推荐-直流调速系统课程设计报告 精品
直流电机调速系统设计报告

直流电机调速系统设计报告信息与控制工程学院电气工程系2015年1月23日一、实习任务:设计并制作一套直流电机调速系统,系统的结构简图如图1所示。
主要包括两个部分:主电路部分和以控制电路为核心的控制电路部分。
要求设计制作电路和主电路,实现如下功能:(1)通过码盘和光耦得到一系列脉冲利用M 法、T 法、或M/T 法对这些脉冲在单片机中进行处理即可得到电机的转速,可以在数码管上显示。
(2)DC/DC 电路能够正常工作,通过旋钮或旋钮设定转速,并能够通过电力电子电路输出合适的电压,使电机的转速达到设定转速。
直流电源DCDC驱动与保护电路单片机系统旋钮输入数码管显示码盘和光耦图1 基于单片机的直流电机调速系统示意图二、实习要求(1)单片机最小系统。
根据给出的单片机及相关的元器件,设计并制作单片机最小系统,单片机最小系统能够正常工作,即程序能够正常下载和运行。
(2)输入单元。
能够用键盘或者旋钮来实现对转速的设定。
(3)显示单元。
能够用数码管准确显示转速。
根据提供的元器件选择显示方案:采用并口+数码管;采用串口驱动数码管。
(我们组采用的是串口驱动数码管)(4)主电路单元。
根据所列出的原器件清单,选择和设计合理的DC/DC电路,能够实现对转速的闭环控制。
可以选择以下方案:BUCK 电路、H桥电路或半桥电路。
三、核心电路原理图220V78127805+5V 220:15104104104104+12V470uF220uF220uF 图1 整流电路接线图IR2125PWM1234567812V10uF10510422ohm4.7K1N4741M24V470uF图2 驱动电路(BUCK )电路接线图四、主程序流程 1) 主程序主程序初始化对转速值的个、十、百、千位进行分离,存入数组2)测速环节外部中断0开始M法计数值+1外部中断0结束定时器0中断开始定时器中断次数+1记满50次?清中断标志,重装计算转速、清计数值定时器0中断结束YN2)调速环节定时器1中断开始标志位清0,重装关LED显示取段码装入P0,取位码装入P2AD 开始转换显示位计数值Counter+1Counter = 4?Counter = 0定时器1中断结束NYADC中断开始清中断标志位将AD转换结果送入PWM占空比寄存器ADC中断结束五、心得体会本次课程设计任务为设计一个由单片机控制的直流电机调速系统,包含电源、单片机最小系统、光耦测速系统、PWM调速系统4部分。
V M双闭环直流调速系统课程设计报告

实训报告课程名称:专业实训专业:班级:学号:姓名:指导教师:成绩:完成日期: 2015 年 1月15 日任务书1 单闭环直流调速系统主电路设计单闭环直流调速系统是指只有一个转速负反馈构成的闭环控制系统。
在电动机轴上装一台测速发电机SF ,引出与转速成正比的电压U f 与给定电压U d 比较后,得偏差电压ΔU ,经放大器FD ,产生触发装置CF 的控制电压U k ,用以控制电动机的转速,如图所示。
直流电机,额定电压20V ,额定电流7A ,励磁电压20V ,最大允许电流40A 。
整流变压器额定参数的计算为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压U 2只能在一个较小的范围内变化,为此必须精确计算整流变压器次级电压U 2。
(1)二次侧相电流和一次侧相电流在精度要求不高的情况下,变压器的二次侧相电压U 2的计算公式: 几种整流线路变压器电压计算系统参数,如表所示。
表 几种整流线路变压器电压计算系统电路模式单相全波单相桥式三相半波三相桥式A C所以变压器二次侧相电压为:21.35200.930U V =⨯÷=变压器的二次侧电流I 2的计算公式: 几种整流线路变压器电流I d /I 2系数,如表。
表 几种整流线路变压器电流Id/I2电路模式 电阻性负载电感性负载单相全控桥 1 三相全控桥查表得,1A =。
变压器的二次侧电流:27d I I A ==变压器的一次侧电流I 1的计算公式:一次侧电流:2112/7302200.95I I U U A =*=⨯÷= (2)变压器容量整流电路为单相桥式,取121m m m ===。
二次容量:22221307210S m U I W ==⨯⨯= 一次容量:111112200.95209S mU I W ==⨯⨯= 平均计算容量:121()209.52S S S W =+= 整流器件晶闸管的参数计算及选择额定电压U TN 、电流I TN 、功率P TN 。
直流电机PWM调速课程设计报告

摘要在社会生活和生产中,常常需要改变电机的转速和转向。
通过改变电机回路中的电阻来改变电机转速;通过改变电机接到电源的正负极来改变电机的转向不失为一种简单易行、成本低廉的方法。
但是这种方法效率低、机械特性软、不能得到较宽和平滑的调速性能。
本文利用555芯片以及少量外部元件组成的占空比可调的多谐振荡器,输出PWM信号,接到L298电机驱动芯片,来驱动直流电机。
通过控制输出信号的占空比来控制电机的转速,而电机的转向可以通过双刀双掷开关控制L298芯片5和7引脚的高低电平输入来控制。
实验表明,占空比的调节范围为0%~95%,电机转速可以从零开始逐渐调快,转向可通过单刀双掷开关随意控制,达到了预期的目标。
本设计为直流电机的调速提供了一种简易的方法,同时获得了较宽和平滑的调速性能。
关键词:PWM;占空比;调速;多谐振荡器目录摘要 (I)目录 (II)第1章绪论 (1)1.1 直流电机调速起源 (1)1.2直流电机调速发展概况 (1)1.3 研究方案 (1)第2章预备知识 (2)2.1 555定时器 (2)2.2 L298驱动芯片 (4)2.3理论分析 (6)第3章系统组成及工作原理 (7)3.1系统组成 (7)3.2工作原理 (7)第4章电路设计方案 (11)第5章调试结果与分析 (13)结论 (15)参考文献 (16)附录 (17)第1章绪论1.1 直流电机调速起源自从电动机发明那天起,电动机的调速问题就成为人们思考的问题。
电动机被发明之后,被迅速用于人们的衣行住行当中,生产生活都离不开它。
电动车是生活最常见的运用电动机的例子,在电动车行驶过程中,由于路况的不断变化,经常需要调节电动机的速度来调节电动车的速度。
除此之外,医学领域、农业领域、工业领域,甚至是高新科技领域都离不开电动机,而且需要极其平滑细腻的调速性能,可见电动机调速是非常重要的。
随着科技的发展,人们掌握了越来越多的调速方法,方法也不断升级优化。
直流电机调速系统课程设计报告

直流电机调速系统设计报告题目:H桥&串口输出2016年3月一、设计任务设计并制作一套直流电机调速系统,主要包括两部分:主电路部分和以单片机为核心的控制电路部分。
要求设计、制作控制电路和主电路,实现如下功能:(1)通过码盘和光耦得到一系列脉冲,利用M法、T法或M/T法对这些脉冲在单片机中进行处理得到电机的转速,在液晶或数码管上进行显示;(2)DC/DC电路能够正常工作,通过旋钮或键盘设定转速,并能够通过电力电子电路输出合适的电压,使电机的转速达到设定转速。
(3)实验室提供24V直流电源为DC/DC电路供电,其余部分电源请利用220V市电自行设计。
数码管显示单元DC直流电源DC码盘和光耦驱动与保护电路单片机系统旋钮输入图1 系统总体框图二、硬件电路设计与制作2.1 显示部分电路设计使用计数器采集到电机转速后,需要用数码管进行显示。
我们组选择串口驱动数码管显示电路,74HC595芯片是一种串入并出的芯片,是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态。
首先使用三极管构成驱动电路,驱动数码管。
采用单片机的P0.0-P0.2作为74HC595时钟信号与输入口,使数码管显示相应转速,具体实现电路如图1。
图1 显示电路原理图2.2 驱动部分电路设计驱动部分作为电机与单片机控制器的结合部分,是本次设计的主电路,需要完成DC/DC变化的功能。
单片机产生PWM波送给驱动芯片IR2110,2110通过驱动电路控制MOSFET开关改变加在直流电机上的电压,从而达到改变转速的目的。
单片机产生的PWM1和PWM2波形要相反,控制斩波电路的半桥互补通断。
电路设计图如图2所示。
图2 驱动电路原理图2.3 电源部分设计电源设计部分共分两个部分,一部分是IR2110的供电电压和所有芯片的供电电压,另一部分是USB口供电电部分,使用电脑供电,两部分电路通过拨码开关进行切换。
市电供电电源采用220V交流电变成15V交流电,经整流桥变成直流电,再经7815、7805稳压得到15V和5V直流电,分别给驱动和单片机系统供电。
直流电动机调速系统课程设计

直流电动机调速系统课程设计直流电机转速电流双闭环调速系统设计设计报告设计人:李良友班级:电气优创0801学号:********同组人:辛迪硕郝齐心目录第一章设计任务 ................................................................................................................. - 1 -一、设计内容: ........................................................................................................ - 1 -二、设计要求: ........................................................................................................ - 1 -三、设计参数: ........................................................................................................ - 1 -第二章直流电动机转速电流双闭环调速系统设计 ......................................................... - 2 -一、转速、电流双闭环直流调速系统的组成及其静态结构图 ................................... - 2 -1、双闭环调速系统的组成 ......................................................................................... - 2 -2、稳态结构框图 ......................................................................................................... - 3 -二、转速、电流双闭环直流调速系统的动态模型 ....................................................... - 5 -三、按工程方法设计双闭环系统调节器 ....................................................................... - 6 -1、电流调节器的设计计算 ......................................................................................... - 6 -2、转速调节器的设计计算 ......................................................................................... - 8 -3 调速系统的开环传递函数 ................................................................................... - 10 -四、转速调节单闭环实验 ............................................................................................. - 11 -1、原理图各部分电路 ............................................................................................... - 11 -2、测试结果 ............................................................................................................... - 13 -五、自我评定 ................................................................................................................. - 14 -参考资料 ............................................................................................................................. - 15 -附录一速度反馈电路原理图附录二元件清单第一章设计任务一、设计内容:1、根据给定参数设计转速电流双闭环直流调速系统。
直流调速系统设计实训报告

直流调速系统设计实训报告直流调速系统是一种用于调节直流电机转速的系统。
在直流调速系统中,通常会采用电子调速器来控制电机的转速,通过调节电机的电压和电流来实现调速控制。
本次实训的目标是设计并搭建一个简单的直流调速系统,以实现对电机转速的控制。
首先,我们需要准备一些实验所需的器件和设备。
我们需要一个直流电机、一个电子调速器、一个电压源、一台示波器和一台频率计。
其中,电子调速器是用来控制电机转速的关键设备,电压源用来提供电机的工作电压,示波器用来观察电压、电流及转速波形,频率计用来测量电机转速。
其次,我们将电子调速器与直流电机进行连接。
首先,将电机的外壳接地,并将电机的两根输出线与电子调速器相应的输出端口相连。
然后,将电子调速器的输入端口连接到电压源的正负极,将电源的负极连接到地。
接下来,我们需要设置电子调速器的控制参数。
根据实验的要求,可以通过电子调速器上的调节按钮或旋钮来设置电机的转速。
我们可以根据实际需求来设置转速,观察电机的转速与频率计测到的数值是否一致。
然后,我们可以给电压源供电,并观察电子调速器是否正常工作。
可以通过示波器来观察电压和电流的波形,以及电机的转速。
如果波形和转速都正常,则说明直流调速系统可以正常工作。
最后,我们可以进行一些实际的调速实验。
可以通过改变电子调速器的控制参数,来改变电机的转速。
同时,可以通过示波器观察电机的电压和电流波形,以及频率计测到的转速数值,来验证实验结果的准确性。
通过这次实训,我们学到了直流调速系统的基本原理和设计方法。
这对于今后的工程实践和研究工作都有一定的帮助。
同时,我们也学会了如何使用电子调速器和相关的仪器设备,提高了我们的实验操作能力。
这次实训的结果也证明了我们的实验设计和操作的准确性和有效性。
以后,我们可以通过对实验结果的观察和分析,来进一步优化和改进直流调速系统的设计。
双闭环直流调速系统课程设计报告

1双闭环直流调速系统课程设计报告第一章主电路设计与参数计算调速系统方案的选择因为电机上网容量较大又要求电流的脉动小应采纳三相全控桥式整流电路供电方案。
电动机额定电压为220V 为保证供电质量应采纳三相减压变压器将电源电压降低。
为防止三次谐波电动势的不良影响三次谐波电流对电源的扰乱。
主变压器采纳 A/D 联络。
因调速精度要求较高应采纳转速负反应调速系统。
采纳电流截止负反应进行限流保护。
出现故障电流时过电流继电器切断主电路电源。
为使线路简单工作靠谱装置体积小宜采纳 KJ004 构成的六脉冲集成触发电路。
该系统采纳减压调速方案故励磁应保持恒定励磁绕组采纳三相不控桥式整流电路供电电源可从主变压器二次侧引入。
为保证先加励磁后加电枢电压主接触器主触点应在励磁绕组通电后方可闭合同时设有弱磁保护环节电动机的额定电压为 220V 为保证供电质量应采纳三相减 2 压变压器将电源电压降低为防止三次谐波电动势的不良影响三次谐波电流对电源的扰乱主变压器采纳D/Y 联络。
1.1 整流变压器的设计 1.1.1 变压器二次侧电压U2 的计算U2 是一个重要的参数选择过低就会没法保证输出额定电压。
选择过大又会造成延迟角α加大功率因数变坏整流元件的耐压高升增添了装置的成本。
一般可按下式计算即BAUUd2.112 1-1 式中 A-- 理想状况下α0°时整流电压 Ud0 与二次电压U2 之比即AUd0/U2B-- 延缓角为α时输出电压Ud 与 Ud0 之比即BUd/Ud0 ε——电网颠簸系数系数依据设计要求采纳公式11.2——考虑各样因数的安全BAUUd2.112 1-3由表查得A2.34 取ε 0.9 角α考虑 10°裕量则Bcosα 0.985222011.21061272.340.90.985UV 取 U2120V 。
电压比KU1/U2380/1203.2 。
1.1.2 一次、二次相电流 I1 、I2 的计算由表查得 KI10.816 KI20.816 考虑变压器励磁电流得取1.1.3 变压器容量的计算S1m1U1I1 1-4 S2m2U2I2 1-5S1/2S1S2 1-6 式中 m1、m2 -- 一次侧与二次侧绕组的相数表查得 m13m23 S1m1U1I13× 380×1415.6KVA由S2m2U2I23×110×44.914.85 KVA考虑励磁功率LP220×1.60.352kW 取 S15.6kvA 1.2 晶闸管元件的选择晶闸管的额定电压晶闸管实质蒙受的最大峰值电压TNU 乘以 23 倍的安全裕量参照标准电压等级即可确立晶闸管的额定电压 TNU 即 TNU 23mU 整流电路形式为三相全控桥查表得26UUm 则223236236110539808TNmUUUV 3-7 取晶闸管的额定电流选择晶闸管额定电流的原则是一定使管子同意经过的额定电流有效值TNI 大于实质流过管子电流最大有效值TI8 即 4 TNI 1.57AVTITI 或AVTI57.1TI57.1TIddIIKdI 1-8 考虑 1.52 倍的裕量AVTI1.52KdI 1-9 式中KTI/1.57dI-- 电流计算系数。
直流电机调速系统设计--实习报告

直流电机调速系统设计实习报告信息与控制工程学院**********2012-3-10一:设计任务:设计并制作一套直流电机调速系统,主要包括两部分:主电路部分和以单片机为核心的控制电路部分。
二:系统总体框图直流电源为24V单片机型号为STC12C5A16AD,此型号单片机有两路PWM,8路AD,有P0,P1,P2,P3口,每个口有四种方式。
输入用的是电位器,型号为103驱动用IR2125显示用的是共阳极型数码管码盘一圈有24个孔,每转一圈可产生24个脉冲三:主电路及驱动电路图图1:主电路图图2:驱动电路图四:主要测试结果这次测试我们组可以用旋钮实现转速的设定,能够用数码管显示转速,单片机输出占空比可调的PWM波,可以从0%调到100%,通过单片机系统与DC/DC电路系统的联调,能够实现对转速的开环控制,电机能够从零开始转动,实现可调,但调速效果没有想象中的好。
五:心得体会本次课程设计任务较重,而且时间较短,5天时间,我跟队友一起在完成设计任务的同时,学到了很多东西。
本次实习使我们对电气元件及电工技术有一定的感性和理性认识,对电工技术等方面的专业知识做了进一步的理解,并且将我们之前所学到的单片机、模电等相关知识结合掌握,运用到实践中。
此次课程设计,从电路设计到电路板的布局、焊接,再到程序的编写、下载、调试、实现,期间我们遇到很多问题,在我们努力及老师同学的帮助,最终顺利完成了任务。
课程设计实习是每一个大学毕业生必须拥有的一段经历,它使我们在实践中了解社会,让我们学到了很多在课堂上根本就学不到的知识,也打开了视野,增长了见识,培养学生理论联系实际的能力,提高分析问题和解决问题的能力,增强独立工作能力,培养学生团结合作,共同探讨,共同前进的精神,为我们以后更好地服务社会打下了坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言1957年,晶闸管(俗称可控硅整流元件,简称可控硅)问世,到了60年代,已生产出成套的晶闸管整流装置,使变流技术产生根本性的变革,开始进入晶闸管时代。
到今天,晶闸管-电动机调速系统(简称V-M系统)已经成为直流调速系统的主要形式。
直流电动机双闭环调速系统在工程中应用广泛,为了使系统具有良好的动态性能必须对系统进行设计。
特别是大型的钢铁行业和材料生产行业,为达到很高的控制精度,速度的稳定性,调速范围等要求,又由于交流调速在当时尚未解决好调速控制问题,调速范围不大,控制精度低,快速性差等性能指标不满足生产工艺的要求,所以当时大量使用的是直流电动机调速系统,尤其是直流双闭环调速系统,它具有调速性能好,范围宽,动态性能好等优点,特别是设计简单方便,虽然随着控制技术以及电力电子技术的的发展,制造工艺技术的提高,大量出现交流调速的传动系统,但直流传动所具有的优点特征,至今仍大量广泛地使用直流调速。
在此本人就飞机生产制造行业中的对必不可少的四辊压压延机主传动直流电机的调速,作了以下设计,以满足飞机轮胎制造工艺的生产要求。
目录1.设计任务与要求1.1 设计任务1.2设计要求与技术指标1.3方案比较论证1.3.1 总体方案比较1.3.2 单元方案比较2.主电路设计2.1 主电路工作设备设计2.2 主电路保护设备3.控制电路设计3.1 电流调节控制器(ACR)设计3.2 速度调节控制器(ASR)设计4.实验验证4.1 实验目的、内容、参数的整定4.2 实验数据与曲线4.3 实验结论5.总结6.参考文献1. 设计任务与要求1.1 设计任务四辊压延机主传动直流调速系统的设计压延机生产线主要是生产飞机轮胎的生产线,而四辊压延机又是飞机轮胎生产厂家的最关键的生产设备。
它运行的质量直接影响生产出来的飞机轮胎的质量的好坏,也同时直接对对飞机安全性有重大的影响,所以对四辊压延机的控制是至关重要的。
(一) 生产工艺流程以及控制的要求(1) 生产工艺流程帘布放布机储布机 四辊压延主机(主机1, 2仓库放 接 前 储 前 干 四 后 2布 头 三 布 四 燥 辊 四 套机 疏 辊 架 辊 辊 压 辊 卷化 电 电 延 电 取机 动 机 主 机 机机 机(2) 控制要求1)在压延前,必须给干燥辊加热60~80度,给主辊加热到70度左右(不至于使得橡胶冷却硬化)。
2)所有直流电机可单动也连动,并要求电枢可逆。
3)联动时,前四辊主机与后四辊不允许单动,而前三电机可单独停(便于帘布的疏化接头),因有储布机架,也不影响后面的工作,卷取机也可以单独停(便于两台卷取换卷)4)两台压延主机必须同时启动,停车,或者加速,减速,而且它们的技术指标完全相同。
5)前张力区的张力(最大为1000KG )通过前四辊电动机来控制,后张力区的张力(最大为1500KG )由后四辊电动机来控制。
6)在给定压延张力情况下,其压延速度由操作人员通过改变主机的速度来达到。
例如压延速度升高,使得前张力升高,通过控制器使前四辊电动机升速,使前张力维持不变。
同理后张力减少了,使后四辊电动机升速,使得后张力维持不变。
从而联动时使主机的前后张力基本维持不变下,速度也达到协调。
1.2 设计要求与技术指标四辊压延机主传动机1,2其电动机参数完全一致,要求相同只设计其中一个即可,稳态无静差,电流超调量δi ﹪<=5﹪, 空载启动至额定转速时的转速超调量δn ﹪<=10﹪ ,且启动时尽量避免电流的过大冲击。
电机有关参数:kw P NOM 125= V U NOM 220= A I NOM 640= m in /750r N NOM = Ω=08.0Ra ,电枢回路总电阻 Ω=15.0R ,22.5.120M N GD =,电流过载倍数λ=1.51.3 方案比较论证1.3.1 总体方案论证对于直流电动机调速的方法有很多,而且各有它自己的优点和不足。
各种调速方法大致如下:(1).弱磁调速通过改变励磁线圈中的电压Uf,使磁通量改变(Uf增大,磁通量增大;反之亦然)。
特点:保持电源电压为恒定额定值,通过调节电动机的励磁回路的励磁能力,改变电动机的转速。
这种调速方法属于基速以上的恒功率调速方法。
在电流较小的励磁回路内进行调节,因此控制方便,功率损耗小,用于调节励磁的电阻器功率小,控制方便且容易实现,而且更重要是可以实现无级调速,但由于电动机的换向能力有限以及机械强度的限制,速度不能调节太高,从而电动机的调速范围也就受到限制。
(2).串阻调速顾名思义,在回路中串入一电阻(大小根据实际需要),使电机特性变软特点:在保持电源电压和气隙磁通为额定值,在电枢中串如不同阻值的电阻时,可以得到不同的人为机械特性曲线,由于机械特性的软硬度,即斜率不同,在同一负载下改变不同的电枢电阻可以得到不同的转速,以达到调速的目的,属于基速以下的调速方法。
这种方法简单,容易实现,成本低,但外串电阻只能是分段调节,不能实现无级调速,而且电阻在一定程度上消耗能量,功率损耗大,低速运行时转速稳定性差,只能适应对调速要求不高的中小功率电动机。
(3).调压调速特点:在保持他励直流电动机的磁通为额定值的情况下,电枢回路不串入电阻,将电枢两端的电压(电源电压)降低为不同的值时,可以获得与电动机固有机械特性相互平行的人为机械特性,调速方向是基速以下,属于恒转矩调速方法。
只要输出的电压是连续可调的,即可实现电动机的无级调速,而且低速运行时的机械特性基本保持不变,所以得到的调速范围可以达到很宽,而且实现可逆运行。
但对于可调的直流电源成本投资相对其他方法较高。
又由于电力电子技术的发展,出现了各种的直流调压方法,大概有以下两种:1)使用晶闸管可控整流装置调速2)使用脉宽调制晶体管功率放大器基于以上特点,我们当前有3种方法可供选择。
方案1 弱磁调速系统采用弱磁调速。
由弱磁调速方法的特点可以看出:功率损耗小,特别是用于调节励磁的电阻器功率小,控制方便且容易实现,而且更重要是可以实现无级调速,为生产节约了生产成本。
这是它的优点。
但同时要注意到弱磁调速方法难以实现低速运行,以及可逆运行。
只能在基速以上运行,且电动机的换向能力以及机械强度的限制,速度不能调得太高,这就限制了它的调速的范围要求,针对我们要设计的目标调速系统,速度要求大约在750r/min,转速实现可逆,很明显这种调速方法难以做到这一点,必须要配合其他的控制方法才能实现,这样成本将会升高,而且控制将会变得复杂,失去了弱磁调速本身所具有的优点。
方案2 串阻调速系统采用串阻调速。
这种方法最大的优点就是实现原理简单,控制电路简单可靠,操作简便。
这种调速属于基速以下的调速方法,可以达到生产工艺对速度的要求。
但它外串电阻只能是分段调节,不能实现无级调速,而且电阻在一定程度上消耗能量,功率损耗大,低速运行时转速稳定性差,容易产生张力不平稳,难以控制,造成经常断带,严重影响轮胎生产的效率和质量。
方案3 调压调速系统采用调压调速的调速方法。
这种可以获得与电动机固有机械特性相互平行的人为机械特性,调速方向是基速以下,只要输出的电压是连续可调的,即可实现电动机的无级调速,而且低速运行时的机械特性基本保持不变,所以得到的调速范围可以达到很宽,而且实现可逆运行。
这种方法完全满足了飞机轮胎生产工艺的要求,它是基速下,运行平稳,可实现正反转运行。
鉴于以上对各种调速可行性方案的论述,本系统将采用调压调速的调速方法以满足生产工艺的要求。
1.3.2 单元电路方案论证1.3.2.1 主电路方案论证:主电路主要是指电源装置和执行机构(直流电动机),由于电动机是我们的控制对象,所以在此就电源装置进行可行性和优越性比较论证。
直流电动机的调压调速方法有两种,具体是:1)使用晶闸管可控整流装置调速;2)使用脉宽调制晶体管功率放大器,即PWM 调压调速控制。
方案比较:(1)PWM 调压调速电源装置采用PWM调压,利用的基本思想是:冲量相等而形状不同的窄脉冲加载到具有惯性的环节上时,其效果相同。
即惯性环节的输出响应相同。
SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。
图1 用PWM波代替正弦半波要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。
图 2 PWM 调压电路图上图为PWM可逆电路,正反组分别对电动机供电,实现电动机的正反转运行。
首先它需要先将交流转换为直流,再通过H桥式电路直流斩波,调节输出电压的平均值。
这里同样需要逻辑控制正反组IBGT的导通与关断,以免发生直流直通短路。
这种方法虽然可以实现,但实现相对复杂,而且制动控制较为复杂,关键是IGBT容量相对晶闸管容量小,限制了电动机的容量不能做的很大。
(2)使用晶闸管可控整流装置调压调速通过晶闸管的导通角的移相,改变触发角,从而改变电压的导通时间,改变电压的平均值。
电路如下图所示。
图 3 晶闸管可控整流装置电路图电路特点:电路直接由交流转换为直流,所以效率比较高。
其次,整流装置是SRC,容量相对IGBT而言,比较大,电动机的容量就可以做的相对较大,可靠性也比较高,技术成熟等优点。
设计的对象电机系统的容量是125KW,可以很好地满足容量的要求,再次,触发电路也比较简单,有现成的集成触发电路,设计起来相对简单。
不过由于也存在正反组问题,所以也要考虑逻辑控制问题,以免发生环路导通短路事故。
综上所述,综合考虑比较两者的优缺点,可调电源电路采用后者,使用晶闸管可控整流装置调压调速。
1.3.2.2 控制电路方案论证:对电动机转速的控制调节方法有几种控制策略方法:(1)采用单环的速度反馈调节加上截止负反馈的方法(2)采用双闭环速度电流调节方法方案论证:1)采用单环的速度反馈调节加上电流截止负反馈方法,实现比较方便,快捷,成本低,而且系统调试等很简单。
但我们注意到,生产要求张力有最大的限制,如果采用这种方法,也就是说我们惟有将电流截止的幅值位置顶在张力最大的位置,但在启动过程中系统是非线性的,而且是一个复杂的动态过程,不能简单地将最大的张力时的电流值定为电流截止负反馈的限制值,不仅影响了电动机的启动时间,而且难以把握电流的动态过程,容易产生断带,张力不均匀等缺点。
2)采用采用双闭环速度电流调节方法,这种方法虽然初次头次成本相对而言较高,但它保证了系统的性能,保证了对生产工艺要求的满足,它既兼顾了启动时的电流的动态过程,又保证稳态后速度的稳定性,在起动过程的主要阶段,只有电流负反馈,没有转速负反馈。
达到稳态后,只要转速负反馈,不让电流负反馈发挥主要作用很好地满足了生产需要。
由图4看出系统采用双环调节的性能优于单环的速度反馈调节加上电流截止负反馈方法,所以我们采用的控制器将选择为ACR与ASR。
外环为ASR,内环为ACR。