基于物联网的数据采集系统设计
基于物联网的数据采集系统设计

基于物联网的数据采集系统设计哎呀,说起基于物联网的数据采集系统设计,这可真是个有趣又充满挑战的事儿!我记得有一次,我去一家工厂参观,那场景可让我对数据采集系统有了特别深刻的感受。
这家工厂生产各种小零件,以往全靠人工计数和记录生产数量、质量等数据,不仅效率低,还容易出错。
咱们先来说说什么是物联网哈。
简单来讲,物联网就是让各种物品通过网络连接起来,互相“交流”信息。
就像咱们人与人之间聊天一样,只不过这里是物品在传递数据。
在数据采集系统中,传感器可是关键的“小侦探”。
它们就像工厂里那些眼尖的工人,能敏锐地察觉到各种变化。
比如说温度传感器,能实时感知环境温度的细微变化;压力传感器呢,能准确测量出设备承受的压力大小。
这些传感器把收集到的数据,通过网络传送给控制中心,就像是给控制中心“汇报工作”。
那数据怎么传输呢?这就得提到通信技术啦。
有蓝牙、WiFi 、Zigbee 等等。
蓝牙就像短跑健将,短距离传输速度快;WiFi 呢,像是长跑选手,能在较长距离保持稳定传输;Zigbee 则像个灵活的小精灵,适用于设备数量多、数据量小的场景。
有了数据,还得有地方存起来,这时候数据库就登场了。
想象一下数据库是个超级大的仓库,各种各样的数据都整整齐齐地放在里面,等着我们需要的时候去拿出来用。
再说这数据采集系统的设计,得考虑好多方面。
首先得明确采集啥数据,是温度、湿度、光照,还是其他的?就像去菜市场买菜,得先想好买啥,不能瞎买一通。
然后根据采集的数据类型选合适的传感器,这就像给不同的任务选合适的工具。
还有哦,系统的稳定性也特别重要。
要是系统三天两头出故障,那可就麻烦大了。
就像你正开车在路上,车突然熄火了,多耽误事儿啊!所以在设计的时候,得做好各种测试和优化,确保系统能稳定运行。
另外,系统的扩展性也不能忽视。
随着业务的发展,可能需要采集更多类型的数据,或者增加采集点。
这时候,如果系统扩展性不好,那可就得重新大动干戈了,费时费力又费钱。
基于物联网技术的智能农业管理系统设计与实现

基于物联网技术的智能农业管理系统设计与实现智能农业管理系统是基于物联网技术的应用系统,以实现农业生产智能化、信息化为目标。
本文将介绍智能农业管理系统的设计与实现,旨在提升农业生产效率、降低资源消耗和环境污染。
一、系统需求分析智能农业管理系统需要满足以下几个方面的需求:1. 数据采集:通过传感器采集农田土壤湿度、气温、光照等环境信息,采集农作物生长情况、病虫害等影响因素数据。
2. 数据传输:将采集到的数据传输至云端服务器进行存储和分析。
3. 远程控制:农户可以通过手机、平板等终端设备远程监控农田的生长情况,控制灌溉、施肥、喷药等操作。
4. 数据分析与决策支持:通过对采集到的数据进行分析,提供农田生长的预测、病虫害的预警等功能。
5. 结合业务需求:根据不同作物的需求,提供个性化的管理方案,并结合农业政策、市场变化等因素进行分析和决策。
二、系统设计与实现1. 硬件设备:(1) 传感器节点:安装在农田中的传感器节点,采集土壤湿度、气温、光照等环境信息,以及农作物生长等数据。
(2) 网关设备:将传感器采集的数据通过无线通信方式传输至云端服务器。
(3) 云端服务器:负责接收、存储和分析传感器节点采集的数据。
2. 软件系统:(1) 数据采集与传输模块:将传感器节点采集的数据传输至云端服务器,采用无线通信技术,如Wi-Fi、4G等。
(2) 远程控制模块:农户可以通过手机APP或网页端操作农田的灌溉、施肥、喷药等行动。
(3) 数据分析与决策支持模块:对采集到的数据进行分析与挖掘,提供农田生长的预测、病虫害的预警等功能。
(4) 个性化管理与决策模块:根据作物的需求、农业政策、市场变化等因素,结合智能算法给出个性化的管理方案和决策支持。
三、系统特点与优势1. 实时监测与远程控制:通过传感器节点采集的数据,农户可以随时了解农田的生长情况,通过远程控制实现灌溉、施肥等操作,提高农作物的管理效率。
2. 数据分析与决策支持:通过对采集到的数据进行分析和挖掘,系统可以提供农田生长的预测、病虫害的预警等功能,帮助农户做出科学决策,提高产量和质量。
基于物联网技术的数据采集系统

基于物联网技术的数据采集系统摘要:物联网作为一种新的信息获取方式和信息处理模式,将逻辑上的信息世界与客观上的物理世界联系起来,改变了人类采集数据的方式,实现了物理世界、计算世界以及人类社会三种世界的连通,它将会对统计数据的采集带来深远影响。
未来的统计数据采集如果能和物联网相结合,为工业统计提供可靠的数据来源,将大大提升统计工作效率和数据质量。
目前很多工业企业统计数据采集还是停留在采用传统的方式收集,不仅很多数据无法通过人工采集得到,比如光、热、电以及一些微量生产要素的投入量等数据,而且通过人工收集到的数据其时效性,完整性和准确性等方面都存在不足。
关键词:物联网技术;数据采集;系统构建1系统的物联网架构按照功能可以将物联网可分为感知层、传输层和应用层,各层的功能和特点如下。
(1)感知层主要是识别物体和采集信息,在对感知层进行设计时首先要明确整个系统的功能,然后采用相应的传感器或者单片机嵌人式之类的感知设备对采集到的信号进行初步处理,同时还可以整合通信模块,具体视系统而定,针对特定环境采用不同的通信模块。
(2)传输层包括所有有线和无线、长距离和短距离、宽带和窄带通讯系统,是物联网的基础设施,该系统中传输层包括GPRS网络和互联网。
(3)应用层主要包括各种集成中间件技术和应用层软件技术以及物联网门户系统,包括服务器程序和各种用户的应用软件。
该系统通过无线感知网络实现对环境的实时温度监控功能,服务器的人机交互程序实现对环境采集温度数据的实时显示,并通过互联网及监控平台完成对外部设备的远程控制。
2基于物联网技术数据采集应用的影响因素2.1企业自身因素的影响不同类型的企业在管理模式上有一定的差别,在进行物联网应用过程中也会有所差异;信息化是物联网技术用于数据采集的基础,是物联网技术在工业统计中应用的基础性影响因素。
单位领导对统计重视程度则体现在是否重视现代科学技术在统计工作中的应用以及统计工作经费投入的多少等,这在很大程度上影响企业实行物联网技术数据采集的可能性。
基于物联网的数据采集系统设计

基于物联网的数据采集系统设计基于物联网的数据采集系统设计
一、引言
1:背景
2:目的和范围
3:参考文献
二、系统概述
1:系统目标
2:功能需求
3:系统架构
三、数据采集模块
1:传感器选择和配置
2:数据采集设备选型
3:采集频率和精度
4:数据传输方式
四、数据传输模块
1:通讯协议选择
2:网络架构设计
3:数据传输安全性考虑五、数据存储和处理模块
1:数据存储选择
2:数据清洗和预处理
3:数据可视化和分析
六、系统安全性考虑
1:数据加密和隐私保护
2:用户身份验证和访问控制 3:系统漏洞和风险评估七、系统部署和维护
1:硬件设备部署
2:软件配置和更新
3:异常监测和故障处理八、性能测试和优化
1:数据采集和传输速度测试
2:系统响应时间优化
3:并发用户支持能力测试
九、经济和可行性分析
1:系统建设成本估算
2:维护和运营成本估算
3: ROI分析和可行性评估
十、项目计划和风险管理
1:项目进度计划
2:风险识别和评估
3:风险应对措施
附:附件列表
1:设备清单
2:网络拓扑图
3:数据处理流程示意图
法律名词及注释:
1:物联网:指物理对象通过电子标签、红外传感器等装置实现信息互联的网络系统。
2:数据隐私:指个人或组织的敏感信息,在物联网环境中的私密性保护。
3:通讯协议:指不同设备之间进行数据传输的规范和约定。
基于物联网的环境自动监控数据采集与传输系统架构设计与功能实现

高环境 自动监控 的数据传 输有效率和数据质量 ,为环境监管提供可 靠的决策 支持 。
【 关键词 】物联 网;环境 自动监控 ;数据 采集与传 输
中图分 类号 :X 3 2 . 0 2 9
文献标识 码 :A
文章 编号 :1 6 7 4 — 6 2 5 2( 2 0 1 3) 0 4 — 0 0 5 3 — 0 5
系统 可 同 时 向 国家 、省 、市 、县 环保 业 务 部 门
和多级 、多个环境 监控 中心转 发原始环境 自动监测 数 轻环境监控 中心 的计算 负载 ,也使得环境监 测业务统 计更加科 学。 据 ,实现 某一点位 自动监测 数据 的统 一性 ,也就是 说
不管哪一 级环境监 管部 门、被 监控企业 或公众 ,在 任
汪先 锋
基 于 物 联 网 的 环 境 自动 监 控数 据 采 集 与 传 输 系统 架构 设 计 与 功 能 实 现
・ 5 5・
3 . 1数据统一 采集 与传输
与传输 ,能通 过 自身 的计算 能力 ,相互协作 统计 出本 区域 的环境 污染状 况 ( 比如 大气排 放状况 ) ,能 够减
引 言 近年 来 ,我 国大 力 加强 环 境 监管 业 务 中 的信 息
. 设 计 思 路 化建 设 ,在 环 境 质量 监 控 、污 染 源 自动 监 控 、环 境 1
应 急 等 方 面做 出 了大量 的探 索 和努 力 。随着 信 息 技 针 对环境 自动监控需要 实现对本地 区大范 围内多 术 和 环 境监 管 业 务 的深 入 整合 和发 展 ,我们 研 究 和 级 、多层 次 、多 种类环 境要 素质 量进行 自动连续 的 、 设 计 了基 于 物 联 网 的环 境 自动 监 控数 据 采集 与传 输 实 时的 、全天候 的监测 与监控这一 特点 ,本文就基 于 系 统 总体 架 构 。该 设 计将 实 现 “ 物 物 相连 ” 的数据 物联 网的环境数据采集 与传 输 ,提 出了设计 允许多种 采 集 与传 输 设 备 纳人 环 保 物联 网系 统 。数据 采 集 与 类 型环境要素 自动监 测设备 和多类 型环境监测传感 器 传 输 系 统 与 各 类 自动 监 测 设 备 之 间能 够 互 相 通 信 、 接人 ,支持 多种数据传输 方式 、多协议 多 目标数据通
基于物联网的智慧农业系统设计

基于物联网的智慧农业系统设计随着科技的不断发展和人们对于农业生产效率和质量的追求,基于物联网的智慧农业系统得到了越来越广泛的应用。
本文将着重探讨智慧农业系统的设计原理和实施方法,以及其对农业生产的推动作用。
一、引言智慧农业系统是指通过物联网技术将传感器、设备、网络与农业生产相结合,实现自动化、智能化管理的一种农业生产模式。
该系统通过实时数据采集、数据分析和决策支持,能够提高农作物产量和质量,减少资源浪费,降低生产成本,为农民提供可持续发展的农业解决方案。
二、物联网技术在智慧农业系统中的应用1. 传感器技术的应用物联网技术利用各种传感器,如土壤湿度传感器、温度传感器、光照传感器等,实时采集农田的环境参数。
这些数据通过网络传输到中央服务器,进一步分析和应用于农业决策和管理中。
2. 自动化控制系统的应用物联网可以将传感器采集到的环境数据与控制器相连接,实现对灌溉、温室通风、施肥等农业生产过程的自动化控制。
通过提前设置好的阈值和规则,系统能够自动根据环境变化进行应对,提高作物的生长效率并降低劳动力成本。
三、智慧农业系统设计原则1. 数据采集与存储智慧农业系统必须建立完善的传感器网络,将各种环境数据实时采集,并通过云平台或中央服务器进行存储。
这样可以为后续的数据分析和决策提供可靠的数据基础。
2. 数据分析与决策支持基于采集到的环境数据,智慧农业系统需要建立相应的数据模型和算法,实现数据的分析和挖掘。
通过比对历史数据和农业生产的最佳实践,系统能够给出针对性的决策建议,帮助农民做出更明智的决策。
3. 实时监测与预警智慧农业系统要求具备实时监测和预警功能,能够及时发现异常情况并作出相应的响应。
通过设置警戒值和报警条件,系统能够提前预警,帮助农民做好灾害风险管理和病虫害预防。
四、智慧农业系统的优势和应用场景1. 优势智慧农业系统的最大优势在于提高农业生产效率和质量,减少资源浪费。
通过精确的环境监测和自动化控制,系统能够准确判断植物的需求,避免过度或不足供给,提高作物品质和产量。
基于C的物联网数据采集与分析系统设计

基于C的物联网数据采集与分析系统设计一、引言随着物联网技术的快速发展,越来越多的设备和传感器被连接到互联网上,产生大量的数据。
如何高效地采集和分析这些数据成为了物联网系统设计中的重要问题。
本文将介绍基于C语言的物联网数据采集与分析系统设计,探讨如何利用C语言实现高性能、稳定可靠的数据处理系统。
二、物联网数据采集系统设计在物联网系统中,数据采集是最基础也是最关键的环节之一。
数据采集系统需要能够实时地从各种传感器和设备中读取数据,并将其传输到后台服务器进行进一步处理。
基于C语言的数据采集系统可以通过底层编程实现对硬件的直接控制,提高系统的响应速度和稳定性。
1. 硬件接口设计在设计物联网数据采集系统时,首先需要考虑硬件接口的设计。
C语言可以直接调用操作系统提供的API接口,实现对串口、网络等硬件设备的读写操作。
通过合理设计硬件接口,可以实现对各种传感器和设备的数据采集。
2. 数据缓存与传输为了提高数据采集效率,需要设计合理的数据缓存机制。
C语言可以通过指针和结构体等方式实现高效的数据缓存,减少数据传输过程中的延迟。
同时,利用多线程技术可以实现数据的并行传输,进一步提升系统性能。
三、物联网数据分析系统设计除了数据采集外,数据分析也是物联网系统中至关重要的一环。
通过对采集到的数据进行分析和挖掘,可以发现隐藏在数据背后的规律和价值信息。
基于C语言的数据分析系统设计需要充分利用其高效、灵活的特点,实现对大规模数据的快速处理和分析。
1. 数据处理算法在设计物联网数据分析系统时,需要选择合适的数据处理算法。
C语言作为一种高性能、底层语言,可以实现各种复杂的算法和模型。
例如,可以利用C语言实现机器学习算法对大规模数据进行分类和预测,从而为物联网系统提供更智能化的服务。
2. 数据可视化为了更直观地展示数据分析结果,需要设计合适的数据可视化界面。
C语言可以结合图形库或图形界面库,实现各种图表和可视化效果。
通过数据可视化,用户可以更直观地了解数据分析结果,为决策提供参考依据。
基于物联网的智慧家居能源管理系统设计

基于物联网的智慧家居能源管理系统设计智慧家居是指通过物联网技术连接各种智能设备,实现家居设备的远程操控和智能化管理的系统。
其中,智慧家居能源管理系统是智慧家居系统中的重要组成部分,旨在通过合理的能源调控和有效的节能措施,提高能源利用效率,减少能源浪费。
本文将详细介绍基于物联网的智慧家居能源管理系统的设计原理和关键技术。
一、系统架构设计智慧家居能源管理系统主要由以下几个模块组成:数据采集模块、数据传输模块、数据分析模块、能源控制模块和用户界面模块。
1. 数据采集模块:通过传感器实时采集室内温湿度、照明、空调、电器等数据,并将数据进行处理和转换。
2. 数据传输模块:将采集到的数据通过网络传输到云平台,实现与各种终端设备的连接。
3. 数据分析模块:对采集到的数据进行分析和处理,得到能源使用情况、趋势分析等信息。
4. 能源控制模块:根据数据分析结果,智能控制家居设备的使用,调整温度、照明亮度等,实现节能管理。
5. 用户界面模块:提供用户界面,用于用户对系统进行实时监测和控制,包括手机APP、网页端等。
二、关键技术介绍1. 物联网技术:智慧家居能源管理系统基于物联网技术,通过传感器将家居设备的状态数据实时采集,然后通过无线技术传输到云平台。
2. 云计算技术:将采集到的数据上传到云平台,使用云计算技术进行数据存储和处理,实现大规模数据的实时处理和分析。
3. 数据挖掘技术:通过数据挖掘技术,对采集到的数据进行分析,提取能源使用的规律和趋势,并预测未来能源消耗情况。
4. 智能控制技术:根据数据分析结果,智能控制家居设备的运行状态,包括调节温度、照明亮度等,以降低能源消耗。
5. 用户界面设计:设计直观友好的用户界面,方便用户实时监测和控制智慧家居能源管理系统,提供详细的能源使用报告和节能建议。
三、系统优势与应用价值基于物联网的智慧家居能源管理系统具有以下优势和应用价值:1. 省时省力:通过自动化的能源管理,减少人工干预,提高管理效率,帮助用户降低能源的使用成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)课题基于物联网技术的数据采集终端的设计学院电子信息工程学院专业(方向)应用电子技术班级电子112学号 7姓名尹露露完成日期2013-11指导教师束慧基于物联网技术的数据采集终端的设计摘要目前,数据采集一直是工业控制设备的主要组成部分,设计高精度的AD采集终端,对系统的性能很重要,目前随着物联网技术的不断发展,为现场信号采集和传输提供了一种新的方法,本课题在于探索和研究一种基于物联网技术的数据采集终端。
本系统由单片机控制模块、AD采集模块、液晶显示模块、时钟模块、温度模块、无线通讯模块等组成,可实现现场数据的实时准确采集。
关键词:物联网技术,高精度,数据采集,通讯AbstractAt present,?the data acquisition?is the main?part of?industrial control equipment. The performance of AD?acquisition terminal?design of high precision?for the system?is very important. At present,?with the?continuous development of?the Internet of things technology. It provides a?new?method for?data acquisition?and transmission. This paper?is to explore?and study?a?IOT based?data acquisition terminal. The system is composed of MCU control module,?AD?data acquisition module, LCD module,?clock module,?temperature?module,?wireless?communication module. It can realize accurate?real-time?field data.Keywords: Internet of things technology, High precision, Data acquisition, Communication目录引言对于大部分制造业企业,测量仪器的自动数据采集一直是个令人烦恼的事情,即使仪器已经具有RS232/485等接口,但仍然在使用一边测量,一边手工记录到纸张,最后再输入到PC中处理的方式,不但工作繁重,同时也无法保证数据的准确性,常常管理人员得到的数据已经是滞后了一两天的数据;而对于现场的不良产品信息及相关的产量数据,如何实现高效率、简洁、实时的数据采集更是一大难题。
这就需要设计高精度的AD采集终端,而在许多应用场合,需要的AD 采集点多,而且分布广,如何将这些数据采集信号集中到主控,是很多系统设计中遇到的问题,以往采用的是用有线的方式来实现信息传输。
在行业快速发展的今天,数据采集已经被广泛应用于互联网及分布式领域,数据采集领域已经发生了重要的变化。
首先,分布式控制应用场合中的智能在国内外已经取得了长足的发展。
其次,总线兼容型数据采集的数量不断增大,与兼容的的数量也在增加。
国内外各种数据采集机的先后问世,将数据采集带入了一个全新的时代。
又随着数字技术的飞速发展,数字化仪器已成为观测技术领域的主流仪器,因而数据采集技术也成为观测技术领域中十分重要的技术环节。
任何计算机测控系统中,都是从尽量快速,尽量准确,尽量完整的获得数字形式的数据开始的,因此,数据采集系统作为沟通模拟域与数字域的桥梁起着非常重要的作用。
70年代初,随着计算机技术及大规模集成电路的发展,特别是微处理器及高速A/D 转换器的出现,数据采集系统结构发生了重大变革。
原来由小规模集成的数字逻辑电路及硬件程序控制器组成的采集系统被微处理器控制的采集系统所代替。
因为由微处理器去完成程序控制,数据处理及大部分逻辑操作,使系统的灵活性和可靠性大大的提高,系统的硬件成本和系统的重建费用大大的降低。
?本课题在于探索和研究一种基于物联网技术的数据采集终端。
重点在于通过无线通讯实现数据的实时的、准确的采集。
1 物联网介绍物联网是新一代信息技术的重要组成部分。
其英文名称是“The Internet of things”。
由此,顾名思义,“物联网就是物物相连的互联网”。
这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。
因此,物联网的定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与互联网相连接,进行信息交换和通信,以实现对物体的智能化识别、定位、跟踪、监控和管理的一种网络。
物联网是继个人计算机、互联网及移动通信网络之后的全球信息化的第三次浪潮,是传感网、互联网(移动通信)、云计算,以及智能信息处理等信息技术发展到一定阶段,在应用需求和供给创新的双轮驱动下,通过水平分层与垂直整合技术脉络与产业链条而形成的全球性信息系统。
物联网的原理物联网是在计算机互联网的基础上,利用RFID、无线数据通信等技术,构造一个覆盖世界上万事万物的“Internet?of?Things”。
在这个网络中,物品能够彼此进行“交流”,而无需人的干预。
其实质是利用射频自动识别(RFID)技术,通过计算机互联网实现物品的自动识别和信息的互联与共享。
?而RFID,正是能够让物品“开口说话”的一种技术。
在“物联网”的构想中,RFID标签中存储着规范而具有互用性的信息,通过无线数据通信网络把它们自动采集到中央信息系统,实现物品的识别,进而通过开放新的计算机网络实现信息交换和共享,实现对物品的“透明”管理。
?“物联网”概念的问世,打破了之前的传统思维。
过去的思路一直是将物理基础设施和IT基础设施分开:一方面是机场、公路、建筑物,而令一方面是数据中心,个人电脑、宽带等。
而在“物联网”时代,钢筋混凝土、电缆将与芯片、宽带整合为统一的基础设施,在此意义上,基础设施更像是一块新的地球工地,世界的运转就在它上面进行,其中包括经济管理、生产运行、社会管理乃至个人生活。
物联网技术的应用物联网可以以电子标签和EPC(Electronic?Product?Code,产品电子代码)码为基础,建立在计算机互联网基础上形成实物互联网络,其宗旨是实现全球物品信息的实时共享和互通。
物联网的系统结构由信息采集系统、PML信息服务器、产品命名服务器(ONS)和应用管理系统四部分组成。
本系统主要研究信息采集系统。
信息采集系统包括产品电子标签、读写器、驻留有信息采集软件的上位机组成,主要完成产品的识别和产品EPC码的采集和处理。
存储有EPC码的电子标签在经过读写器的感应区域时,产品EPC码会自动被读写器捕获,从而实现自动化EPC信息采集,采集的数据将交由上位机信息采集软件进行进一步的处理,如数据校对、数据过滤、数据完整性检查等,这些经过整理的数据可以为上层应用管理系统使用。
本系统就是基于物联网进行数据实时检测,并在检测模块中进行数据处理后再与网络进行数据的交换,来实现数据的实时采集、实时更新,从这些数据的反馈中,我们可以实行自动的控制功能,大大的减少了人力在本系统中的占用量。
2 系统的组成系统的总体结构基于物联网技术的数据采集终端系统的总体结构如图 1 所示,整个数据采集系统我们总共将其分为了六个模块:单片机控制模块、AD采集模块、液晶显示模块、时钟模块、温度模块、无线通讯模块。
这六个模块通过物联网技术进行信息交换,实现通信。
图2-1 系统框图系统参照标准针对物联网系统的特殊性,确保系统的开放性、可扩展性和灵活性,在设计中参照以下标准。
GB8566-88 计算机软件开发规范GB8567-88 计算机产品开发文件编制指南DL476-92 实时数据通信应用层协议GB/T13729-92 远动终端通用技术条件3 数据采集终端的硬件设计CPU芯片的选择本系统选用宏晶科技公司的1T单片机STC12C5A32S2,该单片机在传统的8051单片机的基础上开发出来的一代高速、超强抗干扰新型单片机,指令代码完全兼容传统51单片机,具有48K程序存储器;1280个字节RAM;3个时钟输出口;2路PWM;2个串口,很容易实现单片机之间的通信,有内部AD模块,并且可拓展接口,解决的本系统I/O口不够用的问题。
其原理图如图3-1所示。
图3-1 STC12C5A32S2最小系统图液晶显示模块为了有更好的视觉效果,显示清晰,为了有更好的视觉效果,显示清晰,我们选用KG240128A液晶显示屏,可以不单独提供背光电源,仅使用逻辑电源点亮背光。
可显示内容多,从“感官上”提升视角区间。
原理图如图3-2所示:图3-2 液晶显示AD采集模块为了保证采集数据的精确性,我们采用了ADS1212U芯片作为AD转换芯片。
ADS12X具有22位分辨率,是高精度、大动态范围的???型A/D转换器。
其差分输入适合直接与传感器或小电压信号相连。
???结构用于保证宽动态范围和22位不失真编码。
在10HZ转换速率时,用低噪的输入放大器可获得20位的有效分辨率。
在10HZ转换速率时,用独特的增强模式可获得16位的有效分辨率。
应用增益可编程的放大器大大增强了转换器动态范围,增益范围为1,2,4,8,16。
转换器包括一个灵活的异步串行接口,该接口是SPI兼容的,其原理图如图3-3所示:图3-3 AD模块原理图另外由于ADS1212U是高精度的AD芯片,为了采集到的数据准确无误,要给AD芯片提供稳定的电源,如图3-4所示:图3-4 电源电路(AD电源)DS1302时钟模块本系统以分钟、时、日等单位进行数据实时采集并保存,每条记录中都具有时间戳,为此采用时钟芯片DS1302来计时。
DS1302 是DALLAS 公司推出的涓流充电时钟芯片内含有一个实时时钟/日历和31 字节静态RAM 通过简单的串行接口与单片机进行通信实时时钟/日历电路提供秒、分、时、日、日期、月、年的信息,每月的天数和闰年的天数可自动调整时钟操作。
原理图3-5所示。
可通过AM/PM 指示决定采用24或12小时格式,DS1302 与单片机之间能简单地采用同步串行的方式进行通信仅需用到三个口线1 RES 复位2 I/O 数据线3 SCLK串行时钟/RAM 的读/写数据以一个字节或多达31 个字节的字符组方式通信DS1302 工作时功耗很低保持数据和时钟信息时功率小于1mW。
DS1302 的管脚排列及描述如表3-1所示。