希望杯100试题及答案
2023希望杯四年级数学思维训练100题(含答案)

2023希望数学——4年级培训100题1.已知:A※B=A×B+A+B,则1※9※9※9※9※9※9※9※9※9※9=________。
2.木木练习口算,她按照自然数的顺序从1开始求和,当计算到某个数时,和是888,但她重复计算了其中一个数。
那么木木重复计算的数是________。
3.把自然数从1开始,排列成如下的三角阵:第1列为1;第2列为2,3,4;第3列为5,6,7,8,9,以此类推,每一列比前一列多排两个数。
以1开头的行中,第2023个数是________。
4.将11~21分别填入下图中的圆圈内,使每条虚线上三个数之和都相等。
中心数有________种填法。
5.计算:(26÷25)×(27÷17)×(25÷9)÷(39÷17)=________。
6.计算:9+99+999+9999+99999=________。
7.定义运算:a☆b=(a+b)÷6,若m☆8=24,m=________。
8.请把图中的除法竖式补充完整。
9.下面这个表有100行,这个表中所有数的和是________。
10.在空格内填入数字1~5,使得每行、每列数字都不重复。
图中格线上给出的数表示旁边两个数的和或者积。
11.计算:(1+3+5+…+2023)+(2-4-6-…-2022)=_______。
12.如果1△3=1+11+111,2△5=2+22+222+2222+22222,8△2=8+88,那么6△4=_______。
13.甲乙两人练习跑步,从同一地点同向出发。
若乙比甲先跑10米,则甲跑5秒追上乙;若乙比甲先跑2秒,则甲跑4秒追上乙。
甲每秒跑_________米,乙每秒跑________米。
14.甲、乙、丙三个班的人数和为194,乙班人数比甲班人数的5倍还多1,丙班人数比乙班人数的5倍还多2。
甲班有________人,乙班有________人,丙班有________人。
希望杯考前100题 (1)

37. 字母 W、M、T、C 分别代表 4 个不同的数字,并且WW × MM + WT + C = 2017 , 求W + M + T + C 的值.
38. 字母 a,b,c 表示 3 个不同的非零数字,若 abc + bc + c = 724 ,求 a + b + c .
常州学而思 双师课堂
受益一生的能力
64. 如图,矩形 ABCD 中,F 为 BC 的中点,CE=2DE,矩形 ABCD 的面积为 3,求阴影部 分的面积.
D
E
C
F
A
B
65. 在边长是 1 米的正六边形内任意丢放 7 颗小石子,则总有两颗小石子的距离不大 1 米, 请说明理由.
常州学而思 双师课堂
受益一生的能力
66. 某次考试共有 10 道判断题.小张划了 5 个钩和 5 个叉,结果对了 8 道;小李划了 2 个 钩和 8 个叉.结果对了 6 道;小王一道都不会,索性全部打叉,那么他至少可以蒙对多 少道题?
12. 桌上有一些纸片,每张纸片上都有编号(不是按顺序编的),马小虎同学错把 6 和 69 拿倒了,导致这些编号的平均数多出 1,问这些纸片共有多少张?
常州学而思 双师课堂
受益一生的能力
13. 有一串数,最前面的 4 个数是 2,0,1,8,从第 5 个数起,每一个数都是它前面相邻 4 个数之和的个位数字,问在这一串数中,会依次出现 2,0,1,7 这 4 个数吗?
14. 某工人每小时内需先生产 2 个 A 产品,再生产 3 个 B 产品,最后生产 1 个 C 产品,则 第 725 个产品是哪种产品?
15. 著名的哥德巴赫猜想可以陈述为:任意大于 2 的偶数,都可表示成两个质数之和.将偶 数 88 表示成两个质数的和,有几种表示方法?( a + b 和 b + a 视为同一种表示方法)
2023年六年级希望杯赛前培训100题答案

2023年六年级希望杯赛前培训100题答案这份文档是为2023年六年级希望杯赛前培训准备的100题答案。
在这个培训中,我们将会涵盖各种题型和知识点,以确保学生们在比赛中取得好成绩。
数学1. 36 ÷ 4 = ?- 答案:92. 187 + 293 = ?- 答案:4803. 982 - 594 = ?- 答案:3884. 85 × 2 = ?- 答案:1705. 953 ÷ 7 = ?- 答案:136英语1. What is the capital city of Australia?- 答案:Canberra2. Which of the following words is spelled incorrectly?I ___ to the cinema every week.A. goB. goesC. going- 答案:A (go)4. Fill in the blank with the correct form of the verb "to be": She ___ 10 years old.A. amB. isC. are- 答案:B (is)5. Which sentence is written in the passive voice?A. John built a house.B. The house was built by John.C. John is building a house.- 答案:B (The house was built by John)语文1. 下列每组成语中,加点的字的读音都不相同的一组是?A. 蒙羞,重峦叠嶂,借箭,右撇子B. 人声鼎沸,工程,自告奋勇,戒骄戒躁C. 绕梁三日,一专多能,集腋成裘,经纬万端- 答案:A2. 请写出:“薛涛初学笛, / 池上清风来。
/ 然后天真殊, / 怀抱亦纤弱。
(完整版)希望杯竞赛赛前培训100题(三年级)

1.观察图1的图形的变化进行填空.2.观察图2的图形的变化进行填空.3.图3中,第个图形与其它的图形不同.4.将图4中A图折起来,它能构成B图中的第个图形.5.找出下列各数的排列规律,并填上合适的数.(1)1,4,8,13,19,().(2)2,3,5,8,13,21,().(3)9,16,25,36,49,().(4)1,2,3,4,5,8,7,16,9,().(5)3,8,15,24,35,().6.寻找图5中规律填数.7.寻找图6中规律填数.8.(1)如果“访故”变成“放诂”,那么“1234”就变成.(2)寻找图7中规律填空.9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是.10.图9、图10分别是由汉字组成的算式,不同的汉字代表不同的数字,请你把它们翻译出来.11.在图11、图12算式的空格内,各填入一个合适的数字,使算式成立.12.已知两个四位数的差等于8765,那么这两个四位数和的最大值是.13.中午12点放学的时候,还在下雨.已经连续三天下雨了,大家都盼着晴天,再过36小时会出太阳吗?14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是星期几?15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员.17.用凑整法计算下面各题:(1)1997+66 (2)678+104 (3)967-598 (4)456-30718.用简便方法计算下列各题: 634+(266-137) 2011-(364+611)558-(369-342) 2010-(374-990-874)19.用基准法计算: 108+99+93+102+97+105+103+94+95+10420.用简便方法计算:899999+89999+8999+899+8921.求100以内的所有偶数的和是多少?22.有一数列3,9,15,…,153,159.请问:(1)这组数列共有多少项?(2)第15项是多少?(3)111是第几项的数?23.有10只盒子,54只乒乓球,把这54只乒乓球放到10只盒子中,要求每个盒子中最少放1只乒乓球,并且每只盒子中的乒乓球的只数都不相同,如果能放,请说出放的方法;如果不能放,请说明理由.24.如图13有一个宝塔算式,从上向下数,第一层的和为1,第二层的和为5,第三层的和为15,…,第十层的和为多少?25.甲、乙、丙三位同学参加希望杯数学竞赛的平均成绩是75分,甲、丙的平均成绩是71分,那么乙得了多少分?26. 6名同学在一起打乒乓球,两人轮流上;从上午9点打到上午11点;他们平均休息多少分钟?27.已知七个自然数的和是154,求这七个连续自然数各是什么数?28.张红、王莉、李月、赵兰四人的平均身高是158厘米,再加上刘辉,五人的平均身高是160厘米. 求刘辉的身高.29.从北京到上海的特快列车,中途要停靠7个大站. 这样,有几种不同价格的车票?30.1个五元纸币,2个五角硬币,3个一元硬币,一共可以组成多少种人民币值?31.从图14中O点出发又回到O点,每条线段不能重复走,共有几条不同路线?32.布袋里有五个彩色玻璃球,每次最多只能拿走一个或2个,可分多次取出.问取完五个球,有多少种不同的取法?33.简便计算下列各题.125165 3 12573225 (49+28+56)7 (43+35+20)7 (96-33-39) 3 3637+6437 225(94) 43045937.算式()9=13…()中,最大、最小的被除数分别是多少?38.30()=()…6中,除数和商各是多少?39.小胡在计算除法时,把除数87写成78,结果商是64,还余54,正确的商应该是多少?40.149除以一个两位数,余数是5,请写出所有这样的两位数。
小学“希望杯”培训100题(六年级)及解析

小学“希望杯”培训100题(六年级)一、解答题(共100小题)1.计算:=.2.计算:2012×2014×().3..4.计算:(0.+0.3)×0.×0.7×=.5.计算:=.6.计算:=7.兄弟俩都有点傻,一位只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是岁,岁.8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有粒.9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=.(π取3)10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长米,井深米.15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到个梨.16.31500的约数中与6互质的共有个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=.18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要分钟.20.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点km.22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了元.24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是,最大是.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.29.甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是________米/秒.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是.36.在1到2013这2013个数中,共有个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是.38.若整数x满足不等式,则x=.39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是.40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(,).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是 .42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有 天.43.计算:.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).45.如图,在△ABC 中,,E ,G 分别是AD ,ED 的中点,若△EFG 的面积为1,则△ABC 的面积是 .46.如图 (1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是 .47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了 厘米.48.建筑公司计划修一条隧道.当完成任务的时,公司引进新设备,修建速度提高了20%,每天的工作时间缩短为原来的80%,实际185天完成了任务.若按原计划,则 天可完成任务.49.如果一个自然数能表示成两个非零自然数的平方差,则称这个数为”吉祥数”,如:9=52﹣42,9是”吉祥数”.那么从1开始的自然数中,第2013个”吉祥数”是 .50.有3个整数,如果第2个数的5倍是第1个数与1的差的4倍,第3个整数的5倍是第2个数与1的差的4倍,那么第1个数的最小值是.51.春蕊班的每位同学都参加了课外体操班或围棋班,有的同学还同时参加了两个班.如果同时参加两个班的人数是参加围棋班的,是参加体操班人数的.那么这个班只参加体操与只参加围棋班的人数之比是.52.甲乙两个硬盘的成本共1600元,甲按30%的利润定价,乙按40%的利润定价,甲按定价的90%出售,乙按定价的85%出售,供货的利润290元.那么甲的成本是元.53.已知,其中a,b,c,d,e都是整数,则其中最大的数的值是.54.咖啡店新推出一款杯子,定价是88元/个,实际销售时降了价,结果销量比预计的增加了,收入增加了,则每个杯子被降价元.55.若三个连续自然数的平方的和等于245,则这三个连续自然数的和是.56.已知长方体表面积是148cm2,底面面积是30cm2,底面的周长是22cm,则这个长方体的体积是cm3.57.用棱长为2厘米的小正方体,如图所示层层重叠放置.则当重叠了5层时,这个立方体的表面积是平方厘米.58.由长度分别为2,3,4,5,6的五条线段为边,可以组成个不同的三角形.59.若字母a,b,c分别表示不同的非零数字,则由a,b,c组成的各个数位上数字不同的三位数共有个,若除三位数外,其余几个的和为2874,则=.60.如图,边长为2a的正方形ABCD内有一个最大的圆圆O,圆O内有一个最大的正方形EFGH.用S1,S2,S3依次表示△EOF的面积,弓形EmF的面积,带弧边EmF的△EBF的面积,则S1*S2*S3=.(圆周率π取3)61.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.62.已知一列数:1,1,2,3,5,8,13,21,34,55,89,144,233,…,若第n个数比第n+2个数小233,则n=.63.一只蚂蚁沿边长为240cm的等边三角形ABC的三条边由A点顺时针爬行一周.它在三条边上的速度分别是每秒3cm,4cm,5cm(如图).且当它到达拐点(A,B,C)时会休息26秒,当它爬完一周回到点A时,行程结束.这期间,蚂蚁的平均速度是cm/s.64.至多含有一个奇数数字且能被25整除的四位数共有个.65.观察下面的数表:(横排为行,竖排为列)表中第1列都是单位分数,分母依次为1,2,3…,每行自第2个分数起,每个分数的分子等于左边分数的分子加1,分母等于左边分数的分母减1,直到分数的分母等于1.则位于第行,第列.66.从最小的质数算起,若连续n(n是大于1的自然数)个质数的和是完全平方数,则n 最小是.67.现有3个互不相等的数,甲说是2,a+1,b+2;乙说是2b﹣1,3,a.若两人都说对了,则这三个数的乘积是.68.若×=6657,其中x,y,z都代表非零数字,则=.69.两个直角三角板如图放置,则∠BFE的度数是∠CAF的倍.70.一个长方体相邻的两个面的面积之和是130,它的长,宽,高都是不超过13的整数,且均为互不相等的质数,则这个长方体的体积是.71.如图,一个物体由2个圆柱组成,它们的半径分别是3厘米和6厘米,而高分别是5厘米和10厘米,则这个物体的表面积是平方厘米.72.植树节,5名小朋友给5棵树浇水,每个小朋友至少浇一棵树,但一个小朋友不能重复给同一棵树浇水,一桶水也只能浇一棵树.活动结束后,5个小朋友分别浇了2,2,3,5,x桶水,5棵树分别被浇了1,1,2,4,y 桶水,那么x=,y=.73.小明出去散步前看了一下手表,回来时又看了一下手表,发现此时手表的时针,分针的位置正好与出去时的分针,时针位置相同.若他在外逗留的时间不足一小时,则他在外待了分钟.74.如图所示,共有个三角形.75.一个长为4,宽为3的长方形如图竖直放置,在其右上角有一个红点A,长方形绕右下角旋转90°,成为一个横放的长方形,再绕右下角旋转90°,成为一个竖放的长方形,…,当小红点A第一次回到右上角时所走过的路程是.76.书架第一层有依次排列的10本不同的故事书,现将2本不同的漫画书也放入第一层,则不同的放法共有种.77.分母是385的所有最简真分数的和等于.78.有价值总和为174万元的三批货物,这三批货物的质量比是3:4:5,单位质量的价格比是6:5:4.这三批货物各价值万元.79.将分数化成小数后,如果小数点后第一位起连续N个数位上数字之和等于2013,那么N=.80.如图所示是一个边长为120m的等边三角形,甲乙同时分别从A点,B点按顺时针方向出发,甲每分钟走120m,乙每分钟走180m,但经过每个顶点时,因转弯都要耽误5s,则乙出发s后第一次追上甲.81.原来,单独打开进水管3小时能将水池注满,单独打开出水管4小时可排完一池水.后来,这个水池漏水了,同时打开进水管与出水管14小时才能将水池注满,则只打开进水管需要小时可以注满这个漏的水池.82.图书馆,游泳馆,少年宫三个站在一条笔直的公路上,且游泳馆到图书馆,少年宫两站的距离相等.小明和小华分别从图书馆,少年宫两站同时出发相向而行.小明超过游泳馆站100米后与小华相遇.然后二人继续前进.小明到达少年宫站后立即沿原路返回,经过游泳馆站后300米追上小华.则图书馆,少年宫两站相距米.83.马和狗约好去牛哥家做客,牛哥说他忘了去超市买面包,狗说他去,一会儿,马到了牛哥家,听说狗去买东西了,他急了,他说,狗跑5步的时间我能跑6步,我跑4步的距离相当于狗跑7步.而且我比他力气大,买东西的活儿我去,于是马也奔超市去了,此时狗已跑出550米了.超市离牛哥家有2000米,则马要跑米才能追上狗,此时离超市还有米.84.12和60是很有趣的两个数,这两个数的积恰好是这两个数的和的10倍:12×60=720=10×(12+60).满足这两个条件的非零自然数对还有:.85.明明,亮亮,军军三人都参加了数学竞赛,他们共解出了100道题,每人都解出了其中的60道题目,若三个人都解出来的题称为基础题;只有两个人解出来的题称为中等题;只有一个人解出来的题称为难题,则在他们解出的100道题中,难题的数量比基础题的数量(填:多或少)道.86.一块木片沿河漂流,从河边的A地到B地,用了24小时.一只快艇在静水中的速度是18千米/小时,它从A驶到B所用的时间是从B驶到A所用时间的.则AB间的距离是千米.87.如图,AB∥CE,AC∥DE,且CE=DE=2AB=2AC,则=.88.小明和小林是两个集邮爱好者,他们共有邮票400多张,如果小明给小林a张邮票,小明就比小林少;如果小林给小明a张邮票,则小林就比小明少.那么小明原有张邮票,小林原有张邮票.89.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.90.为确保信息安全,信息需加密传输,发送方将明文加密成密文,接收方收到密文后解密可得明文.已知有一种加密方式是将英文26个小写字母a,b,c,…,依次对应0,1,2,…,25这26个整数(见下表),当明文中的字母对应的序号为a时,将a+10除以26后所得的余数作为密文中的字母对应的序号,例如明文”a”对应密文”k”.””91.如图,在正方形场地ABCD的四周有32个洞(每边9个洞),一个工人扛着32面旗子,从A洞开始插旗,按顺时针方向,每隔5个洞就插一面旗,当他绕着正方形走完5圈时,发现有n个洞不能插旗,求n.92.某校有960套桌凳需要维修.现有甲乙两个木工,甲单独修理这批桌凳比乙多用20天;乙每天比甲多修8套;甲乙每天的修理费分别是80元,120元.在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案共选择:①由甲单独修理;②由乙单独修理;③由甲乙共同合作修理.你认为哪种方案即省时又省钱?试比较说明.93.甲乙丙三辆汽车分别从A地开往千里之外的B地.乙比甲晚出发40分钟,出发后160分钟后能追上甲;丙比乙晚出发20分钟,出发后5小时追上乙.那么如果甲比乙先出发10分钟,乙比丙先出发10分钟,那么乙追上甲之后过多久丙能追上甲?94.已知甲乙丙三位同学在北京,广州,上海的大学学习软件设计,服装设计,城市规划.有下列判断:①甲不在北京学习;②乙不在广州学习;③在北京学习的同学不学城市规划;④在广州学习的同学是学软件设计的;⑤乙不学服装设计.三位同学各在什么城市学习什么专业?95.如图,长方形ABCD,ABEF,AGHF的长与宽的比相同,且,长方形BEHG的周长是22,求长方形ECDF的面积.96.在小于30的所有质数中,是否存在差与平方和都是质数的两个质数?若存在,有几组?若不存在,请说明理由.97.甲容器内有物质A和物质B,其质量比是2:3,乙容器内有物质B和物质C,其质量比是1:2,丙容器内有物质A和物质C.现将甲乙丙三容器中的物质以1:2:3的比例取出,混合,则所得新的混合物中,A,B,C三种物质的质量比是183:152:385.求丙容器内物质A和物质C的质量比.98.程序员设计了一款新游戏,共20级.小刚一次晋级2级游戏,或一次晋级3级游戏,那么他从入门(0级)晋级到第20级共有多少种不同的方法?10月份,小强的家里用了23m的居民用水,他开的餐厅,用了102m的餐饮用水,则这个月他应该交多少元水费?100.0.买一盒牙膏,一瓶沐浴露和一瓶洗发露共付款100元.若1瓶沐浴露比2盒牙膏贵,2瓶洗发露比7瓶沐浴露贵,8盒牙膏比1瓶洗发露贵,且每个产品的单价都是整数元,分别求一盒牙膏,一瓶沐浴露,一瓶洗发露的价格.小学“希望杯”培训100题(六年级)参考答案与试题解析一、解答题(共100小题,满分0分)1.计算:=.2.计算:2012×2014×()=2.3.(2010•成都校级自主招生).解:++…+,=×(﹣+﹣+…+﹣),=×(﹣)=×()=×=.4.计算:(0.+0.3)×0.×0.7×=.+0.3)×0.7×,(+×××,×××(×××,=××=×=5.=102.解:,=(1+3+5+..+19)+3×=102+3×(1﹣)=100+=102.6.=.解:设n=++,m=,则:(1+++)×(+++)﹣(1++++)×(++),=(1+n)×m﹣(1+m)×n=m+mn﹣n﹣mn=m﹣n,=()﹣(++)=.7.兄弟俩都有点傻,以为只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是6岁,9岁.解:弟弟:(3+3)÷(2﹣1)=6(岁);哥哥:6+3=9(岁).8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有180粒.解:取了:20÷(6﹣5)=20(次),共有:20×3×(1+2)=180(粒);9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=48cm2.(π取3)S1﹣S2=(S1+S阴)﹣(S2+S阴)=S圆﹣S正=3×(16÷2)2﹣122=192﹣144=48(平方厘米);10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是23×34×52×72×11×13.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有121块糖,丙最多有19块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.)×=3﹣×=3班的人数与总人数的比值是;故答案为:.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是84.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长42米,井深12米.对应的分率的差额是:﹣)()15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到15个梨.16.31500的约数中与6互质的共有8个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=4.S=S18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是153,154,155.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要27分钟.则苏老师与公车速度和为问题;苏老师与公车速度差为,因为这时是相遇问题;那么苏老师速度(+),所以苏老师与公车速度比:,,+),公车速度(﹣),苏老师与公车速度比:=520.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是3.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点136.96km.t=﹣,22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有12个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了120元.=,丙占总数的;;﹣﹣)÷,24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是24,最大是72.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现51个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以102次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=81.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有6组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是45:61.29.(2011•成都)甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是乙丙丁甲.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是米/秒.,那么上坡的时间就是,下坡的时间就是;用总路程+)÷,(米故答案为:.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是48.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是123.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的75%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有102座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是600.36.在1到2013这2013个数中,共有51个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是18.38.若整数x满足不等式,则x=3.因为不等式,<3,2,39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是1:3.厘米的圆面积的厘米的圆面积的,圆中,据此40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(4,60).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是18.42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有132天.43.计算:.2+))﹣,)2+)2+),.,2012+.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).的分子、分母同时扩大倍,变成的分子、分母同时扩大倍,变成===﹣=﹣﹣,==++++,==﹣﹣=+,45.如图,在△ABC中,,E,G分别是AD,ED的中点,若△EFG的面积为1,则△ABC的面积是18.中,,且,据此利用分数除法的意义即可解答问题.中,的面积的,÷=1846.如图(1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S1,S2,S3,则S1,S2,S3的大小关系是相等.47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了厘米.。
六年级希望杯培训试题100题

希望杯六年级培训题1、211⨯+321⨯+431⨯+…+200720061⨯= 。
2、〔1+20021+20041+20061〕×〔20021+20041+20061+20081〕-〔1+20021+20041+20061+20081〕×〔20021+20041+20061〕3、〔220071×3.6+353×720072006〕÷43÷534、从21+41+61+81+101+121 中去掉 和 ,余下的分数之和为1.5、99…9×55…5乘积的各位数字之和是 。
6、20031200412005120061 200711±±±±的整数局部是 。
〔分母中只有加号〕7、除法算式:÷它的计算结果的小数点后的前三位分别是 。
8、一个整数与它的倒数和等于20.05,这个数是 ,它的倒数是 。
2007个9 2007个59、在如图1的加法算式中,每个汉字分别代表1至9中的一个数字,且一样的汉字代表一样的数字,不同的汉字代表不同的数字,那么这个加法算式的和是 。
我 爱 希 望 杯 数 学 竞 赛+ 8 6 4 1 9 7 5 3 2赛 竞 学 数 杯 望 希 爱 我10、有一个分数,它的分子加2,可以约简为74;它的分母减2,可以约简为2514。
这个分数是 。
11、四个非零自然数的和为38,这四个自然数的乘积的最小值是 ,最大值是 。
12、a 是质数,b 是偶数,且a 2+b=2022,那么a+b+1= 。
13、当a =2007时,a-1,a,a+1,a+2中的合数有 个。
14、从1到30这30个自然数连乘各的末尾共 个连续的数码0.15、一个质数p ,使得p+2,p+4同时都是质数,那么p 1+21±p +41±p = .16、三个质数的倒数之和是20061155,那么这三个质数中最大的是17、彼此不等且大于0的偶数a,b,c,d 满足a+b+c+d=20,样的偶数组〔a,b,c,d 〕共有 组。
2024年希望杯六年级竞赛数学试卷培训题+答案

2024年希望杯竞赛六年级数学培训题1 .计算: .2 . 计算: .3 .计算: .4 .计算:.5 .等式中的和都是自然数,.6 . .7 .的积不到,里最大填 .8 .以表示不超过的最大整数,若要,则自然数的最小值是 .9 .如果正整数使得,则为 .(其中表示不超过的最大整数) 10 .的整数部分是 .11 .不等式,时的解为 ,时的解为 ,时的解为 .12 .甲、乙两个两位数,甲数的等于乙数的,这两个数的和最大是 . 13 .一个三位数加或者乘的结果都是完全平方数,这个三位数是 . (注:一个自然数与自身相乘的积叫做完全平方数.) 14 .已知是数字到中的一个,若循环小数,则.15 .下面竖式中,相同的图标表示相同的数字,不同的图标表示不同的数字.那么,., .17 .将至填入右图的网格中,要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍,已知左右格子已经填有数字和,问:标有字母的格子所填的数字最大是 .18 .各位数字均不大于,且能被整除的六位数共有 个. 19 .八位数(中的数字可重复出现)是的倍数,这样的八位数共有 个.20 .把的所有自然数连写在一起,可以得到这样的一个多位数,它是 位数.21 .某日,可可到动物园里去观赏动物,他看了猴子,熊猫和狮子三种动物,这三种动物的总量在到只之间,根据下面的情况: ①猴子和狮子的总数要比熊猫的数量多, ②熊猫和狮子的总数要比猴子的两倍还多, ③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.22 .儿童节的早上,方玲去图书馆看了一会儿书后到游泳馆游泳.她每天去一次图书馆,每天去游泳一次.方玲下一次既到图书馆看书,又到游泳馆游泳的时间是 月 日.23 .五名选手在一次数学竞赛中共得分,每人得分互不相等且都是整数,并且得分最高的选手得了分,那么得分最低的选手至少得 分,至多得 分. 24 .被除余,被除余,被除余的最小两位数是 。
2022 奥赛希望杯五年级培训 100题——答案版

2022希望少年俱乐部-五年级培训100题(解析)1.【答案】395【解析】原式=75÷30× 4.67×30+17.9×2.5=2.5×140.1+17.9×2.5=2.5×140.1+17.9=2.5×158=3952.【答案】579557.95【解析】原式=5795.5795×579.5÷5.795=5795.5795×579.5÷5.795=5795.5795×100=579557.953.【答案】27.25【解析】分两段计算,前一段5个数,后一段项数:0.99− 0.11 ÷0.02+1=45原式=0.5× 5 +0.11 + 0.99 × 45 ÷ 2=2.5+1.1 × 45 ÷ 2=2.5 + 24.75=27.254.【答案】5【解析】原式=(0.81+0.83+⋯⋯+0.99)× 0.6=(0.81+0.99)× 10 ÷2× 0.6=1.8× 10 ÷2×0.6=9×0.6=5.4所以结果的整数部分是5。
5.【答案】13【解析】首先考虑商的十位,6□□×□=□□7,商的十位只能是1,可知除数是6□7,接着考虑商的个位,6□7×□=□□61得知,商的个位只能是3,反推可知除数是687,剩下就可以正常推算。
6.【答案】2754【解析】首先□□□×7=□1□,可知前一个乘数百位是1因为结果是2□□□,可知第2行乘积最高位是2接着是1□□×□=20□,可知,前一个乘数的十位是0,后一个乘数是2再回头可知10□×7=□1□,一定是102×7=714,剩下就容易填了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年小学希望杯数学邀请赛6年级培训题1、计算:4.8×17.4×6.25—37.5×0.174×5.•3=_________。
2、计算: 0.•6+0.•1•8+0.4•3•9=_________。
3、计算:120092008200920072008−××++120102009201020082009−××++120112010201120092010−××++120122011201220102011−××+=_________。
4、计算:212122×++323222×++…+10110010110022×+=_________。
5、在 10个连续自然数中,最多有_________个质数。
6、一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字的和,如 123,235等等,这类三位数共有________个。
7、已知一串分数:31,32,61,62,63,64,65,91,92,93,94,95,96,97,98,121,122,…1211,151,152,…其中第 2011个分数是_________。
8、已知 A={1,3,5,7},B={1,4,7},C={2,5,7,8}。
规定: A∩B={1,3,5,7}∩{1,4,7}={1,7}; A ∪B={1,3,5,7}∪{1,4,7}={1,3,4,5,7}。
根据此规定,可求得( A∪C)∩B={_________}.9、某月的日历如图 1所示。
若用 2×3(2行3列)的长方形框出 6个数,使它们的和是 81.那么这 6个数中最小的是_________。
10、某些数除以 11余 1,除以 13余 3,除以 15余 13,那么这些数中最小的数是_________. 11、已知:43201312111=+++x ,则x=_________。
12、在自然数 1—2011中,最多可以取出________个数,使得这些数中任意四个数的和都不能被 11整除。
13、在自然数中,1² =1,2²=4,3² =9,…,数 1,4,9,…称为完全平方数。
若自然数 N=4434421L 12121212个m +++ (1≤m ≤2011)是一个完全平方数,则这样的 N 有________个。
14、有 4个不同的自然数 a,b, c, d 而且 0<a<b<c<d.如果 b-a =5, d-c =7, a,b,c, d 的平均数是 17,那么 d 最大是________.15、在数学竞赛中取得前四名的方方、园园、宝宝、贝贝年龄依次是相差 1岁,而且他们年龄的乘积是 1180,则他们的年龄分别是________、________、________、________.16、一个多位数是 149162536496481…,从左向右数的第 100个数字是________.17、有 100个连续自然数,请你按某种顺序排列,然后计算相邻三个数的和,其中和为偶数的最多有________个。
18、已知 a,b 为质数( a>b ),ab 表示 a 与 b 的乘积,若 a+ab+b =55,那么 a-b 的值是________.19、一个六位数,它的个位上的数字是 6。
如果把数字 6移到第一位,所得的数是原数的 4倍。
这个六位数是________.20、两个数的最小公倍数是 252,最大公约数是 7,并且两个数中的大数不是小数的倍数,则这两个数是________.21、小宝记得英语单词 “hello”是由三个不同的字母 h,e,o 和两个相同的字母 l 组成的,但不记得排列顺序,则小宝可能出现的拼写错误共有________种。
22、将一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,得到的和恰好是某个自然数的平方,这个和是________.23、一批树苗,如果让男女一起栽,平均每人需栽 6棵.如果只让女生栽,平均每人需栽 10棵.若只让男生栽,平均每人需________棵.24、小明同学准备把自己的零花钱都捐献给舟曲灾区的小朋友.他共有三个储钱罐,A 储钱罐里的钱占全部零花钱的七分之五,B 储钱罐里有 33元钱,C 储钱罐里的钱占全部零花钱的五分之几,小明共有零花钱________元.25、将 1~9这九个数字分别填入下列算式中的□中,使等式成立:(每个数字只能用一次) □□□×□□=□□×□□=400226、福利种子店对某种子进行促销:购买 5千克以内按 2元/千克销售 ,超过 5千克时,超出部分按八折销售.下面四个图中的_______为购买种子数(千克)与所付钱数(元)的关系图.27、10减去它的21后,再减去剩下的31 ,再减去剩下的41 ,…,当最后减去剩下的101后,剩下的数是_______.28、已知一个五位数b a 751 能被 72整除,则这个五位数是_______.29、将一个数的所有的约数两两求和,在所有的和中,若最小的是4,最大的是180,则这个数是_______.30、有100种食品,其中含钙的有86种,含铁的有43种,含锌的有15种,那么,其中既含钙又含铁的食品最少有_______种,同时含钙、铁、锌的食品最多有_______种.31、今年,张老师与他的三个学生的年龄和为76岁,且三个学生的年龄比为5:5:6,六年后张老师的年龄和三个学生的年龄之和相等,今年三个学生中年龄最大的是_______岁. 32、小庆看一本故事书,第一天了全书的61多2页,第二天看了全书的91少5页,第三天看完剩下的133页.这本故事书共有_______页.33、某校有201人参加数学竞赛,按百分制计分且得分均为整数,若总分为9999分,则至少有_______人的分数相同.34、甲、乙、丙三杯盐水的浓度分别为38℅,87.5℅和43.已知三杯盐水共200克,其中甲与乙丙两杯盐水的质量和相等,三杯盐水混合后,盐水的浓度变为60℅,那么,丙杯中有盐水_______克.35、小宇过生日时,妈妈送给小宇一盒圆珠笔,他把好朋友小刚和小强找来,他把这盒圆珠笔的一半给了小刚,然后又给小刚加了1支.接着,他又把剩下的一半分给了小强,也同样给小强又加了 1支,最后剩下 5支圆珠笔,他自己留下了.这盒圆珠笔共有_______支. 36、毛毛和丫丫要到同一地方去旅游,乘船可直接到达该地,也可骑马沿河岸前进,但其中还有31 的路途必须下马步行,若骑马的速度是船速的3倍,步行的速度是船速的52,若毛毛、丫丫骑马同时出发,那么,先到达旅游地点的是_______.37、某建筑公司2010年元月1日签订某公路修筑工程合同,限定2010年12月31日完工,结果92名工人上半年(即元月2日到6月30日)只完成了工程的52.如果照此速度要在限期内全部完工,下半年(从7月1日到12月31日)应增加______名工人.38、某商场销售MP4,去年按定价的90℅出售,能获得20℅的利润,今年由于进价降低,按去年定价的80℅出售,能获得25℅的利润.今年进价是去年进价的______℅. 39、师徒俩人加工同样多的零件,当师傅完成21时,徒弟完成120个.当师傅完成任务时,徒弟完成54.则师傅加工零件______个. 40、某停车场中共有三轮摩托车,四轮小轿车和六轮大卡车30辆,各种轮子共116个.已知四轮小轿比六轮大卡车的5倍多2辆,那么这个停车场中共有______辆小轿车.41、小王和小张在假期进行勤工俭学,他们在印刷公司任打字员.有一次,他们共同输入一份书稿,完成任务时,小王输入了全部书稿的85,小张每小时输入6000个字.如果单独让小王输入这份书稿要24小时.这份书稿共有______个字.42、三块重量相等的锡与铁的比是1:5,第二块合金中锡与铁的比是2:7,第三块合金中锡与铁的比是 3:4,如果把三块合金溶合成一块,那么新溶合成的合金中锡与铁的比是______.43、从 1、2、3、4这四个数字中取一个,或两个,或三个,或四个组成的自然数共有___个,将它们从小到大排列,第41个数是___.44、狐狸、小熊、小鹿、小猴现在分它们得到的一千克饼,怎样分好呢?狡猾的狐狸说:“饼不多,我少分一点吧·!先把饼的 20℅给我,小猴从我分剩的饼中分25℅,小鹿从小猴分剩的饼中分30℅,小熊再从小鹿分剩的饼中分35℅,最后剩下的一点点给我,怎么样?”大家觉得狐狸分得最少,就同意了.可最后发现狐狸分得的饼最多,狐狸共分得到___千克饼.45、上午8时,甲、乙两人同时出发,都从A 地到B 地,若两人匀速行进,甲用3小时走完全程,乙用 4小时走完全程,当乙所剩路程是甲所剩路程的2倍时,是___时___分.46、一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工,如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天.已知乙单独完成这项工程需要20天,则甲单独完成这项工程需要___天.47、将一些棱长是1 的小正方体堆放成一个立体,图2 是这个立体的俯视图、正视图和左视图.这个立体的体积最小是___.48、如图3,已知正方形ABCD 和正方形CEFG 的边长分别是8 厘米和6 厘米,那么阴影部分的面积是___平方厘米.49、如图4 所示的两个同心圆的半径分别为R 和r,R 和r 都是自然数,若圆环(阴影部分)的面积是493π,则R-r=___.50、如图5所示的半圆的直径BC=8cm,AB=AC,D 是AC 的中点,则阴影部分的面积是___cm².51、园艺工人把一块正方形的草坪分成如图6所示的四个长方形种植不同的草,图中阴影部分是正方形,它包含在40m²的长方形之内,准备种植一种特殊植物,阴影部分的面积是___m².52、图7中共有___个长方体.53、图8是一个400米和跑道,两头是两个半圆,每一个半圆的弧长是 100米,中间是一个长方形,长为100米,那么400米跑道所围成的面积是___平方米.54、一个大正方体,表面全涂上红色后,被分割成若干个体积都等于1的小正方体,如果在这些小正方体中,六个面都没有涂红色的小正方体的个数占全部小正方体个数的278,那么大正方体的边长是___.55、一个底面半径是10厘米,高30厘米的圆柱形容器中,水深8厘米,要在容器中放入长和宽都是8厘米,高是15厘米的长方体状的铁块,铁块竖放在水中,那么水面上升___厘米(π取3.14).56、小丽的妈妈今年 35岁,她的年龄是小丽年龄的5倍,当妈妈的年龄是小丽年龄的3倍还多2岁时,小丽___岁.57、如图9所示,某桌球桌面为长方形ABCD,小球从A 沿45°角击出,恰好经过5次碰撞到达B处.则 AB:BC=___.58、沪宁高铁通车后,一列动车早晨8时从南京开往上海,途中停靠5个车站,每站各停车2分钟.8时25分一列高速列车也从南京开往上海,途中不停车,高速列车的速度比动车快51,结果两车同时到达上海.高速列车从南京开到上海用时___分钟.59、某次考试共有9道题,做对1~9题的人数占参加考试人数的82﹪,65﹪,92﹪,93﹪,68﹪, 98﹪,70﹪,60﹪,72﹪.如果做对5道或5道以上为及格,那么这次考试的及格率至少是___.60、小明下午放学后在家看动画片,这时刚好是6点整,此刻钟面上的时针反向成一条直线,当他看完动画片后,时针和分针刚好又一次反向成一条直线,则此刻是___时___分.61、有两种酒精溶液,甲溶液的浓度是75﹪,乙溶液的浓度是15﹪,现在要将这两种溶液混合成浓度是50﹪的酒精溶液18升,应取甲溶液___升,乙溶液___升.62、已知2011年3月中,星期二的天数比星期一的天数多,那么植树节是星期___.63、一项工程先由甲单独做18天,再由乙接着单独做8天可以完成;若甲乙二人合作,12天可以完成,现甲先单独做6天,然后由乙接着做完余下的工程,则乙需要做___天.64、有6级台阶,小明从下向上走,若每次只能跨过一级或两级,他有___种不同走法.65、某公司针对A、B、C三种岗位招聘了35人,其中只能上B岗位的人数等于只能上C岗位人数的 2倍.而只能上A岗位的人数比能兼职别的岗位的人多1人,在只能上一个岗位的人群中,有一半还能上A岗位,则招聘的35人中能兼职别的岗位的有___人.66、某钢铁厂去年生产钢铁180万吨,今年前5个月的产量等于去年全年的产量,照这样计算,这个钢铁厂今年将比去年增产百分之___.67、张家镇中心小学距离县城48千米,其中一部分是上坡路,其余是下坡路.张校长骑自行车从学校到县城,去时用了4.2小时,返回时用了3.8小时.已知张校长骑自车上坡每小时行10千米,则他骑自行车下坡每小时行___千米.68、服装占买进一批童装,按每件获得40﹪的利润定价.按此定价卖出这批童装的90﹪时,由于换季,为了加快资金周转,服装店按定价的七折出售,将剩下的童装全部卖出,这样所得的利润比按原定价出售获得的利润少了15﹪.按规定,不论以什么价格出售,卖完这批童装必须上缴营业税300元.服装店买进这批童装花了___元.69、甲、乙两辆清洁车负责东、西区间的公路清扫任务.甲车单独清扫需要8小时,乙车单独清扫需要12小时,两车同时从东、西区相向开出,相遇时甲车比乙车多清扫2千米,则东、西两区相距___千米.70、甲、乙、丙三人在A、B两地植树,A地要植528棵,B地要植504棵.已知甲、乙、丙每天分别植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两地同时开始同时结束,乙应在开始后第___天从A地转到B地.71、有三块草地,面积分别是5,15,25亩。