钢的热处理
钢的普通热处理

三、 回火的分类、组织及应用
回火 回火温度
类型
(℃ )
低温回火 150~250
中温回火 250~500
高温回火 500~600
回火后 组织
M回
T回
S回
回火后硬度
性能特点
(HRC)
58~64 硬度高, 耐磨性好,
脆性、 内应力降低。
35~50
良好弹性 ,屈强比高, 一定的韧性和抗疲劳性
一般规律: 随T回↑,钢的强度、硬度↓,塑性、韧性↑。(高合金钢不遵循)
40钢力学性能与回火温度的关系
淬火钢硬度随回火温度的变化
❖ 合金钢的回火(与碳钢相比)
➢ 回火稳定性高
回火温度相应升高
➢ 合金碳化物弥散析出
二次硬化
➢ 残余奥氏体多
需多次回火
四、钢的回火脆性
➢ 回火脆性的概念:淬火钢在某些温度范围内回
1. M在过冷奥氏体低温转变中形成, M回在 淬火钢低温回火中形成;二者形态相似,光镜下
M回比M黑;强度硬度相差不大,但M回脆性已大 大降低。
回火索氏体 马氏体
2. S在过冷奥氏体高温转变中形成,S回在淬 火钢高温回火中形成;S呈层片状,S回呈颗粒状; S回比S的塑性要好。
回火马氏体
淬火钢回火后性能的变化
淬火 精度要求高的工件
新型淬火介质: 聚乙烯醇、三硝盐水溶液等。
淬火工艺
淬火后的组织:一般,
亚共析钢 0.5%C时,为M 0.5%C时,为M+A残
共析钢:M+A残 过共析钢: M+粒状Fe3C+A残
15钢淬火组织:M板条
45钢淬火组织:M板条+M片状
T8钢淬火组织:M片状+A残
第6章 钢的热处理

保温
普通热处理
退火、正火、淬火、回火。
表面淬火
表面热处理
时间
化学热处理
预备热处理、最终热处理 毛坯成型 → 预备热处理 → 机械加工(粗加工)→ 最终热处理 → 精加工
5 状态图中三条重要线及加热和冷却速度对线的位置的影响
A3 A1 0 0.77 2.11 4.3 6.69
硬度650HB,塑性和韧性差
原因:碳过饱和程度大,晶格畸变大,
淬火内应力大,存在显微裂纹,
容易导致脆性断裂的出现,微 细孪晶存在破坏了滑移系使脆 性增大,塑性和韧性差。
孪晶M
M的硬度主要取决于含碳量
M 转变是在 Ms ~ Mf 进行。
残余A量随含碳量的增多而增多,即C↑ → A残↑
(三)影响C曲线的因素
1 碳的影响
亚共析钢和过共析钢C曲线上部
多出一条先共析相析出线。
A过转变前,亚共析钢析出F,过共析钢析出Fe3C 剩下的A过达到共析成分,再发生P类型转变。
共析钢C曲线最靠右,所以:共析钢A过最稳定。
亚共析钢随含碳量↑, C曲线向右移, A过稳定性↑。
过共析钢随含碳量↑, C曲线向左移, A过稳定性↓。
A+F F+P
A + Fe3CⅡ P+ Fe3CⅡ
2 冷却介质的选择
保证有足够的冷却速度V冷>Vk;
V冷↑→ 热应力和组织应力↑ 650 ℃~ 400℃: V冷要快
650℃ 550℃ 400℃
vk
常用淬火介质:水、盐水、矿物油
水:在650℃~400℃冷速很大,对A稳定性较小的碳钢非常有利。 但300 ℃~200 ℃冷速仍很大,组织应力大,易变形和开裂。 盐水:由于NaCl晶体在工件表面析出和爆破,破坏包围在工件表面的 蒸 汽膜,使冷速加快,而且可以破坏加热产生的氧化皮,使其 剥落。盐水淬火容易得到高硬度和光洁表面。但300 ℃~200 ℃ 冷速仍很大,组织应力大,易变形和开裂。 适用于形状简单、硬度要求高、表面要求光洁、变形要求不严格 的碳钢零件,如:螺钉、销钉、垫圈等。 矿物油:冷却能力弱:650℃~550℃,18℃水的冷却强度为1, 则50℃
钢的热处理

t2 t1
等温时间t M转变量与等温时间的关系
M转变是在Ms~Mf温度范围内迚行,与停留时间无关。
3
转变不完全
多数钢的Mf点在室温以下,因此冷却到室温时 仍会有A存在,称为残余A,用Ar表示。A的含碳 量越高,Ms、Mf就越低,所以Ar就越多。
100 80 60 40 20
4
瞬间形核,高速长大
Ms Mf 20 温度(℃) M转变量与温度的关系
E G A3
900
γ
Accm Arcm Acm
860
820
780
α+γ Ar3 P
Ac3
S
γ+Fe3C
K
740
临界点,它是制定热处理工
艺时选择加热和冷却温度的 依据。
700
α+Fe3C
660 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
w(C)%
3 钢在加热时的组织转变
3.1 A的形成
A A→F3C A→P A→B Ms
21 32
38
40 43 50 55
HRC
温度/℃
Mf
1 10 102 103 104 105
时间/s
影响C曲线的因素
⑴ 成分的影响
① 含碳量的影响:共析钢的C曲线最靠右,其余向左移动。
Ms 与Mf 点随含碳量增加而下降。
② 合金元素的影响
除Co 外, 凡溶入奥氏体的合金元素都使C 曲线右移。
4
原始组织的影响 ——原始组织越细,相界面越多,越有利于A形核。
4 钢在冷却时的组织转变
连续冷却转变 热处理时常用的冷却方式
等温转变
由于冷却过程大多不是极其缓慢的,得到的组织是不平衡组织,因
钢的热处理

由于加热冷却速度直接影响转变温度 ,因此一般手册中的数据是以3050℃/h 的速度加热或冷却时测得的.
第二节 钢在加热时的转变
加热是热处理的第一道工序。加热分两种:一种是在A1以下加热,不发生相变; 另一种是在临界点以上加热,目的是获得均匀的奥氏体组织,称奥氏体化。
20CrMnTi钢不同热处理工艺的显微组织
根据加热、冷却方式及钢组织性能变化特点不同,将热处理工 艺分类如下:
、火焰加热、
热处理
表面热处理
电接触加热等 化学热处理—渗碳、氮化、碳氮
共渗、渗其他元素等
控制气氛热处理
其他热处理
真空热处理 形变热处理
激光热处理
上贝氏体转变过程
上贝氏体转变过程观察
当转变温度较低(350- 230℃) 时,铁素体在晶界或晶内某些晶面上长成 针状,由于碳原子扩散能力低,其迁移不能逾越铁素体片的范围,碳在铁 素体的一定晶面上以断续碳化物小片的形式析出。
贝氏体转变属半扩散型转变,即只有碳原子扩散而铁原子不扩散,晶格类 型改变是通过切变实现的。
使切变部分的形状和体积发生变化,引起相 邻奥氏体随之变形,在预先抛光的表面上产 生浮凸现象。
马氏体转变 切变示意图
马氏体转变产生的表面浮凸
⑶ 降温形成 马氏体转变开始的温度称上马氏
体点,用Ms 表示.
马氏体转变终了温度称下马氏体 点,用Mf 表示.
只要温度达到Ms以下即发生马氏 体转变。
在Ms以下,随温度下降,转变量 增加,冷却中断,转变停止。
核率越高, 晶粒越细. ⑶合金元素:
钢的热处理定义及目的

钢的热处理定义及目的
嘿,朋友们!今天咱来唠唠钢的热处理。
那钢的热处理到底是啥呢?简单说呀,就是对钢进行一系列特别的操作。
咱先说说它的定义哈。
钢的热处理呀,就是通过加热、保温和冷却等手段,来改变钢的组织结构,从而让钢具备咱想要的性能。
就好比咱人要根据不同场合打扮自己一样,钢也要经过这样的“打扮”来变得更厉害。
那热处理的目的是啥呢?这可太重要啦!首先,它能让钢变得更硬更强。
想象一下,要是钢都软趴趴的,那能用来干啥呀,对吧?经过热处理,钢就可以硬起来,能承受更大的压力和力量。
其次呢,它可以提高钢的耐磨性。
就像咱的鞋子要是不耐磨,走几步路就坏了,那多闹心呀。
钢也是一样,要是不耐磨,用不了多久就不行了。
再者,热处理还能改善钢的韧性。
要是钢太脆了,稍微一碰就断了,那可不行呀!经过处理后,钢就没那么容易断啦。
还有哦,它能让钢的耐腐蚀性能变好。
就跟咱给东西涂一层保护膜似的,让钢不容易被腐蚀损坏。
比如说,咱家里用的刀具,那可就得经过热处理呀,不然切个菜都费劲,还容易坏。
还有汽车上的零件,不热处理能行么?那不得开着开着就出问题啦!这钢的热处理是不是超级重要呀?
总之呢,钢的热处理就是让钢变得更棒的一种方法,它能让钢在各种地方发挥更大的作用,为我们的生活带来便利和安全。
所以呀,可别小瞧了这钢的热处理哦!。
第六章 钢的热处理

第一节 概述
热处理的概念
热处理是将固态金属 或合金在一定介质中加 或合金在一定介质中加 保温和冷却, 热、保温和冷却,以改 变材料整体或表面组织, 变材料整体或表面组织, 从而获得所需性能的工 艺。 热处理工序 预备热处理—为随后的加工(冷拔、冲压、切削) 预备热处理 为随后的加工(冷拔、冲压、切削)或进一步 为随后的加工 热处理作准备的热处理。 热处理作准备的热处理。 最终热处理—赋予工件所要求的使用性能的热处理 最终热处理 赋予工件所要求的使用性能的热处理. 赋予工件所要求的使用性能的热处理
残余Fe3C溶解
4. 奥氏体成分均匀化
延长保温时间, 延长保温时间,让碳原子 充分扩散, 充分扩散,才能使奥氏体 的含碳量处处均匀。 的含碳量处处均匀。
A 均匀化
第二节 钢在加热时的转变 共析钢奥氏体化过程
第二节 钢在加热时的转变
(二)亚共析钢和过共析钢的奥氏体形成过程
亚共析钢和过共析钢与共析钢的区别是有先共析 亚共析钢和过共析钢与共析钢的区别是有先共析 其奥氏体的形成过程是先完成珠光体向奥氏体的 相。其奥氏体的形成过程是先完成珠光体向奥氏体的 转变,然后再进行先共析相的溶解 这个P→A 先共析相的溶解。 P→A的转变 转变,然后再进行先共析相的溶解。这个P→A的转变 过程同共析钢相同,也是经过前面的四个阶段。 过程同共析钢相同,也是经过前面的四个阶段。 对于亚共析钢,平衡组织F+P,当加热到AC1以上温 对于亚共析钢,平衡组织F+P,当加热到A 亚共析钢 F+P 度时,P→A, 的升温过程中,先共析的F 度时,P→A,在AC1~AC3的升温过程中,先共析的F逐 渐溶入A 渐溶入A, 对于过共析钢,平衡组织是Fe +P,当加热到A 对于过共析钢,平衡组织是Fe3CⅡ+P,当加热到AC1 共析钢 以上时,P→A, 的升温过程中, 以上时,P→A,在AC1~ACCM的升温过程中,二次渗碳体 逐步溶入奥氏体中。 逐步溶入奥氏体中。
钢材热处理的四种方法

钢材热处理的四种方法钢材热处理是指通过加热、保温和冷却等一系列工艺,改变钢材的组织和性能,以达到一定的技术要求。
在工程实践中,钢材热处理是非常重要的一环,可以有效提高钢材的硬度、强度、韧性和耐磨性等性能。
下面将介绍钢材热处理的四种常见方法。
首先,淬火是一种常见的钢材热处理方法。
淬火是指将钢材加热至临界温度以上,然后迅速冷却到室温或低温,使其组织发生相变,从而获得高硬度和高强度。
淬火是通过快速冷却来固溶过饱和的碳元素,形成马氏体组织,从而提高钢材的硬度。
淬火后的钢材具有较高的表面硬度和内部强度,适用于制作刀具、弹簧等工件。
其次,回火是钢材热处理的另一种重要方法。
回火是指将淬火后的钢材加热至较低的温度,保温一定时间后再冷却,目的是消除淬火产生的残余应力和改善硬度。
回火可以使钢材获得适当的硬度和韧性,提高其耐磨性和抗断裂性能,适用于制作各种机械零件和工具。
另外,正火是一种钢材热处理方法,也称为退火。
正火是将钢材加热至适当温度,保温一定时间后缓慢冷却,目的是使钢材内部组织发生均匀的晶粒再结晶和析出碳化物,从而获得较好的韧性和塑性。
正火后的钢材具有较低的硬度和较高的韧性,适用于制作焊接零件和需要较高韧性的零件。
最后,固溶处理是一种钢材热处理方法,主要用于不锈钢和高温合金等特殊钢材。
固溶处理是将钢材加热至固溶温度,然后保温一定时间后迅速冷却,目的是溶解钢材中的合金元素和固溶相,从而提高钢材的塑性和加工性能。
固溶处理后的钢材具有较好的塑性和韧性,适用于制作航空发动机零件和化工设备等高温高压工件。
综上所述,钢材热处理的四种方法分别是淬火、回火、正火和固溶处理。
每种方法都有其适用的钢材和工件类型,通过合理选择和控制热处理工艺参数,可以使钢材获得理想的组织和性能,满足不同工程要求。
在实际生产中,需要根据具体情况选择合适的热处理方法,以确保钢材具有良好的性能和可靠的使用寿命。
常用钢材热处理方法及目的

常用钢材热处理方法及目的常用钢材热处理方法一.淬火将钢制零件加热到临界温度以上40~60℃,保持一定时间并快速冷却的热处理方法称为淬火。
常用的快速冷却介质为油、水和盐水溶液。
淬火加热温度及冷却介质热处理规范见表淬火的目的是:使钢件获得高的硬度和耐磨性,通过淬火钢件的硬度一般可达hrc60~65,但淬火后钢件内部产生了内应力,使钢件变脆,因此,要经过回火处理加以消除。
钢件的淬火处理,在机械制造过程中应用比较普遍,它常用的方法有:1.单液淬火:将钢件加热至淬火温度,并在一种冷却剂中冷却一段时间。
这种热处理方法称为单液淬火。
适用于形状简单、技术要求低的碳钢或合金钢,以及工件直径或厚度大于5~8mm的碳钢,用盐水或水冷却;油冷却用于合金钢。
在单液淬火中,水冷容易变形和开裂;油冷却容易产生硬度不足或不均匀。
2.双液淬火:将钢件加热到淬火温度,经保温后,先在水中快速冷却至300~400℃,在移入油中冷却,这种处理方法,称为双液淬火。
形状复杂的钢件,常采用此方法。
它既能保证钢件的硬度,又能防止变形和裂纹。
缺点是操作难度大,不易掌握。
3.火焰表面淬火:将乙炔和氧气的混合燃烧火焰喷在工件表面,加热至淬火温度,然后立即向工件表面喷水。
这种处理方法称为火焰表面淬火。
适用于单件生产,要求高表面或局部表面硬度和耐磨钢件。
缺点是操作困难。
4.表面感应淬火:将钢件放人感应器内,在中频或高频交流电的作用下产生交变磁场,钢件在磁场作用下产生了同频率的感应电流,使钢件表面迅速加热(2-10s)至淬火温度,立即把水喷射到钢件表面。
这种热处理方法,称为表面感应淬火。
经表面感应淬火的零件,表面硬而耐磨,而内部有较好的强度和韧性。
这种方法适用于中碳钢和中等含碳量的合金钢件。
根据电流频率的不同,表面感应淬火可分为高频淬火、中频淬火和工频淬火。
高频淬火电流频率为100~150kHz,硬化层深度为1~3mm。
适用于齿轮、花键轴、活塞等小零件的淬火;中频淬火电流频率为500~10000Hz,硬化层深度为3~10mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③冷却(Cooling) 目的是使奥氏体转变为不同的组织。
热处理后的组织
加热、保温后的奥氏体在随后的冷却过程中,根据冷却速度的不同将转变成不同的组织。不同的组织具 有不同的性能。
钢的热处理-热处理的基本概念
热处理的特点
热处理不改变工件的形状,仅改变钢的内部组织和结构,从而改变钢的性能。
等温
A→P转变温度区
临界温度
空 冷
温度
时间
适用范围: 亚共析钢、(尤其是)合金钢。
钢的热处理-钢的退火与正火
特点:
大大缩短工件在炉内 的时间。
球化退火(Spheriodizing Annealing)
工艺规范: 加热温度:Ac1附近。 目的: 使钢中的渗碳体或碳化物球状化,以获得粒(球)状珠光体。 适用范围: 共析成分和过共析成分的钢。
适于机加工的硬度:HB170~230。
②消除残余内应力
防止工件淬火时变形或开裂。
③细化晶粒,改善组织
④为最终热处理(淬火和回火)作组织准备
获得粒(球)状珠光体。
钢的热处理-钢的退火与正火
3.退火的种类
第一类退火:
目的和作用: 不以组织转变为目的,使钢的不平衡状态过渡到平衡状态。 种类: 扩散退火、再结晶退火、去应力退火。
热处理的作用
改善钢(工件)的力学性能或工艺性能,充分发挥钢的性能潜力, 提高工件质量,延长工件寿命。
重要结论:
材料是否能够通过热处理而改善其性能,关键条件是材料在加热和冷却过程中是否发生组织和结构的变 化。
三、热处理的类型
钢的热处理-热处理的基本概念
1.按加热、冷却方式及钢的组织、性能不同分类
热处理工艺
细小的奥氏体组织。该过程又称为钢的奥氏体化(Austenitizing)。
钢的热处理-钢的退火与正火
第四节 钢的退火与正火
一、退火(Annealing)
1.退火的定义
通常是随炉冷却
退火是将钢加热至临界点Ac1以上或以下温度,保温后缓慢冷却下来以获得近于平衡状态组织的热处理工艺。
2.退火的目的
①调整硬度以便切削加工
第②种加热方式发生在临界温度Ac1以下,
不一定有组织转变。
加热的目的:
本节介绍第①种加热过程,目的是使钢从 室温组织(如珠光体)转变为奥氏体,即获 得均匀
温度
钢的热处理-钢在加热时的转变
加加 热热
保温 保温
Ac1
冷 冷
却
却 ②①
时间
加热钢的两种方式
相变(Phase Transformation):
材料中的一种相在一定条件下转变为另一种相 的过程。
一、热处理的定义
热处理是指金属在固态下经加热、保温和冷却,以改变金属的内部组织和结构,从而获得所需性能的一 种工艺过程。
温度
保温
临界温度
冷
加
热
却
时间
热处理工艺曲线示意图
钢的热处理-热处理的基本概念
二、热处理的基本要素和作用
热处理的三大要素
①加热( Heating) 目的是获得均匀细小的奥氏体组织。
扩散退火(Diffusing Annealing)
又称为均匀化退火(Homogenizing Annealing)。 工艺规范: 加热温度:略低于相图上的固相线。 目的: 消除偏析。
钢的热处理-钢的退火与正火
钢的热处理-钢的退火与正火
二、正火(Normalizing)
1.正火的定义
正火是将钢加热至Ac3或Accm+ 30C~50C,保温后空冷以获得近于平衡状态组织的热处理工艺。 与退火相比,正火冷却速度快,得到较细的P,强度和硬度也较高。
钢的热处理
Heat Treatment of Steels
主要内容:
• 热处理的基本概念 • 钢在加热时的转变 • 钢在冷却时的转变 • 钢的退火与正火 • 钢的淬火与回火 • 钢的表面热处理
热处理原理 热处理工艺
钢铁材料是工程材料中最重要的材料之一,在机械制造业中的比例达到90%左右,在汽车制 造业中的比例达到70%,在其他制造业中也是最重要的材料之一。
普通热处理
(整体热处理)
表面热处理
其他热处理
退火 正火 淬火 回火
表面淬火
感应加热表面淬火 火焰加热表面淬火 电接触加热表面淬火
化学热处理
渗碳 渗氮(氮化) 碳氮共渗
控制气氛热处理 真空热处理 形变热处理
钢的热处理-热处理的基本概念
2.按热处理在工件生产过程中的位置和作用不同分类
热处理工艺
预备热处理:为随后的加工或热处理作准备 最终热处理:赋予工件所需的力学性能
改善钢铁材料性能的途径:
合金化(Alloying) 通过在钢中加入合金元素,调整钢的化学成分,从而获得优良的性能。 热处理(Heat Treatment) 将金属在固态下经加热、保温和冷却,以改变金属的内部组织和结构,从而获得优良的 性能。
钢的热处理-热处理的基本概念 第一节 热处理的基本概念
第二类退火:
目的和作用: 以改变组织和性能为目的,获得以珠光体为主的组织,并使钢中的珠光体、铁素体和碳化物等组织形态 及分布达到要求。 种类: 完全退火、不完全退火、等温退火、球化退火。
温度
完全退火(Complete Annealing)
工艺规范:
加热温度:Ac3 + 30C~50C。
Ac3
加 热
G
A3
重要结论:钢的实际临界转变温
度总是滞后于理论临界转变温度,即加 热时需要过热,冷却时需要过冷。
温 度
Ar3
P Q
Ac3
S
Accm Arcm
E
Acm
Ac1 A1 Ar1
wC(%)
Fe-Fe3C相图的共析转变部分
第二节 钢在加热时的转变
两种加热方式:
第①种加热方式发生在临界温度Ac1以上,
一定有组织转变,是一种相变过程。
举例:
零件的典型加工工艺路线:
毛坯
(锻件)
预备热处理
(退火、正火)
机加工
(车削)
最终热处理
(淬火、回火)
精加工
(磨削)
钢的热处理-热处理的基本概念
四、钢的临界转变温度(Critical Temperature of Steels)
钢的临界转变温度是钢在热处理时制
定加热、保温、冷却工艺的重要依据,
由铁碳合金相图确定。
Hale Waihona Puke 30C~50C 保温随 炉冷却
钢的热处理-钢的退火与正火
600C 空
冷
时间
适用范围:亚共析成分的钢。
等温退火(Isothermal Annealing)
工艺规范:
加热温度:对亚共析成分的钢,Ac3 + 30C~50C; 对过共析成分的钢,Ac1 + 30C~50C。
加 热
30C~50C 保温
Ac3或Ac1