命题的个数是( )A .1B .2C .3D .4【知识点】命题真假的判断,平面向量的基本定理.【数学思想】【解题过程】对于①,由向量的三角形加法法则可知其正确;由平面向量基本定理知②正确;对③,取值法)4,4(=a ,2=μ,)0,1(=b 无论λ取何值,向量b λ都平行于x 轴,而向量c μ的纵坐标一定为4,故找不到这样一个单位向量c 使等式成立所以③错误;④显然错误,给定正数λ和μ,不一定满足“以|a |,|λb |,|μc |为三边长可以构成一个三角形”,这里单位向量b 和c 就不存在.可举反例:λ=μ=1,b 与c 垂直,此时必须a 的模为2才成立.【思路点拨】熟悉平面向量基本定理的几何意义.【答案】B .探究型 多维突破9.已知函数f (x )=|x 2-2ax +b |(x ∈R ),给出下列命题:①若a 2-b ≤0,则f (x )在区间[a ,+∞)上是增函数;②若a 2-b >0,则f (x )在区间[a ,+∞)上是增函数;③当x =a 时,f (x )有最小值b -a 2;④当a 2-b ≤0时,f (x )有最小值b -a 2.其中正确命题的序号是________.【知识点】命题真假的判断,函数的单调性和最值.【数学思想】【解题过程】由题意知f (x )=|x 2-2ax +b |=|(x -a )2+b -a 2|.若a 2-b ≤0,则f (x )=|(x -a )2+b -a 2|=(x -a )2+b -a 2,可知f (x )在区间[a ,+∞)上是增函数,所以①正确,②错误;只有在a 2-b ≤0的条件下,才可能在x =a 时,f (x )取最小值b -a 2,所以③错误,④正确.【思路点拨】函数单调性的判断和最值的求法.【答案】①④.10.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.【知识点】真假命题,不等式.【数学思想】【解题过程】由lg(x 2-2x -2)≥0,得x 2-2x -2≥1,即x 2-2x -3≥0.解得x ≤-1或x ≥3.故命题p :x ≤-1或x ≥3.又命题q :0<x <4,且命题p 为真,命题q 为假,则⎩⎨⎧x ≤-1或x ≥3x ≤0或x ≥4, 所以x ≤-1或x ≥4.所以,满足条件的实数x 的取值范围为(-∞,-1]∪[4,+∞).【思路点拨】函数的定义域的判断和不等式的解法.【答案】(-∞,-1]∪[4,+∞).自助餐11.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这四句诗中,在当时条件下,可以作为命题的是( )A .红豆生南国B .春来发几枝C .愿君多采撷D .此物最相思 【知识点】命题的概念.【数学思想】【解题过程】“红豆生南国”是陈述句,所述事件在唐代是事实,所以本句是命题,且是真命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题,故选A.【思路点拨】命题的概念.【答案】A .12.下面是关于四棱柱的四个命题:①如果有两个侧面垂直于底面,则该四棱柱为直四棱柱;②如果两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③如果四个侧面两两全等,则该四棱柱为直四棱柱;④如果四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是________(写出所有真命题的编号).【知识点】命题真假的判断,空间几何体.【数学思想】【解题过程】②中由过相对侧棱截面的交线垂直于底面并与侧棱平行,可知命题成立,④中由题意,可知对角面均为长方形,即可证命题成立.①、③错误,反例如有一对侧面与底面垂直的斜四棱柱.【思路点拨】棱柱的概念.【答案】②④.13.设a、b、c是空间的三条直线,下面给出四个命题:①若a⊥b,b⊥c,则a∥c;②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是________.【知识点】命题真假的判断,空间中点线面的位置关系.【数学思想】【解题过程】∵垂直于同一直线的两条直线不一定平行,∴命题①不正确;∵与同一直线均异面的两条直线的位置关系可以共面,也可以异面,∴命题②不正确;∵与同一直线均相交的两条直线在空间中可以相交,也可以平行或异面,∴命题③不正确;∵当两平面的相交直线为直线b时,两平面内分别可以作出直线a与c,即直线a与c不一定共面,∴命题④不正确.【思路点拨】空间中直线与直线的位置关系.【答案】0.14.设α、β、γ为两两不重合的平面,c、m、n为两两不重合的直线,给出下列四个命题:①如果α⊥γ,β⊥γ,则α∥β;②如果α∥β,c⊂α,则c∥β;③如果α∩β=c,β∩γ=m,γ∩α=n,c∥γ,则m∥n.其中真命题个数是()A.0个B.1个C.2个D.3个【知识点】命题真假的判断,空间中点线面的位置关系.【数学思想】【解题过程】①α⊥γ,β⊥γ,则α与β可相交,①错误;②中∵α∥β,∴α与β无公共点,又c⊂α,∴c与β无公共点,∴c∥β,故②正确;由c∥γ,c⊂β,β∩γ=m得c∥m,同理可得c∥n,∴m∥n,故③正确.【思路点拨】点线面的位置关系.【答案】C.15.判断下列语句中哪些是命题,是命题的,请判断真假.(1)末位是0的整数能被5整除;(2)余弦函数是周期函数吗?(3)求证:当x∈R时,方程x2+x+2=0无实根.【知识点】命题真假的判断.【数学思想】【解题过程】由命题的概念可知只有(1)是命题且为真命题.【思路点拨】命题的概念.【答案】(1)是命题,真命题.(2)、(3)不是命题.16.把下列命题改写成“若p,则q”的形式,并判断真假.(1)对角线相等的四棱柱是长方体;(2)整数的平方是非负整数;(3)能被10整除的数既能被2整除,也能被5整除.【知识点】命题的形式.【数学思想】【解题过程】分清命题的条件和结论.【思路点拨】命题的形式改写.【答案】(1)可写为:“若四棱柱的对角线相等,则它是长方体”,这个命题是假命题,如底面是等腰梯形的直四棱柱.(2)“若一个数是整数,则它的平方是非负整数”,真命题.(3)“若一个数能被10整除,则它既能被2整除,也能被5整除”,真命题.。
高中数学人教版选修2-1 1.1.1命题 教案(系列二)

1.1 命题及其关系1.1.1 命题一:教法分析●三维目标1.知识与技能理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式.2.过程与方法多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力.3.情感、态度与价值观通过学生的参与,激发学生学习数学的兴趣.●重点、难点重点:命题的概念、命题的构成.难点:分清命题的条件、结论和判断命题的真假.二:方案设计●教学建议命题的概念在初中已经学习过,可以通过回顾初中知识引入,讲清命题概念中的两个问题,判断是否为陈述句,能否判断真假;重点放在命题的形式和判断命题真假的教学中,基于教材内容简单且以前曾经接触过,可以采用提问式、讨论式的教学方法,让学生在讨论、回答问题的过程中学习知识,增长技能,进而突破重难点.●教学流程创设问题情境,引出命题的概念,通过实例形成概念原型.⇒引导学生结合初中学习过的命题概念,比较、分析,揭示命题的特点及构成形式.⇒通过引导学生回答所提问题理解判断命题真假的方法.⇒通过例1及其变式训练,使学生掌握如何判断一个语句是否为命题.⇒通过例2及其互动探究,使学生掌握命题真假的判断方法,并对相关知识进行复习.⇒通过例3及其变式训练,完成对命题形式的认识与巩固,学会对命题进行改写.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.三、自主导学观察下列实例:①一条直线l,不是与平面α平行就是相交;②4是集合{1,2,3,4}的元素;③若x∈R,方程x2-x+2=0无实根;④作△ABC∽△A′B′C′上述语句中,哪些能判断真假?【提示】①、②、③、④是祈使句不能判断真假.1.定义在数学中,把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.分类①真命题:判断为真的语句叫做真命题;②假命题:判断为假的语句叫做假命题.1.“同位角相等”是命题吗?如果是命题,是真命题还是假命题?【提示】是命题,为假命题.2.你能把“同位角相等”写成“若……,则……”的形式吗?【提示】若两个角为同位角,则这两个角相等.命题的形式:“若p,则q”,其中命题的条件是p,结论是q.四、互动探究例1(1)x-2>0;(2)梯形是不是平面图形呢?(3)若a与b是无理数,则ab是无理数;(4)这盆花长得太好了!(5)若x<2,则x<3.【思路探究】(1)这些语句是陈述句吗?(2)你能判断它们的真假吗?【自主解答】(1)不是命题,因为变量x的值没有给定,不能判断真假.(2)不是命题,疑问句不是命题.(3)是命题,因为此语句是陈述句且是假的.(反例a=b=2)(4)不是命题,感叹句不是命题.(5)是命题,因为此语句是陈述句且是真的.(一)规律方法判断一个语句是否为命题的步骤:(1)语句格式是否为陈述句,只有陈述句才有可能是命题.(2)该语句能否判断真假,语句叙述的内容是否与客观实际相符,是否符合已学过的公理、定理,是明确的,不能模棱两可.(二)变式训练判断下列语句是否为命题,并说明理由.(1)一条直线l,与平面α不是平行就是相交;(2)若xy=1,则x,y互为倒数;(3)作△ABC∽△A′B′C′.【解】(1)是命题.直线l与平面α有相交、平行、l在平面α内三种关系,为假.(2)是命题.因xy=1时,x,y互为倒数,为真.(3)不是命题,祈使句不是命题.例2(1)函数y=sin4x-cos4x的最小正周期是π;(2)若x=4,则2x+1<0;(3)一个等比数列的公比大于1时,该数列为递增数列;(4)求证:x∈R时,方程x2-x+2=0无实根.【思路探究】语句――→命题定义判定是否是命题――→证明举反例真假命题【自主解答】(1)(2)(3)是命题,(4)不是命题.命题(1)中,y=sin4x-cos4x=sin2x-cos2x=-cos 2x,显然其最小正周期为π,为真命题.命题(2)中,当x=4,2x+1>0,是假命题.<0,公比q>1时,该数列为递减数列,是假命题.命题(3)中,当等比数列的首项a1(4)是一个祈使句,没有作出判断,不是命题.(一)规律方法1.真假命题的判定方法:(1)真命题的判定方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确逻辑推理的一个过程.判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.(2)假命题的判定方法:通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.2.解决本类问题的难点是对相关知识的理解与掌握.(二)互动探究在本例中,把不是命题的改为命题后,再把假命题改为真命题.【解】(2)是假命题,改为真命题为:若x=4时,则2x+1>0.(3)是假命题,改为真命题为:一个等比数列的公比大于1,首项大于零时,该数列为递增数列.(4)不是命题,改为真命题为:若x∈R,则方程x2-x+2=0无实根.例3(1)两个周长相等的三角形面积相等;(2)已知x,y为正整数,当y=x+1时,y=3,x=2;(3)当m>1时,x2-2x+m=0无实根;(4)当abc=0时,a=0且b=0且c=0.【思路探究】(1)这些命题的条件与结论分别是什么?(2)第2小题中大前提“已知x、y为正整数”该怎样处理?【自主解答】(1)若两个三角形周长相等,则这两个三角形面积相等,假命题;(2)已知x,y为正整数,若y=x+1,则y=3,x=2,假命题;(3)若m>1,则x2-2x+m=0无实根,真命题;(4)若abc=0,则a=0且b=0且c=0,假命题.(一)规律方法1.解决本例问题的关键是找准命题的条件和结论,进而化成“若p ,则q ”的形式.2.对于命题的大前提,应当写在前面,不要写在条件中;对于改写时语句不通顺的情况,要适当补充使语句顺畅.(二)变式训练把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)奇数不能被2整除;(2)当(a -1)2+(b -1)2=0时,a =b =1;(3)两个相似三角形是全等三角形;(4)在空间中,平行于同一个平面的两条直线平行.【解】 (1)若一个数是奇数,则它不能被2整除,是真命题;(2)若(a -1)2+(b -1)2=0,则a =b =1,是真命题;(3)若两个三角形是相似三角形,则这两个三角形是全等三角形,是假命题.(4)在空间中,若两条直线平行于同一个平面,则这两条直线平行,是假命题.五、易误辨析因知识欠缺,导致对命题真假判断失误典例 判断下列命题的真假.(1)若a >b ,则1a <1b; (2)x =1是方程(x -1)(x -2)=0的一个根.【错解】 (1)真命题. (2)假命题.【错因分析】 (1)误认为“两数比较大小时,大数的倒数反而小”,而忽视a 、b 的条件,当a >0,b <0时,a >b 但1a >1b. (2)因为方程的根为x =1或x =2,解题时误认为x =1不全面,而没有分析清逻辑关系.【防范措施】 平时学习时一定要对每一个基础知识理解透彻.【正解】 (1)假命题 (2)真命题六、课堂小结1.判断一个语句是否是命题要注意两点:(1)是不是陈述句;(2)能否判断真假.2.命题的真假判断要结合已有知识,进行严格的逻辑推理,对于描述较为简洁的命题可以分清条件和结论后改写成“若p ,则q ”的形式再加以判断.七、双基达标1.下列语句中是命题的是( )A.π2是无限不循环小数 B .3x ≤5 C .什么是“温室效应”D .《非常学案》真好呀!【解析】 疑问句和祈使句不是命题,C 、D 不是命题,对于B 无法判断真假,只有A 是命题.【答案】 A2.下列命题中是假命题的是( )A .5是15的约数B .对任意实数x ,有x 2<0C .对顶角相等D .0不是奇数 【解析】 对任意实数x ,有x 2≥0,所以B 为假命题.A 、C 、D 均为真命题.【答案】 B3.把命题“垂直于同一平面的两条直线互相平行”改写成“若p ,则q ”的形式为________.【答案】 若两条直线都垂直于同一个平面,则这两条直线互相平行4.判断下列语句是否为命题,若是命题,判断其真假.(1)求证:2是无理数.(2)若G 2=ab ,则a 、G 、b 成等比数列.(3)末位数字是0的整数能被5整除.(4)你是高二的学生吗?【解】 (1)不是命题,(2)假命题,(3)真命题,(4)不是命题.八、知能检测一、选择题1.(2013·郑州高二检测)在空间,下列命题正确的是( )A .平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .垂直于同一平面的两条直线平行【解析】 A 中平行投影可能平行,A 为假命题.B 、C 中的两个平面可以平行或相交,为假命题.由线面垂直的性质,D 为真命题.【答案】 D2.命题“6的倍数既能被2整除,也能被3整除”的结论是( )A .这个数能被2整除B .这个数能被3整除C .这个数既能被2整除,也能被3整除D .这个数是6的倍数【解析】 “若p ,则q ”的形式:若一个数是6的倍数,则这个数既能被2整除,也能被3整除.【答案】 C3.下列命题中,是真命题的是( )A .{x ∈R |x 2+1=0}不是空集B .若x 2=1,则x =1C .空集是任何集合的真子集D .若1x =1y,则x =y 【解析】 A 中方程在实数范围内无解,故为假命题;B 中,若x 2=1,则x =±1,也为假命题;因为空集是任何非空集合的真子集,故C 为假命题,D 为真.【答案】 D4.给出命题:方程x 2+ax +1=0没有实数根,则使该命题为真命题的a 的一个值可以是( )A .4B .2C .0D .-3【解析】 方程无实根应满足Δ=a 2-4<0即a 2<4,故当a =0时适合条件.【答案】 C5.有下列命题:①若xy =0,则|x |+|y |=0;②若a >b ,则a +c >b +c ;③矩形的对角线互相垂直. 其中真命题共有( )A .0个B .1个C .2个【解析】 ①由x ·y =0得到x =0或y =0,所以|x |+|y |=0不正确,是假命题;②当a >b 时,有a +c >b +c 成立,正确,所以是真命题;③矩形的对角线不一定垂直,不正确.是假命题.【答案】 B二、填空题6.把“正弦函数是周期函数”写成“若p ,则q ”的形式是________.【答案】 若函数为正弦函数,则此函数是周期函数.7.如果命题“若x ∈A ,则x +1x≥2”为真命题,则集合A 可以是________.(写出一个即可)【解析】 当x >0时,有x +1x≥2,故A 可以为{x |x >0}. 【答案】 {x |x >0}8.下列命题:①若xy =1,则x ,y 互为倒数,②平行四边形是梯形,③若a >b ,则ac 2>bc 2,④若x 、y 互为相反数,则x +y =0,其中真命题为________.【解析】 ①是真命题,②平行四边形不是梯形,假命题,③若a >b ,则ac 2≥bc 2,故为假命题,④为真命题.【答案】 ①④三、解答题9.把下列命题改写成“若p ,则q ”的形式,并判断真假:(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)当ac >bc 时,a >b ;(4)角的平分线上的点到角的两边的距离相等.【解】 (1)若一个数是实数,则它的平方是非负数,真命题.(2)若两个三角形等底等高,则这两个三角形是全等三角形,假命题.(3)若ac >bc ,则a >b ,假命题.(4)若一个点是一个角的平分线上的点,则该点到这个角的两边的距离相等,真命题.10.判断下列命题的真假并说明理由.(1)合数一定是偶数;(2)若ab >0,且a +b >0,则a >0且b >0;(3)若m >14,则方程mx 2-x +1=0无实根. 【解】 (1)假命题.例如9是合数,但不是偶数.(2)真命题.因为ab >0,则a 、b 同号.又a +b >0故a 、b 不能同负,故a 、b 只能同正,即a >0且b >0.(3)真命题.因为当m >14时,Δ=1-4m <0; ∴方程无实根.11.若命题“ax 2-2ax -3>0不成立”是真命题,求实数a 的取值范围.【解】 因为ax 2-2ax -3>0不成立,所以ax 2-2ax -3≤0恒成立.(1)当a =0时,-3≤0成立;(2)当a ≠0时,应满足⎩⎨⎧a <0,Δ≤0, 解之得-3≤a <0.由(1)(2),得a 的取值范围为[-3,0].九、备课资源(一)备选例题下列四个命题:①若向量a ,b 满足a·b <0,则a 与b 的夹角为钝角;②已知集合A ={正四棱柱},B ={长方体},则A ∩B =B ;③在平面直角坐标系内,点M (|a |,|a -3|)与N (cos α,sin α)在直线x +y -2=0的异侧; ④规定下式对任意a ,b ,c ,d 都成立.⎝ ⎛⎭⎪⎫a b c d 2=⎝ ⎛⎭⎪⎫a b c d ·⎝ ⎛⎭⎪⎫a b c d =⎝ ⎛⎭⎪⎫a 2+bc ab +bd ac +cd bc +d 2,则⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α2=⎝ ⎛⎭⎪⎫1 00 1. 其中真命题是________(将你认为正确的命题序号都填上).【解析】 当a 与b 的夹角为π时,有a·b <0,但此时的夹角不为钝角,所以①是错误的;因为正四棱柱的底面是正方形,所以A ∩B =A ,故②也是错误的;因为|a |+|a -3|-2≥|a-a +3|-2=1>0,cos α+sin α-2=2sin ⎝⎛⎭⎫α+π4-2<0,所以点M ,N 在直线x +y -2=0的异侧,故③是真命题;根据题意有⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α2=⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α·⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α =⎝ ⎛⎭⎪⎫-sin α2+cos 2α -sin αcos α+cos αsin α-sin αcos α+cos αsin α cos 2α+sin 2α=⎝ ⎛⎭⎪⎫1 00 1, 所以④是真命题,故填③④.【答案】 ③④(二)备选变式把下面命题补充完整,使其成为一个真命题.若函数f(x)=3+logx(x>0)的图象与g(x)的图象关于x轴对称,则g(x)=________.2【解析】设g(x)图象上任一点(x,y),则它关于x轴的对称点为(x,-y),此点在f(x)的图象上,故有:-y=3+logx成立,即y=-3-log2x(x>0).2【答案】-3-logx(x>0)2。
新人教版高中数学选修2-1教案:第1章 命题与逻辑 1.1命题及其关系

1.1充分条件与必要条件【知识要点】1、命题的定义与结构(1)定义:我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
(2)命题的结构:具有“若p ,则q ”这种形式的命题是常见的。
我们把这种形式的命题中的p 叫做命题的条件,q 叫做命题的结论。
2. 四种命题(1)互逆命题:a. 定义:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题,其中一个命题叫原命题,另一个叫原命题的逆命题。
b. 形式:如果原命题为“若p ,则q ”,那么逆命题为“若q ,则p ”(2)互否命题:a. 对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫互否命题。
如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题。
b. 形式:如果原命题为“若p,则q ”,那么它的否命题为“若,p q ⌝⌝则。
(3)互为逆否命题:a. 对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆否命题。
b. 形式:如果原命题为“若p ,则q ”,那么它的逆否命题为“q,p ⌝⌝则”(注意:原命题与逆否命题等价,逆命题与否命题等价) 3、 充分条件和必要条件的定义:一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q ,记作p q ⇒,即p 是q 的充分条件,q 是p 的必要条件。
4、 充要条件:一般地,如果既有p q ⇒,且q p ⇒,那么就记作:p q ⇔5、 从逻辑推理关系上看:① 若,q >p p q ⇒≠,则p 是q 的充分而不必要条件;② 若,p >q q p ⇒≠,则p 是q 的必要而不充分条件;③ 若,q p q p ⇒⇒,则p 是q 的充分必要条件(充要条件);④ 若>,q >p q p ≠≠,则p 既不是q 的充分条件也不是q 的必要条件。
高中数学(命题及其关系-四种命题)教案2 苏教版选修2-1 教案

=,则
B B
不能被2整除;
结论:这些语句都是陈述句,且它们都能判断真假。
一般地,我们用语言、符号或式子表达的,可以判断真假的陈述句,叫做命题;其中判断为正确的命题,
例如,如果原命题是:⑴同位角相等,两直线平行;
它的逆命题就是:⑵两直线平行,同位角相等.
2.否命题与逆否命题的知识
即在两个命题中,一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题就叫做互否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.
例如⑶同位角不相等,两直线不平行;
⑷两直线不平行,同位角不相等.
3. 原命题与逆否命题的知识
即在两个命题中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题就叫做互为逆否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.
概括地说,设命题⑴为原命题,则命题⑵为逆命题;命题⑶为否命题;命题⑷为逆否命题.
关于逆命题、否命题与逆否命题,也可以这样表述:
⑴交换原命题的条件和结论,所得的命题是逆命题;
⑵同时否定原命题的条件和结论,所得的命题是否命题;
⑶交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.
4.四种命题的形式
一般到,我们用p和q分别表示原
命题的条件和结论,用┐p和┐q分别
表示p和q的否定,于是四种命题的形
式就是:
原命题:若p则q;。
新课标高中数学人教A版选修2-1全套教案

(一)教学目标选修 2—1 教案第一章常用逻辑用语1.1命题及其关系1.1.1命题1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“ 若 p,则q” 的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假(三)教学过程1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线 a 与直线b 没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数 a 是素数,则是 a 奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)=-2.( 2)2(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。
高中数学选修2-1精品教案2:1.1.1 命题教学设计

一、知识与技能
1.了解命题、逆命题、否命题与逆否命题的概念;
2.能正确判断命题的真假,掌握四种命题的关系,能求一般命题的逆命题、否命题、逆否命题.合理进行思维的方法。
3.会用反证法证明简单的数学问题
二、过程与方法
1.从实例出发,抽象出命题、逆命题、否命题与逆否命题的概念;
2.由具体事例入手,让学生发现命题、逆命题、否命题与逆否命题的关系;
3.由互为逆否命题的真假一致引导学生学会准确地判断命题的真假。
三、情感态度与价值观
初步形成运用逻辑知识准确地表述问题的数学意识。
四种命题之间的关系和命题真假的判断.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1命题及其关系(第一课时)
——人教A版数学选修2-1
数学组:陈建达
一、知识与技能
1、理解命题的概念,能判断给定陈述句是否为命题,能判断命题的真假.
2、能把命题改写成“若p,则q”的形式.
3、能写出一个简单的命题(原命题)的逆命题、否命题、逆否命题.
二、过程与方法
1、通过学生感兴趣的话题引入数理逻辑,介绍数理逻辑的一些简单知识和作用,从中引起学生的学习兴趣.通过问题的方式让学生理解命题的概念和判断其真假.
2、通过复习旧知识引入新的知识,通过例题教学和学生的演练、比较.使学生掌握命题的四种形式,能写出一个简单的命题(原命题)的逆命题、否命题、逆否命题.
三、情感、态度与价值观
1、通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的的设置,通过学生对问题的探究思考,了解数理逻辑、理解命题的概念.
2、通过学生的参与,激发学生学习数学的兴趣.通过学生在学习过程中的感受、体验、认识,演练、比较,提高学习质量.
四、教学重点
1、命题的概念、构成.
2、命题的四种形式.
五、教学难点
1、改写命题的形式
2、掌握命题的四种形式,能写出一个简单的命题(原命题)的逆命题、否命题、逆否命题
六、教学辅助手段
1、多媒体辅助教学工具.
七、教学过程
1、创设情境
情境:我们学过一些对某一件事情作出判断的语句,例如:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
(2)两条平行线被第三条直线所截,同旁内角互补.
(3)对顶角相等.
(4)等式两边加同一个数,结果仍是等式.像这样判断一件事情的语句,叫做命题.
说谎者悖论:一个人在大厅演讲,他说:“我说这句话时正在说慌.”然后这个人问听众他上面说的这句话是真话还是假话?
罗素悖论:一位理发师说:他不给替自己理过发的人理发.那么请问,理发师能不能给自己理发?
2、探究新知
一、命题的定义:
可以判断真假的陈述句.
理解:(1)判断为真的语句叫做真命题.
(2)判断为假的语句叫做假命题.
练习1:下列语句是命题吗?你能判断它们的真假吗?
(1)12>5;
(2)0.5是整数;
(3)若x2=1,则x=1;
(4)x+3>0.
(5)x2-9x+1≥0
(6)x2+2x+1≥0
二、命题的构成——条件和结论
所有的命题都由条件和结论两部分构成.
理解:
(1)在数学中,命题常写成“若p,则q” 这种形式.
(2)命题中的p叫做命题的条件,q叫做命题结论.
3、即时巩固
练习2:指出下列命题中的条件p和结论q
(1)若整数a能被2整除,则a是偶数;
(2)菱形的对角线互相垂直且平分.
练习3:把下列命题改写成“若p,则q”的形式,并判断它们的真假:
(1)等腰三角形两腰的中线相等;
(2)偶函数的图象关于y轴对称;
(3)垂直于同一个平面的两个平面平行.
4、提升演练
课堂探究:
下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?(1)若f(x)是正弦函数,则f(x)是周期函数.
(2)若f(x)是周期函数,则f(x)是正弦函数.
(3)若f(x)不是正弦函数,则f(x)不是周期函数.
(4)若f(x)不是周期函数,则f(x)不是正弦函数.
三、四种命题
原命题:若P,则q.则:
逆命题:若q,则P.
否命题:若¬P,则¬q.
逆否命题:若¬q,则¬P.
练习4:判断下列命题的真假,并写出它们的逆命题、否命题、逆否命题,同时判断这些命题的真假.
(1)若a>b,则a2>b2;
(2)矩形的对角线相等.
5、回顾总结
1、命题的定义
2、命题的构成
3、四种命题
6、作业布置
1.整理课堂笔记,熟记四种命题的形式.
2.必做题:(1)课本P8页习题1.1 A组1,
3.
(2)阳光课堂P3页基础自主演练.
(3)阳光课堂P5页基础自主演练.
3.选做题:课本P8页习题1.1 B组1.
八、板书设计
基于以上教学设想,将黑板未被幕布遮蔽区域分区设计如下
九、教学反思。