概率论抛硬币和抛筛子实验报告

合集下载

抛掷硬币实验报告

抛掷硬币实验报告

抛掷硬币实验报告一、实验目的本实验的目的是通过抛掷硬币的方式,研究硬币的正反面出现的概率问题,并验证硬币正面向上的概率是否为0.5二、实验过程1.实验器材:硬币、纸板、直尺。

2.实验步骤:a.使用直尺将纸板分割成一个正方形小块。

b.抛掷硬币,记录硬币正反面的出现情况。

c.根据实验数据计算硬币正反面出现的概率。

三、实验结果本次实验我们进行了100次抛掷硬币的实验,记录了每次实验的结果,具体记录如下:正面向上:50次反面向上:50次四、数据统计与分析1.抛掷100次硬币,得到50次正面向上,50次反面向上。

2.正面向上的概率等于正面出现的次数除以总次数,即50/100=0.53.反面向上的概率也等于反面出现的次数除以总次数,也为50/100=0.54.实验结果表明,抛掷硬币的正面和反面出现的概率均为0.5,确认了硬币正面向上的概率是0.5的结论。

五、实验误差与改进六、实验结论通过本次抛掷硬币的实验,我们得出以下结论:1.抛掷硬币的正面和反面出现的概率均为0.52.实验结果与理论值相符,验证了硬币正面向上的概率是0.5的结论。

七、实验应用硬币抛掷实验是概率论中的一个基础实验,其结果可以用于解决许多实际问题,例如在赌场中可用于赌博游戏的设计、在统计学中可用于样本的抽样等。

此外,硬币抛掷实验还可以用于教育教学中,帮助学生理解概率的基本概念和原理。

总之,硬币抛掷实验是学习概率论中重要的实验之一,在实验中我们验证了硬币正面向上的概率是0.5的结论,同时也加深了我们对概率概念和原理的理解。

投掷硬币实验报告

投掷硬币实验报告

一、实验目的本次实验旨在通过投掷硬币的方式,验证硬币正反面出现的概率是否相等,从而了解随机事件的基本性质。

二、实验原理硬币投掷实验是一个典型的概率实验。

在理想情况下,一枚公平的硬币在投掷时,正面和反面出现的概率应该是相等的,均为50%。

通过大量投掷硬币的实验,我们可以观察到正反面出现的频率,并与理论概率进行比较。

三、实验材料1. 公平硬币一枚2. 投掷工具(如尺子)3. 记录表格4. 计算器四、实验步骤1. 准备实验材料,确保硬币公平。

2. 将硬币放置在投掷工具上,确保投掷过程中硬币的稳定性。

3. 每次投掷后,记录硬币的正反面结果。

4. 重复投掷硬币100次,确保样本数量足够大,以减少偶然性。

5. 将每次投掷的结果记录在表格中,包括正面和反面出现的次数。

6. 计算正面和反面出现的频率。

7. 利用计算器计算正面和反面出现的概率。

五、实验结果经过100次投掷硬币的实验,我们得到了以下结果:| 投掷次数 | 正面次数 | 反面次数 | 正面频率 | 反面频率 ||----------|----------|----------|----------|----------|| 100 | 51 | 49 | 0.51 | 0.49 |六、实验分析从实验结果可以看出,在100次投掷硬币的过程中,正面出现的次数为51次,反面出现的次数为49次。

正面频率为0.51,反面频率为0.49。

虽然实际频率与理论概率略有偏差,但两者非常接近,这表明在大量实验下,随机事件的结果会逐渐趋近于理论概率。

七、实验结论1. 在大量实验下,公平硬币投掷实验中正面和反面出现的频率基本相等,与理论概率相符。

2. 随机事件的结果具有偶然性,但在大量实验中,偶然性会被平均,使结果趋近于理论概率。

3. 本实验验证了随机事件的基本性质,为后续研究提供了参考。

八、实验反思本次实验中,由于实验次数有限,实验结果可能与理论概率存在一定偏差。

在今后的实验中,我们可以增加实验次数,以进一步提高实验结果的准确性。

概率论实验报告_2

概率论实验报告_2

概率论试验报告试验一:随机掷硬币1、模拟掷一枚硬币的随机试验(可用0——1随机数来模拟试验结果),取n=100,模拟掷n次硬币的随机试验。

记录试验结果,观察样本空间的确定性及每次试验结果的偶然性,统计正面出现的次数,并计算正面的出现的频率;试验结果如下:测试中出现零代表正面,出现一代表反面,其中共计50次正面50次反面。

2、取试验次数n=1000,将过程(1)重复三次,比较三次试验结果试验结果如下3、三次结果分别是0.501,0.503,0.521 。

这充分说明模拟情况接近真实情况,频率接近概率0.5。

试验二:高尔顿钉板试验1、自高尔顿钉板上端放一个小球, 任其自由下落. 在其下落过程中,当小球碰到钉子时从左边落下的概率为p , 从右边落下的概率为,1p -碰到下一排钉子又是如此, 最后落到底板中的某一格子. 因此任意放入一球, 则此球落入哪个格子事先难以确定. 设横排共有20=m 排钉子, 下面进行模拟实验:(1) 取,5.0=p 自板上端放入一个小球, 观察小球落下的位置; 将该实验重复作5次, 观察5次实验结果的共性及每次实验结果的偶然性;(2) 分别取,85.0,5.0,15.0=p 自板上端放入n 个小球, 取,5000=n 观察n 个小球落下后呈现的曲线我们分析可知,这是一个经典的古典概型试验问题2、具体程序:3、我们分析实验结果可知,若小球碰钉子后从两边落下的概率发生变化, 则高尔顿钉板实验中小球落入各个格子的频数发生变化, 从而频率也相应地发生变化. 而且, 当,5.0p曲线峰值的格子位置向右偏; 当><p曲线峰值的格子位置向左偏。

,5.0试验三:抽签试验1、我们做模拟实验,用1-10的随机整数来模拟实验结果。

在1-10十个随机数中,假设10代表抽到大王,将这十个数进行全排,10出现在哪个位置,就代表该位置上的人摸到大王。

每次随机排列1-10共10个数,10所在的位置随机变化,分别输出模拟实验10次, 100次,1000次的结果, 将实验结果进行统计分析, 给出分析结果。

云南师范大学 概率论实验报告 随机事件的模拟--模拟掷均匀硬币的随机试验

云南师范大学 概率论实验报告 随机事件的模拟--模拟掷均匀硬币的随机试验

实验总结:概率论与数理统计的研究对象都是随机事件,所以产生的数必须是随
机数数,而且需要通过大量的实验数据才能统计出实验结果,所以随机数应尽量大一 些,实实验数组也该多一些才能得到相对正确的答案。
进一步讨论或展望: 通过本次实验,我们以后也可以用 Excel 模拟随机事件,从而确定出现的现象的概 率。
数学实验报告
实验序号:2 班级 实验 名称 问题的背景: 抛硬币实是一个古老而现实的问题,我们可以从中得出许多结论.但要做这个简单 而重复的试验,很多人没有多余的时间或耐心来完成它,现在有了计算机的帮助,人 人都可很短的时间内完成它. 抛硬币试验:抛掷次数为 n . 对于 n=20,50,100,1000,2000 各作 5 次试验.观察有没 有什么规律,有的话,是什么规律. 实验目的: (1)学习和掌握 Excel 的有关命令 (2)了解均匀分布随机数的产生 (3)理解掌握随机模拟的方法. (4)体会频率的稳定性. 实验原理与数学模型: 12 级 B 班 姓名 日期: 2014 年 3 月 30 日 学号
实验过程:(含解决方法和基本步骤,主要程序清单及异常情况记录等) 一、产生随机数 (1)用 Excel 表格完成模拟实验,打开 Excel,在“工具栏”中选择“数据分析” ,在 弹出的对话框中选择“随机发生器” ,单击“确定”后弹出“随机发生器” ; (2)在“变量”处填上“1” ,在“随机数个数”处填上“n” ,在“分布”处填上“伯 努利” ,在“p(A)”处填上“0.5” ,在“输出区域”处填上要输出的第一个数据的位置, 单击“确定”后就产生了 n 个随机数。 二、统计随机数的个数 (1)打开“插入函数” ,在弹出的对话框中,在“或选择类别”处选择“统计” ,在“选 择函数”处选择“COUNTIF”后单击“确定” ; (2)在弹出的另一个对话框中,在“range”处填上要统计的这 n 个数在表格中的位 置, ,单击“确定”后就会在表格中的指定位置处出现“0”或“1”的个数。 三、分析数据 (1)抛硬币的试验数据如下:

概率的实验报告之硬币实验

概率的实验报告之硬币实验

概率的实验报告之硬币实验硬币实验是概率统计学中最为经典且简单的实验之一,通过投掷硬币的方式来观察出现正面和反面的概率。

本篇实验报告将详细介绍硬币实验的设计、实验步骤、数据分析以及实验结论等内容。

一、实验设计在硬币实验中,我们希望探究的是硬币被投掷后出现正面和反面的概率是否相等。

因此,本实验需要设计一个合适的实验方案来达到这个目的。

1.硬币选择:我们选择一枚标准铜币作为硬币实验中的投掷对象。

这样可以保证硬币的重量、形状以及材质等因素对实验结果的影响较小。

2.硬币数量:为了保证实验结果的准确性,我们需要进行大量的投掷操作。

因此,我们决定投掷硬币120次,即获得120个数据点。

3.投掷方式:我们采用随机抛掷硬币的方式进行实验,确保每次投掷都是独立的事件,并且没有任何偏差。

二、实验步骤1.准备工作:将硬币清洗干净,并确保实验环境整洁,以避免外部因素对实验结果的影响。

2.开始实验:将硬币从一定高度(如10厘米)处抛向平坦的硬地上,确保硬币自由落体,并保证它在投掷过程中的旋转速度较快,从而增加实验结果的随机性。

3.记录数据:每次投掷后,记录硬币出现的面向(正面或反面)。

重复步骤2和3,直到完成全部120次投掷。

三、数据分析完成硬币实验后,我们可以开始对实验数据进行分析,以求得硬币出现正面和反面的概率。

1.数据整理:将实验记录的数据整理为一个数据表格,包括投掷次数、正面的次数、反面的次数以及正面的频率和反面的频率等指标。

2.概率计算:根据实验数据,我们可以计算出硬币出现正面和反面的频率,从而得到相应的概率。

正面的频率即正面的次数除以投掷次数,反面的频率即反面的次数除以投掷次数。

四、实验结果与结论根据实验数据和概率计算的结果,我们得到了硬币出现正面和反面的概率。

在本次实验中,我们投掷了120次硬币,其中正面出现了70次,反面出现了50次。

根据计算,正面的频率为70/120=0.5833,反面的频率为50/120=0.4166因此,通过本次实验可以得出结论:在这枚标准铜币中,硬币出现正面和反面的概率约为0.5833和0.4166,两者相差较小,可以认为是基本相等的。

高中概率数学实验报告

高中概率数学实验报告

高中概率数学实验报告实验目的通过进行概率实验,加深对概率理论的理解,探究概率实验和理论概率的关系。

实验器材- 骰子- 纸牌- 两个硬币实验步骤1. 首先,我们进行了一个简单的抛硬币实验。

通过抛两个硬币,我们观察到硬币的正反面朝上的情况,并记录下来。

共进行了100次抛硬币实验。

2. 接着,我们进行了掷骰子实验。

我们使用一个六面骰子,进行了300次掷骰子实验。

记录下了每次出现的骰子点数。

3. 最后,我们进行了一次纸牌实验。

我们使用了一副标准的扑克牌,包括52张牌,不计大小王。

我们从中抽取了30张牌,记录下了每张牌的花色和点数。

结果分析抛硬币实验我们进行了100次抛硬币实验,记录下了每次抛硬币的结果。

通过统计,我们发现正面朝上的次数为56次,反面朝上的次数为44次。

根据统计学原理,我们得出正面和反面朝上的概率分别为0.56和0.44。

实验结果与理论概率相差较小,这说明我们的实验结果与理论概率一致,加深了我们对硬币抛掷的概率理解。

掷骰子实验我们进行了300次掷骰子实验,记录下了每次点数的结果。

通过统计,我们得出每个点数出现的频次分别如下:- 点数1出现了48次- 点数2出现了54次- 点数3出现了52次- 点数4出现了50次- 点数5出现了49次- 点数6出现了47次通过进一步计算,我们得到了每个点数出现的频率如下:- 点数1的频率为0.16- 点数2的频率为0.18- 点数3的频率为0.17- 点数4的频率为0.16- 点数5的频率为0.16- 点数6的频率为0.15与理论概率进行对比发现,实验结果与理论概率也符合得较好,加深了我们对骰子点数的概率理解。

纸牌实验我们从一副标准扑克牌中抽取了30张牌,记录下了每张牌的花色和点数。

通过统计,我们得出了每个花色和点数出现的频次。

花色频次- -黑桃8红桃 6方块9梅花7点数频次- -A 32 43 24 55 66 37 18 29 1J 1Q 2K 0根据实验结果,我们可以进一步计算出每个花色和点数出现的频率。

概率统计实验报告结论

概率统计实验报告结论

概率统计实验报告结论引言概率统计是数学中非常重要的一个分支,它利用统计方法对一定的随机现象进行描述、分析和预测。

本次实验中我们通过模拟实验的方式,利用概率统计的方法对一些实际问题进行了研究和分析。

实验一:骰子实验我们进行了一系列的骰子实验,通过投掷骰子并记录点数的方式来研究骰子的概率分布。

实验结果表明,投掷骰子时,每个面出现的概率是均等的,即每个面的概率是1/6。

这符合理论预期,也验证了概率统计中的等概率原理。

实验二:扑克牌实验通过抽取一副扑克牌中的若干张牌,并记录其点数和花色,我们研究了扑克牌中各个点数和花色的概率分布情况。

实验结果表明,52张扑克牌中各个点数和花色的概率分布近似均等,并且点数和花色之间是相互独立的。

这进一步验证了概率统计中的等概率原理和独立事件的性质。

实验三:掷硬币实验通过进行大量的抛硬币实验,我们研究了硬币正反面出现的概率分布情况。

实验结果表明,掷硬币时正面和反面出现的概率非常接近,都是1/2。

这也符合理论预期,并且进一步验证了概率统计中的等概率原理。

实验四:随机数生成器实验通过计算机程序生成随机数,并对其进行统计分析,我们研究了随机数生成器的质量问题。

实验结果表明,一个好的随机数生成器应该具备均匀分布、独立性和不可预测性等特征。

我们的实验结果显示,所使用的随机数生成器满足这些条件,从而可以被广泛应用于概率统计领域。

实验五:二项分布实验通过进行大量的二项分布实验,我们研究了二项分布的特性。

实验结果表明,二项分布在一定条件下可以近似成正态分布,这是概率统计中的重要定理之一。

实验结果还显示,二项分布的均值和方差与试验的次数和成功的概率有关,进一步验证了概率统计中与二项分布相关的理论。

总结通过本次概率统计实验,我们对骰子、扑克牌、硬币、随机数和二项分布等与概率统计相关的问题进行了研究和分析。

实验结果与理论预期基本一致,验证了概率统计中的一些重要原理和定理。

这些实验结果对我们的概率统计学习和应用有着重要的意义,同时也为我们在探索更深层次的概率统计问题提供了一定的启示和思路。

概率的实验报告之硬币实验

概率的实验报告之硬币实验
本实验利用excle数据分析工具中的随机数面和反面的试验结果再产生离散均匀分布随机数来模拟投掷骰子试验的结果从而在计算机上快速模拟这些试验的整个过程并对试验结果进行分析总结
实验一频率的稳定性
——模拟投币试验及其推广
实验序号:1日期:2013年3月31日
实验目的和内容:
实验目的:让实验者学习在计算机上模拟投币试验和抛掷骰子试验的方法,通过本实验熟悉在Excle中产生常见随机数的步骤,并从实验结果中观察体会频率的稳定性。
内容:利用Excle中的随机数发生器分别产生:伯努利随机数(即0-1随机数)、(0,1)区间上均匀分布随机数来模拟投币试验并对试验结果进行分析以及产生离散均匀分布随机数来模拟投掷骰子试验并对试验结果进行分析。
然而,在实践过程中也遇到了许多问题,例如,EXCEL的工具,菜单很多,不易记住,所以要多练习才能熟练掌握。而且,EXCEL中涉及的数学函数很多也很容易混淆,它们都是我们在掌握和使用EXCEL的一大问题,当然,通过不断的学习和总结是可以克服这些问题的。
在使用EXCEL这个工具时是还需要注意很多细节问题,比如在实验时要多想一想同一个问题可以用不同的数学函数来解决,故在选择时就要注意每种方法的优与劣,争取使用最简捷和便易的方式来服务我们的工作和学习。
实验所用软件及版本:Excle和Excle2010
实验过程:
1.1利用Excle自带的随机数发生器产生10000个伯努利随机数(即0-1随机数)来模拟10000次投币试验的结果,统计其中随机数1(表示出现正面)和(表示出现反面)出现的次数,并对试验结果进行分析。
1.2利用随机数发生器产生10000个均匀分布U(0,1)随机数,分别记录其中小于0.5(表示出现正面)和小于0.5(表示出现反面)的随机数个数,并对试验结果进行分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
课程名称:___概率论与数理统计___
学院名称:____数学与统计学院____
班级:______ 122____
姓名:吴建斌
学号:1250901235
2013-2014______学年第_____2____学期数学与统计学院制
■实验结果(统计表,图)
实验一:抛硬币实验输出数据如下:
掷均匀硬币实验模拟结果及有关数据统计表模拟次数正面(n1)反面(n2)P1 P2
5 5 0 1 0
20 14 6 0.700 0.300
56 23 33 0.4107 0.5893
100 53 47 0.5300 0.4700
789 413 512 0.4880 0.5120 1235 641 594 0.5190 0.4810 456789 228438 228351 0.5001 0.4999 12345678 6172039 6173639 0.4999 0.5001 568923 284607 284316 0.5003 0.4997 80000 39959 40041 0.4995 0.5005 模拟次数为568923次的统计图如下;
实验二:抛骰子试验实验数据输出如下;
输出数据如下
模拟次数为289次的统计图
■实验结果分析与总结
实验一随着实验次数的增加,出现正反面的频率慢慢接近0.5,但也不等于0.5,是由于实验过程中总会出现偶然误差。

实验二随着试验次数的增多,频率慢慢接近0.17。

通过做实验逐渐的了解的随机实验的性质,从实验中更真切的得出结论。

考核结果教师签名:年
月日。

相关文档
最新文档