数学建模的一般步骤

合集下载

简述数学建模的一般步骤

简述数学建模的一般步骤

简述数学建模的一般步骤数学建模是将现实世界的问题表述为数学模型的过程。

通过数学建模,我们可以对问题进行分析和解决。

数学建模的一般步骤包括:1. 问题的描述:在建模之前,需要将问题清楚地表述出来,包括问题的背景、目标、约束条件等。

2. 确定模型的类型:数学建模涉及到许多不同的模型类型,如线性规划、非线性规划、动态规划等。

在确定模型类型之前,需要考虑问题的性质,包括是否存在约束条件、是否有限制条件、是否有时间因素等。

3. 建立数学模型:在确定了模型类型之后,就可以开始建立数学模型了。

这一步包括确定模型的变量、目标函数、约束条件等。

4. 求解模型:在建立完数学模型之后,就可以开始求解模型了。

这一步包括使用数学方法或计算机软件求解模型。

5. 结果的分析与验证:在求解出模型的最优解之后,还需要对结果进行分析,包括对结果的可解释性和可靠性进行评估。

这一步包括对结果的敏感性分析,以及对模型的假设进行验证。

6. 应用结果:最后,在确保结果可靠后,就可以将结果应用到实际问题中。

这一步可能包括根据结果制定决策、规划资源分配等。

数学建模是一个系统的过程,需要综合运用数学、统计、计算机科学等多种方面的知识。

它的目的在于通过数学模型的分析和求解,为解决实际问题提供有效的决策依据。

在进行数学建模时,需要注意的是,模型只是对现实世界的简化和抽象,并不能完全反映现实情况。

因此,在建模过程中,需要谨慎选择模型的假设条件,并对模型的结果进行适当的验证和分析。

总的来说,数学建模是一种有效的工具,能够帮助我们对现实世界的问题进行系统的分析和解决。

它的应用遍及各个领域,包括经济学、工程学、管理学等,为解决复杂问题提供了强有力的理论支持。

在实际进行数学建模时,还可以使用许多工具和方法,以提高建模的效率和准确性。

这些工具和方法包括:* 数学软件:通过使用数学软件,可以快速求解复杂的数学模型,并可视化结果。

常用的数学软件包括MATLAB、Maple、Mathematica等。

数学建模知识及常用方法

数学建模知识及常用方法

数学建模知识及常用方法数学建模是一种综合运用数学知识和方法来解决实际问题的过程。

它涉及到多个学科领域,如数学、统计学、计算机科学等,并充分利用了数学模型的概念和数学方法的理论基础。

在实际应用中,数学建模被广泛应用于物理学、生物学、经济学、社会学等各个领域,为决策提供了重要的参考依据。

一、数学建模的基本步骤1.确定问题:明确问题的目标和需求,界定问题的范围和限制。

2.建立模型:根据问题需求,选择适当的数学模型,构建问题的数学描述。

3.求解模型:利用数学方法和计算工具,对模型进行求解,得到问题的解答。

4.模型验证:对解答进行分析和验证,评估模型的准确性和可靠性。

5.结果分析:根据解答结果,给出相应的结论和建议,提供决策参考。

二、数学建模的常用方法1.差分方程模型:差分方程是一类描述自然现象变化规律的数学方程,常用来建立动态系统的模型,如种群增长模型、股票价格预测模型等。

2.微分方程模型:微分方程是关于函数及其导数的方程,常用来描述变化率问题,如物理学中的牛顿第二定律、生物学中的生物变化过程等。

3.线性规划模型:线性规划是一种数学优化方法,用于解决线性约束条件下的最大化或最小化问题,广泛应用于生产计划、资源配置等方面。

4.整数规划模型:整数规划是一种将变量限制为整数的线性规划方法,主要应用于需要整数解决方案的问题,如项目选址、货物装载等。

5.动态规划模型:动态规划是一种将问题转化为一系列相互关联但具有较小规模的子问题的优化方法,通过求解子问题的最优解,得到原问题的最优解。

6.贝叶斯统计模型:贝叶斯统计是一种基于贝叶斯定理的推断统计方法,常用于根据已有的信息更新对未知情况的概率预测。

7.神经网络模型:神经网络是一种模拟人脑神经元连接方式的计算模型,通过模拟神经网络的学习和训练过程,实现对复杂模式的自动识别和预测。

8.时间序列模型:时间序列是一组按照时间顺序排列的数据,通过对时间序列数据的分析和建模,可以预测未来的趋势和变化规律,如股票市场预测、天气预报等。

数学建模的流程

数学建模的流程

数学建模的流程一、问题提出。

1.1 这就好比咱们平常生活里啊,遇到个事儿,得先知道是个啥事儿对吧。

数学建模也一样,先得明确问题。

比如说要研究城市交通拥堵,那这就是个大问题,但具体怎么个堵法,哪些地方堵得厉害,这都得搞清楚。

不能稀里糊涂的,就像“丈二和尚摸不着头脑”那样可不行。

1.2 这时候呢,就得去收集各种信息啦。

就像侦探破案似的,到处找线索。

可以去实地考察,看看马路上车流量啥样,也可以查查相关的数据资料,这都是为了把问题的全貌给弄明白。

二、模型假设。

2.1 有了问题和信息之后啊,咱们就得做假设啦。

这假设呢,就像是给这个事儿定个规矩。

比如说研究交通拥堵,咱们假设车的行驶速度是均匀的,这虽然不完全符合实际,但能让这个事儿简单点,先把大框架搭起来嘛。

这就叫“先粗后细”,不能一开始就把事儿想得太复杂,不然根本没法下手。

2.2 假设也不是乱设的,得符合常理。

要是设个车能飞起来的假设,那这模型就乱套了。

咱们得根据实际情况,做一些合理的简化,就像画画一样,先勾勒出个大概的形状。

三、模型建立。

3.1 这时候就开始建立模型啦。

这可是个技术活,就像盖房子一样,得一块砖一块砖地砌。

比如说根据前面的假设,咱们可以用一些数学公式来表示交通流量和拥堵程度的关系。

可能是个很复杂的公式,但是别怕,只要前面的基础打得好,就像“万丈高楼平地起”,总能把这个模型给建起来。

3.2 在建立模型的过程中,还得考虑各种因素的相互作用。

就像一个生态系统似的,每个部分都影响着其他部分。

比如说车流量影响车速,车速又反过来影响车流量,这就得用一些巧妙的数学方法来处理。

四、模型求解。

4.1 模型建好了,就得求解啦。

这就像解一道超级大难题。

有时候可能有现成的数学方法可以用,就像走在一条熟悉的小路上。

但有时候呢,就得自己想办法,这就像在荒野里开辟一条新的道路一样困难。

可能要用到计算机软件来帮忙计算,就像请个小助手似的。

4.2 在求解的过程中,可能会遇到各种各样的问题。

建立数学模型的一般过程或步骤

建立数学模型的一般过程或步骤

1.问题识别和定义建立数学模型的第一步是明确识别和定义需要解决的实际问题。

这个阶段包括:a) 确定研究对象: 明确我们要研究的系统、现象或过程是什么。

b) 明确目标: 确定我们希望通过模型解决什么问题,或得到什么样的结果。

c) 界定范围: 确定模型的适用范围和限制条件。

d) 收集背景信息: 了解问题的背景,包括已有的相关研究和理论。

e) 提出假设: 根据对问题的初步理解,提出一些合理的假设。

这个阶段的关键是要尽可能清晰、准确地描述问题,为后续的模型构建奠定基础。

2.变量选择和定义在明确问题后,下一步是确定模型中的关键变量:a) 识别相关变量: 列出所有可能影响问题的变量。

b) 分类变量: 将变量分为自变量、因变量、参数等。

c) 定义变量: 明确每个变量的含义、单位和取值范围。

d) 简化变量: 去除次要变量,保留最关键的变量以简化模型。

e) 考虑变量间关系: 初步分析变量之间可能存在的关系。

变量的选择直接影响模型的复杂度和准确性,需要在简化和精确之间找到平衡。

3.数据收集和分析为了构建和验证模型,我们需要收集相关数据:a) 确定数据需求: 根据选定的变量,明确需要收集哪些数据。

b) 选择数据来源: 可以是实验、观察、文献资料或已有数据库。

c) 设计数据收集方案: 包括采样方法、实验设计等。

d) 数据预处理: 对原始数据进行清洗、标准化等处理。

e) 探索性数据分析: 使用统计方法和可视化技术初步分析数据特征和规律。

f) 识别异常值和缺失值: 处理数据中的异常情况。

高质量的数据对于构建准确的模型至关重要。

4.模型结构选择基于问题定义、变量选择和数据分析,我们可以开始选择适当的模型结构:a) 考虑问题类型: 如静态或动态、确定性或随机性、线性或非线性等。

b) 研究已有模型: 调研该领域是否已有成熟的模型可以借鉴。

c) 选择数学工具: 如微分方程、概率论、优化理论等。

d) 确定模型类型: 如回归模型、微分方程模型、状态空间模型等。

数学建模的一般步骤和案例(课堂PPT)

数学建模的一般步骤和案例(课堂PPT)
进一步考虑实际储油罐,两端为球冠体顶。把储油罐分成中间的圆 柱体和两边的球冠体分别求解。中间的圆柱体求解类似于第一问,要分 为三种情况。在计算球冠内储油量时为简化计算,将其内油面看做垂直 于圆柱底面。根据几何关系,可以得到如下几个变量之间的关系, 测量的油位高度 实际的油位高度 计算体积所需的高度
于是得到罐内储油量与油位高度及变位参数(纵向倾斜角度和横向 偏转角度 )之间的一般关系。再利用附表2中的数据列方程组寻找与 最准确的取值。
.
20
本题是一道比较开放的题目,同学对问题的理解和所 关注的侧面(角度)的不同,会导致答卷的多样性。 以下几点在评阅中值得特别关注: 1. 影响力的定义,即因素的选定:考虑到3天时间不 太可能进行一个全面的影响力分析,如何恰当地选择 一个影响力的侧面极其相关因素是解题的基本前提。 容易考虑到的影响力包括经济、旅游、社会、文化等 多个方面,也可以是一个较小的侧面(比如表演、自 愿者、摄影)。要求有明确具体的定义,要有合理的 论证,要有数据支撑。 2. 因素的组织结构模型和有关信息的搜索:因素的相 关性、信息的完备性等都是值得注意的问题。鼓励直 接从网络采集因素数据,比如词汇搜索量、点击率等 等。 3. 定量建模,数据的收集和分析:要注意模型的合理 性,注意数据之间的可比性与归一化。鼓励纵向(时 间)和横向(其它重大事件)的比较。 4. 科学、直观地表达结论:结论一般不应该是一个简 单常识。
一般要求设计2~3个模型(一个简单的、再对模型进 行改进,得到第二个模型,就会生动)
推导时,公式若很长,可放在附录中 利用现成的软件计算模型数据 讨论误差
.
19
B题 2010年上海世博会影响力的定量评估
2010年上海世博会是首次在中国举办的世界博览会。 从1851年伦敦的“万国工业博览会”开始,世博会正 日益成为各国人民交流历史文化、展示科技成果、体 现合作精神、展望未来发展等的重要舞台。请你们选 择感兴趣的某个侧面,建立数学模型,利用互联网数 据,定量评估2010年上海世博会的影响力。

数学建模的一般步骤

数学建模的一般步骤

数学建模的⼀般步骤数学建模的⼀般步骤建⽴数学模型与其说是⼀门技术,不如说是⼀门艺术。

成功建⽴⼀个好的模型,就如同完成⼀件杰出的艺术品,是⼀种复杂的创造性劳动。

正因为如此,这⾥介绍的步骤只能是⼀种⼤致上的规范。

1.模型准备:在建模前应对实际背景有尽可能深⼊的了解,明确所要解决问题的⽬的和要求,收集必要的数据。

归纳为⼀句话:深⼊了解背景,明确⽬的要求,收集有关数据。

2.模型假设:在充分消化信息的基础上,将实际问题理想化、简单化、线性化,紧紧抓住问题的本质及主要因素,作出既合情合理,⼜便于数学处理的假设。

归纳为⼀句话:充分消化信息,抓住主要因素,作出恰当假设。

3.模型建⽴:①⽤数学语⾔描述问题。

②根据变量类型及问题⽬标选择适当数学⼯具。

③注意模型的完整性与正确性。

④模型要充分简化,以便于求解;同时要保证模型与实际问题有⾜够的贴近度。

正确翻译问题,合理简化模型,选择适当⽅法。

4.模型求解:就复杂⼀些的实际问题⽽⾔,能得到解析解更好,但更多情形是求数值解。

对计算⽅法与应⽤软件掌握的程度,以及编程能⼒的⾼低,将决定求解结果的优化程度及精度。

掌握计算⽅法,应⽤数学软件,提⾼编程能⼒。

5.模型检验与分析:模型建⽴后,可根据需要进⾏以下检验分析。

①结果检验:将求解结果“翻译”回实际问题中,检验模型的合理性与适⽤性。

②敏感性分析:分析⽬标函数对各变量变化的敏感性。

③稳定性分析:分析模型对参数变化的“容忍”程度。

④误差分析:对近似计算结果的误差作出估计。

概括地说,数学建模是⼀个迭代的过程,其⼀般步骤可⽤流程图表⽰:数学建模论⽂的撰写及格式撰写数学建模论⽂和通常完成数学建模竞赛的答卷是类似的, 都是在完成了⼀个数学建模问题的全部过程后, 把所作的⼯作进⾏⼩结, 以有清楚定义的格式写出解法论⽂,⽤于交流或给有关部门、⼈员汇报。

数学建模论⽂的结构:⼀份完整的答卷应包含以下内容:论⽂题⽬;摘要;问题的重述;模型的假设、符号约定和名词解释;模型的建⽴、模型的求解、模型的结果和检验;模型的评价和改进;参考⽂献;附录。

(完整版)数学建模的一般步骤

(完整版)数学建模的一般步骤

数学建模的一般步骤数学建模要经过哪些步骤并没有一定的模式,通常与问题的性质、建模目的等有关,下面简要介绍数学建模的一般步骤,如下图所示.一、模型准备了解问题的实际背景,明确建模目的,搜集必需的各种信息如数据,尽量弄清研究对象的主要特征,形成一个比较清晰的“问题”.二、模型假设根据对象的特征和建模目的,抓住问题的本质,忽略次要因素,对问题进行必要的、合理的简化假设,是关乎建模成败至关重要的一步。

假设作得不合理或太简单,会导致错误或无用的模型;假设作得过分详细,试图将复杂对象的众多因素都考虑进去,会使得模型建立或求解等无法进行下去.三、模型构成根据所作的假设,用数学语言、符号描述对象的内在规律,建立包含常量、变量等的数学模型,如优化模型、微分方程模型等等。

这里需要注意的是,建立数学模型是为了让更多的人明了并能加以应用,因此尽量采用简单的数学工具。

四、模型求解可以采用解方程、画图形、优化方法、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是数学软件和计算机技术。

一些实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此计算机编程和熟悉数学软件能力举足轻重。

五、模型分析对模型求解结果进行数学上的分析。

如结果的误差分析、统计分析、模型对数据的灵敏性分析、对假设的强健性分析等。

六、模型检验将求解和分析结果翻译回到实际问题,与实际的现象、数据比较,检验模型的合理性和适用性.如果结果与实际不符,问题常常出现在模型假设上,应该修改、补充假设,重新建模,如上图中的虚线所示.这一步对于模型是否真的有用非常关键.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意.七、模型应用将所建立的模型用来解决实际问题.。

数学建模竞赛的六个步骤

数学建模竞赛的六个步骤

数学建模竞赛的六个步骤
数学建模竞赛一般包括以下六个步骤:
1. 理解问题:阅读和理解竞赛题目、要求和限制条件。

确保对问题的要求有清晰的理解。

2. 建立数学模型:根据问题确定的目标和条件,选择适当的数学模型以解决问题。

这可能涉及到数学、统计、概率、优化等方面的知识。

3. 分析模型:对建立的数学模型进行分析,确定其主要特征和性质。

这可能包括理论推导、图表绘制、模型验证等方法。

4. 解决问题:使用合适的数值算法或计算方法,对模型进行求解,得到问题的解答。

这可能需要编程、数值计算、优化算法等技巧。

5. 验证和检验结果:对求解结果进行验证和检验,确保解答的正确性和合理性。

这可能包括比对实际数据、进行灵敏度分析等方法。

6. 撰写报告和展示结果:将整个过程和结果进行整理、归纳和总结,编写竞赛报告。

报告要具备清晰的逻辑结构、准确的表达和可视化的展示。

同时,准备好展示竞赛成果的演讲或展示材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模的一般步骤
1问题的复述
2问题的分析
3问题的假设
4 符号说明
5建立数学模型
6数学模型的求解
7 数学模型的评价
8数学模型的改进
9参考文献
10附录。

什么是数学模型:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。

数学结构可以是数学公式,算法、表格、图示等。

数学建模:建立数学模型的全过程(包括表述、求解、解释、检验等)。

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"
解决"实际问题的一种强有力的数学手段。

数学建模竞赛,就是在每年叶子黄的时候(长沙的树叶好像一年到头都是绿的)开始的一项数学应用题比赛。

大家都做过数学应用题吧,不知道现在的教育改革了没有,如果没有大变化,大家都应该做过,比如说[树上有十只鸟,开枪打死一只,还剩几只],这样的问题就是一道数学应用题(应该是小学生的吧),正确答案应该是9只,是吧?这样的题照样是数学建模题,不过答案就不重要了,重要的是过程。

真正的数学建模高手应该这样回答这道题。

“树上有十只鸟,开枪打死一只,还剩几只?”
“是无声手枪或别的无声的枪吗?”
“不是。


“枪声有多大?”
“80-100分贝。


“那就是说会震的耳朵疼?”
“是。


“在这个城市里打鸟犯不犯法?”
“不犯。


“您确定那只鸟真的被打死啦?”
“确定。

”“OK,树上的鸟里有没有聋子?”
“没有。

”“有没有关在笼子里的?”“没有。

”“边上还有没有其他的树,树上还有没有其他鸟?”
“没有。

”“有没有残疾的或饿的飞不动的鸟?”
“没有。

”“算不算怀孕肚子里的小鸟?”
“不算。

”“打鸟的人眼有没有花?保证是十只?”
“没有花,就十只。

”“有没有傻的不怕死的?”
“都怕死。

”“会不会一枪打死两只?”“不会。

“所有的鸟都可以自由活动吗?”“完全可以。


“如果您的回答没有骗人,打死的鸟要是挂在树上没掉下来,那么就剩一只,如果掉下来,就一只不剩。


不是开玩笑,这就是数学建模。

从不同的角度思考一个问题,想尽所有的可能,正所谓的智者千虑,绝无一失,这,才是数学建模的高手。

然后,数学建模高手的搭挡----论文写作高手(暂称为写手吧),会把以上的思想用最好的方式表达出来。

一般的写手会直接把以上的文字放到论文里就成了。

但是专职的数学建模论文的写手不会这样做,她们会先分析这些思想,归整好条理;然后,她们会试着用图画来深入浅出的表达这些思想,或者再使用一些表格;这些都是在Word中进行,当然,如果有不喜欢Microsoft
的朋友或是国粹主义者喜欢用WPS什么的当然也可以。

她们都是这一行的专家,相信Word什么的使用技巧,都够她们写一篇论文的了。

她们不一定会打字,但是输入公式的速度确是一流的。

她们一定会用一种画图软件,不管是Visio还是SmartDraw,她们都会用来明确而清晰的表达自己的思想。

好了,有了思想,也有了表达思想的人,还少一样东西----实现。

屈原老哥就有那么多的怀疑与问题,作为数学建模竞赛的评委当然也不是好骗的,不会那么容易的相信高手们的话。

所以要一个编程高手实现之(暂称为程序员吧)。

就上面所说的问题,程序员会编一个仿真的程序,实现以上所有的情况。

这个程序是这样子的,他对以上所提的每一个选项提供了选择接口,比如说,我们可以选择枪的声音的分贝数,可以从80到100分贝调节,或者干脆从0到200db均可,调节方式是无级变速方式,当然,电脑太慢,在遍历的时候可能要指定步长,嘿嘿,所以,最好买个好电脑,CPU一定不要用赛扬的,要用奔腾的,另外,为了程序员的安全,还要用液晶的显示器,要有UPS 不间断电源,要有健康的座椅.....哈哈,扯远了。

仿真程序会尽一切可能按实际所限制的条件遍历所有的情况,看一看还剩下几只bird。

当然,这也不是实践。

真的做的绝的,会跑去烈士公园做实验,当然得拿一把枪,可以拿塑料子弹枪。

烈士公园离我们学校(路过就读于东点军校)很近,就在南门嘛。

那儿有一个地方养了很多鸽子。

虽然不能保证刚好10只鸽子,也不能保证刚好都在树上,但也可以将就着做实验,然后根距实验条件做一些修正。

哈哈,这样就完美了....把实践结果与仿真结果、理论结果做比较,再修改理论、仿真程序、论文,再做实验、做仿真,再比较,再修改,递归到时间的完结。

相关文档
最新文档