最新更新高二数学必修2第二章测试题及答案

合集下载

人教版高中数学必修二第二章单元测试(二)- Word版含答案

人教版高中数学必修二第二章单元测试(二)- Word版含答案

2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下列推理错误的是( ) A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂α B .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=AB C .l ⊄α,A ∈l ⇒A ∉α D .A ∈l ,l ⊂α⇒A ∈α2.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A .30°B .45°C .60°D .90°3.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下面结论正确的是( ) A .E ,F ,G ,H 一定是各边的中点 B .G ,H 一定是CD ,DA 的中点C .BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GCD .AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n 等于( )A .8B .9C .10D .115.如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1DD .A 1D 16.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是( )A .90°B .60°C .45°D .30°7.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.此卷只装订不密封班级 姓名 准考证号 考场号 座位号现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC 的长,其中正确的是( ) A .①②B .①②③C .①D .②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线B .AC ⊥平面ABB 1A 1 C .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A .AB ∥mB .AC ⊥mC .AB ∥βD .AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A .512πB .3π C .4π D .6π 11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( ) A .点H 是△A 1BD 的垂心 B .AH ⊥平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,BC ,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则 ①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号)16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D -中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C -的侧棱与底面垂直,AC =9,BC =12,AB =15,AA 1=12,点D 是AB 的中点. (1)求证:AC ⊥B 1C ; (2)求证:AC 1∥平面CDB 1.19.(12分)如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC . (1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A DE P --为直二面角?并说明理由.20.(12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱111ABC A B C -的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】C【解析】若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.故选C.2.【答案】D【解析】由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.故选D.4.【答案】A【解析】如图,取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EFH平行,其余4个平面与EFH相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.故选A.5.【答案】B【解析】易证BD⊥面CC1E,则BD⊥CE.故选B.6.【答案】A 【解析】连接B′C,则△AB′C为等边三角形,设AD=a,则B′D=DC=a,B C AC'==,所以∠B′DC=90°.故选A.7.【答案】B【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离.故①②③都正确.8.【答案】C【解析】由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,故C正确.故选C.9.【答案】D【解析】∵m∥α,m∥β,α∩β=l,∴m∥l.∵AB∥l,∴AB∥m.故A一定正确.∵AC⊥l,m∥l,∴AC⊥m.故B一定正确.∵A∈α,AB∥l,l⊂α,∴B∈α.∴AB⊄β,l⊂β.∴AB∥β.故C也正确.∵AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.故选D.10.【答案】B【解析】如图所示,作PO⊥平面ABC,则O为△ABC的中心,连接AP,AO.1sin 602ABC S =︒=11194ABC A B C ABC V S OP OP -∴=⨯==,OP ∴=213OA ==,∴tan OP OAP OA ∠=,又02OAP π<∠<,∴3OAP π∠=.故选B .11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D . 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE ,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB , 故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则A B B EC E C D=,即33xa x =-.∴290x ax +=-, 由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°, 故存在点E ,使得二面角A DE P --为直二面角.20.【答案】(1)见解析;(2. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA,且AD =OH .又O 为B 1C 的中点,所以点B 1到平面ABC, 故三棱柱111ABC A B C -. 21.【答案】(1)见解析;(2)见解析;(3)3P ABCD V -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE .(3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF中,1124OF OC AC ===,∴·tan 30EF OF =︒,∴2OP EF ==.∴2313P ABCD V a -=⨯. 22.【答案】(1)见解析;(2)见解析;(3)V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC,所以AB == 所以三棱锥E -ABC的体积1111·12332ABC V S AA ==⨯⨯=△.。

高中数学必修2第二章知识点+习题+答案

高中数学必修2第二章知识点+习题+答案

__________________________________________________第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为D C B A α__________________________________________________A ∈LB ∈L => L αA ∈αB ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系α C · B·A · α P· αL β__________________________________________________ 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

高中数学必修二 第二章检测题 附答案解析

高中数学必修二 第二章检测题 附答案解析
所以 tan∠BPQ= 2 .
【答案】 2 15.【解析】把平面展开图还原为四棱锥如图所示,则 EH∥AB,所以 EH∥平面 ABCD.同理可 证 EF∥平面 ABCD,所以平面 EFGH∥平面 ABCD.由于平面 PAD,平面 PBC,平面 PAB,平面 PDC 均是四棱锥的四个侧面,则它们两两相交.
【答案】A 9.【解析】因为平面 ABFE∥平面 CDHG,
又平面 EFGH∩平面 ABFE=EF, 平面 EFGH∩平面 CDHG=HG, 所以 EF∥HG. 同理 EH∥FG, 所以四边形 EFGH 的形状是平行四边形. 【答案】B 10.【解析】①中,m,n 可能平行或相交或异面,所以①为假命题;②是直线与平面垂直的性质定 理,所以②为真命题;③中,n 可以平行于β,也可以在β内,所以③为假命题;④中,m,n 也可以不互 相垂直,所以④为假命题. 【答案】A 二、填空题 11.【解析】根据题意画出图形,如图,因为点 C∈β,且点 C∈γ,所以 C∈β∩γ.因为点 R∈AB,所 以点 R∈γ.又 R∈β,所以 R∈β∩γ,从而β∩γ=CR.
其中,能确定一个平面的条件有( )
A.3 个
B.2 个
C.1 个
D.0 个
2.对于直线 m,n 和平面α,下列结论正确的是( )
A.如果 m⊂α,n⊄α,m,n 是异面直线,那么 n∥α
B.如果 m⊂α,n⊄α,m,n 是异面直线,那么 n 与α相交
C.如果 m⊂α,n∥α,m,n 共面,那么 m∥n
形 EFGH 的形状为( )
A.梯形
B.平行四边形
C.可能是梯形也可能是平行四边形
D.不确定
10.若 m,n 为两条不重合的直线,α,β为两个不重合的平面,则下列命题中的真命题的个数是

数学必修二第二章经典测试题(含答案)(2)(K12教育文档)

数学必修二第二章经典测试题(含答案)(2)(K12教育文档)

数学必修二第二章经典测试题(含答案)(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(数学必修二第二章经典测试题(含答案)(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为数学必修二第二章经典测试题(含答案)(2)(word版可编辑修改)的全部内容。

必修二第二章综合检测题一、选择题1.若直线a和b没有公共点,则a与b的位置关系是( )A.相交B.平行 C.异面 D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3 B.4 C.5 D.63.已知平面α和直线l,则α内至少有一条直线与l()A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得( )A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α6.下面四个命题:其中真命题的个数为( )①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.A.4 B.3 C.2 D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有( )A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥m B.AC⊥m C.AB∥β D.AC⊥β10.已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为( )A.-错误! B .错误!C。

高中数学必修2第二章知识点+习题+答案

高中数学必修2第二章知识点+习题+答案

第二章 直线与平面的地点关系空间点、直线、平面之间的地点关系平面含义:平面是无穷延展的 2 平面的画法及表示( 1)平面的画法: 水平搁置的平面往常画成一个平行四边形,DC锐角画成 45 0 ,且横边画成邻边的 2 倍长(如图)( 2)平面往常用希腊字母α、β、γ等表示,如平面α、平α面β等,也能够用表示平面的平行四边形的四个极点或许相对ABAC 、平面 ABCD 等。

的两个极点的大写字母来表示,如平面3 三个公义:( 1)公义 1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A ∈ LB ∈L => LαAα ·A ∈αB ∈α公义 1 作用:判断直线能否在平面内( 2)公义 2:过不在一条直线上的三点,有且只有一个平面。

A B符号表示为: A 、 B 、C 三点不共线 => 有且只有一个平面α, α ·C ·使 A ∈α、 B ∈α、 C ∈α。

·公义 2 作用:确立一个平面的依照。

( 3)公义 3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

β符号表示为: P ∈α∩β => α∩β =L ,且 P ∈ LP公义 3 作用:判断两个平面能否订交的依照αL·空间中直线与直线之间的地点关系1 空间的两条直线有以下三种关系:订交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点; 异面直线:不一样在任何一个平面内,没有公共点。

2 公义 4:平行于同一条直线的两条直线相互平行。

符号表示为:设 a 、b 、 c 是三条直线a ∥ b=>a ∥ cc ∥ b重申:公义 4 本质上是说平行拥有传达性,在平面、空间这个性质都合用。

公义 4 作用:判断空间两条直线平行的依照。

3 等角定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a' 与 b' 所成的角的大小只由 a 、b 的相互地点来确立,与 O 的选择没关,为了简易,点O 一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0, ) ;2a ⊥b ;③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线相互垂直,记作④ 两条直线相互垂直,有共面垂直与异面垂直两种情况;⑤ 计算中,往常把两条异面直线所成的角转变为两条订交直线所成的角。

人教版高中数学必修二第二章单元测试(一)及参考答案

人教版高中数学必修二第二章单元测试(一)及参考答案

⊥平面 ADD A ; 11
(2)设(1)中的直线 l 交 AC 于点 Q,求三棱锥 A -QC D 的体积.(锥体体积公式:V=
1
1
1 Sh,其中 S 为底面面积,h 为高) 3
21.(12 分)如图,三棱锥 P-ABC 中,PA⊥平面 ABC,PA=1,AB=1,AC=2,∠BAC=60°, (1)求三棱锥 P-ABC 的体积;
(2)证明:在线段 PC 上存在点 M,使得 AC⊥BM,并求 PM 的值. MC
(2)求异面直线 PC 与 AD 所成的角的正切值; (3)求二面角 P-BD-A 的正切值.
22.(12 分)如图,在四棱锥 P-ABCD 中,底面 ABCD 是矩形,已知 AB=3,AD=2,PA= 2,PD= 2 2 ,∠PAB=60°. (1)求证:AD⊥平面 PAB;
A.1 条
B.2 条
C.3 条
D.4 条
7.如图,A 是平面 BCD 外一点,E、F、G 分别是 BD、DC、CA 的中点,设过这三点的
平面为 α,则在图中的 6 条直线 AB、AC、AD、BC、CD、DB 中,与平面 α 平行的直
线有( )
A.0 条
B.1 条
C.2 条
D.3 条
8.已知三棱柱 ABC-A B C 的侧棱与底面边长都相等,A 在底面 ABC 内的射影为△
1
1
15.如图所示,在四棱锥 P-ABCD 中,PA⊥底面 ABCD,且底面各边都相等,M 是 PC 上 的一动点,当点 M 满足________时,平面 MBD⊥平面 PCD(只要填写一个你认为是正 确的条件即可).
A、P、Q 的平面截该正方体所得的截面记为 S,则下列命题正确的是________.(写出 所有正确命题的编号)

高中数学必修2第二章知识点+习题+答案

高中数学必修2第二章知识点+习题+答案

第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系1 平面含义:平面是无限延展的2 平面的画法与表示 〔1〕平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长〔如图〕〔2〕平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等. 3 三个公理:〔1〕公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内〔2〕公理2:过不在一条直线上的三点,有且只有一个平面. 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α.公理2作用:确定一个平面的依据.〔3〕公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 符号表示为:P ∈α∩β =>α∩β=L,且P ∈L公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点. 2 公理4:平行于同一条直线的两条直线互相平行. 符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用. 公理4作用:判断空间两条直线平行的依据.3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈<0, >;③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;D C B A α A·α C ·B· A · α P · α Lβ 共面直线=>a ∥c 2⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角.— 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:〔1〕直线在平面内——有无数个公共点〔2〕直线与平面相交——有且只有一个公共点〔3〕直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定与其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.简记为:线线平行,则线面平行.符号表示:a αb β => a∥αa∥b平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行.符号表示:a βb βa∩b = P β∥αa∥αb∥α2、判断两平面平行的方法有三种:〔1〕用定义;〔2〕判定定理;〔3〕垂直于同一条直线的两个平面平行.— 2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行. 简记为:线面平行则线线平行.符号表示:a∥αa β a∥bα∩β= b作用:利用该定理可解决直线间的平行问题.2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行.符号表示:α∥βα∩γ= a a∥bβ∩γ= b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定与其性质2.3.1直线与平面垂直的判定1、定义如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面.如图,直线与平面垂直时,它们唯一公共点P叫做垂足.Lpα2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.注意点: a>定理中的"两条相交直线〞这一条件不可忽视;b>定理体现了"直线与平面垂直〞与"直线与直线垂直〞互相转化的数学思想.平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A梭 l βBα2、二面角的记法:二面角α-l-β或α-AB-β3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.2.3.3—2.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行.2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.第二章点、直线、平面之间的位置关系A组一、选择题1.设,为两个不同的平面,l,m为两条不同的直线,且l⊂,m⊂β,有如下的两个命题:①若∥,则l∥m;②若l⊥m,则⊥.那么< >.A.①是真命题,②是假命题B.①是假命题,②是真命题C.①②都是真命题D.①②都是假命题2.如图,ABCD-A1B1C1D1为正方体,下面结论错误..的是< >.A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1角为60°<第2题> 3.关于直线m,n 与平面,,有下列四个命题:①m ∥,n ∥且∥,则m∥n;②m ⊥,n ⊥且⊥,则m⊥n;③m ⊥,n ∥且∥,则m⊥n;④m ∥,n ⊥且⊥,则m∥n.其中真命题的序号是< >.A.①②B.③④C.①④D.②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线其中假.命题的个数是<>.A.1B.2C.3D.45.下列命题中正确的个数是< >.①若直线l 上有无数个点不在平面内,则l ∥②若直线l 与平面平行,则l 与平面内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线l 与平面平行,则l 与平面内的任意一条直线都没有公共点A.0个B.1个C.2个D.3个6.两直线l1与l2异面,过l1作平面与l2平行,这样的平面< >.A.不存在B.有唯一的一个C.有无数个D.只有两个7.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为< >.A.90°B.60°C.45°D.30°8.下列说法中不正确的....是<>.A.空间中,一组对边平行且相等的四边形一定是平行四边形B .同一平面的两条垂线一定共面C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D .过一条直线有且只有一个平面与已知平面垂直 9.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 ③如果两条直线都平行于一个平面,那么这两条直线互相平行 ④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直 其中真命题的个数是<>.A .4B .3C .2D .110.异面直线a ,b 所成的角60°,直线a ⊥c ,则直线b 与c 所成的角的X 围为<>. A .[30°,90°] B.[60°,90°] C.[30°,60°]D.[30°,120°] 二、填空题11.已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两相互垂直,且三个侧面的面积分别为S 1,S 2,S 3,则这个三棱锥的体积为.12.P 是△ABC 所在平面外一点,过P 作PO ⊥平面,垂足是O ,连PA ,PB ,PC .<1>若PA =PB =PC ,则O 为△ABC 的心; <2>PA ⊥PB ,PA ⊥PC ,PC ⊥PB ,则O 是△ABC 的心;<3>若点P 到三边AB ,BC ,CA 的距离相等,则O 是△ABC 的心; <4>若PA =PB =PC ,∠C =90º,则O 是AB 边的点; <5>若PA =PB =PC ,AB =AC ,则点O 在△ABC 的线上. 13.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点,将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为.14.直线l 与平面所成角为30°,l ∩=A ,直线m∈,则m 与l 所成角的取值X 围是.15.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为d 1,d 2,d 3,d 4,J<第13题>则d 1+d 2+d 3+d 4的值为.16.直二面角-l -的棱上有一点A ,在平面,内各有一条射线AB ,AC与l 成45°,AB ⊂,AC ⊂,则∠BAC =.三、解答题17.在四面体ABCD 中,△ABC 与△DBC 都是边长为4的正三角形. <1>求证:BC ⊥AD ;<2>若点D 到平面ABC 的距离等于3,求二面角A -BC -D 的正弦值;<3>设二面角A -BC -D 的大小为,猜想为何值时,四面体A -BCD 的体积最大.<不要求证明>18. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .<1>求证:平面EDB ⊥平面EBC ; <2>求二面角E -DB -C 的正切值.19*.如图,在底面是直角梯形的四棱锥S-ABCD 中,AD ∥BC ,∠ABC =90°,SA ⊥面ABCD ,SA =AB =BC =1,AD =21.<1>求四棱锥S —ABCD 的体积;<2>求面SCD 与面SBA 所成的二面角的正切值. <提示:延长 BA ,CD 相交于点 E ,则直线 SE 是 所求二面角的棱.><第19题>20*.斜三棱柱的一个侧面的面积为10,这个侧面与它所对棱的距离等于6,求这个棱柱的体积.<提示:在 AA 1 上取一点 P ,过 P 作棱柱的截面,使 AA 1 垂直于这个截面.><第20题>第二章 点、直线、平面之间的位置关系参考答案<第18题><第17题>一、选择题1.D 解析:命题②有反例,如图中平面∩平面=直线n ,l ⊂,m ⊂,且l ∥n ,m ⊥n ,则m ⊥l ,显然平面不垂直平面,<第1题>故②是假命题;命题①显然也是假命题, 2.D 解析:异面直线AD 与CB 1角为45°.3.D 解析:在①、④的条件下,m ,n 的位置关系不确定.4.D 解析:利用特殊图形正方体我们不难发现①②③④均不正确,故选择答案D . 5.B 解析:学会用长方体模型分析问题,A 1A 有无数点在平面ABCD 外,但AA 1与平面ABCD 相交,①不正确;A 1B 1∥平面ABCD ,显然A 1B 1不平行于BD ,②不正确;A 1B 1∥AB ,A 1B 1∥平面ABCD ,但AB ⊂平面ABCD 内,③不正确;l 与平面α平行,则l 与无公共点,l 与平面内的所有直线都没有公共点,④正确,应选B . <第5题>6.B 解析:设平面 过l 1,且 l 2∥,则 l 1上一定点 P 与 l 2 确定一平面,与的交线l 3∥l 2,且 l 3 过点 P . 又过点 P 与 l 2 平行的直线只有一条,即 l 3 有唯一性,所以经过 l 1 和 l 3 的平面是唯一的,即过 l 1 且平行于 l 2 的平面是唯一的.7.C 解析:当三棱锥D -ABC 体积最大时,平面DAC ⊥ABC ,取AC 的中点O ,则△DBO 是等腰直角三角形,即∠DBO =45°.8.D 解析:A .一组对边平行就决定了共面;B .同一平面的两条垂线互相平行,因而共面;C .这些直线都在同一个平面内即直线的垂面;D .把书本的书脊垂直放在桌上就明确了.9.B 解析:因为①②④正确,故选B .10.A 解析:异面直线a ,b 所成的角为60°,直线c ⊥a ,过空间任一点 P ,作直线 a ’∥a , b ’∥b , c ’∥c . 若a ’,b ’,c ’ 共面则 b ’ 与 c ’ 成 30°角,否则b ’与c ’所成的角的X 围为<30°,90°],所以直线b 与c 所成角的X 围为[30°,90°].二、填空题 11.313212S S S .解析:设三条侧棱长为a ,b ,c .则21ab =S 1,21bc =S 2,21ca =S 3 三式相乘:∴ 81a 2 b 2 c 2=S 1S 2S 3,∴ abc =23212S S S . ∵ 三侧棱两两垂直,∴ V =31abc ·21=313212S S S .12.外,垂,内,中,BC 边的垂直平分.解析:<1>由三角形全等可证得O 为△ABC 的外心;<2>由直线和平面垂直的判定定理可证得,O 为△ABC 的垂心; <3>由直线和平面垂直的判定定理可证得,O 为△ABC 的内心; <4>由三角形全等可证得,O 为 AB 边的中点;<5>由<1>知,O 在 BC 边的垂直平分线上,或说O 在∠BAC 的平分线上.13.60°.解析:将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为60°. 14.[30°,90°].解析:直线l 与平面所成的30°的角为m 与l 所成角的最小值,当m 在内适当旋转就可以得到l ⊥m ,即m 与l 所成角的的最大值为90°. 15.36.解析:作等积变换:4331⨯×<d 1+d 2+d 3+d 4>=4331⨯·h ,而h =36. 16.60°或120°.解析:不妨固定AB ,则AC 有两种可能. 三、解答题17.证明:<1>取BC 中点O ,连结AO ,DO . ∵△ABC ,△BCD 都是边长为4的正三角形, ∴AO ⊥BC ,DO ⊥BC ,且AO ∩DO =O, ∴BC ⊥平面AOD .又AD ⊂平面AOD , ∴BC ⊥AD .<第17题>解:<2>由<1>知∠AOD 为二面角A -BC -D 的平面角,设∠AOD =,则过点D 作DE ⊥AD ,垂足为E .∵BC ⊥平面ADO ,且BC ⊂平面ABC ,∴平面ADO ⊥平面ABC .又平面ADO ∩平面ABC =AO , ∴DE ⊥平面ABC .∴线段DE 的长为点D 到平面ABC 的距离,即DE =3.又DO =23BD =23, 在Rt △DEO 中,sin =DODE =23,故二面角A -BC -D 的正弦值为23. <3>当=90°时,四面体ABCD 的体积最大.18.证明:<1>在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABCD -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC . <2>解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -DB -C 的平面角.利用平面几何知识可得OF =51,<第18题> 又OE =1,所以,tan ∠EFO =5.19*.解:<1>直角梯形ABCD 的面积是M 底面=AB AD BC ⋅)(+21=43=1221+1⨯, ∴四棱锥S —ABCD 的体积是V =31·SA ·M 底面=31×1×43=41.<2>如图,延长BA ,CD 相交于点E ,连结SE ,则SE 是所求二面角的棱. ∵AD ∥BC ,BC =2AD , ∴EA =AB =SA ,∴SE ⊥SB∵SA ⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线. 又BC ⊥EB ,∴BC ⊥面SEB ,故SB 是SC 在面SEB 上的射影,∴CS ⊥SE ,∠BSC 是所求二面角的平面角. ∵SB =22+AB SA =2,BC =1,BC ⊥SB ,∴tan ∠BSC =22=SB BC ,<第19题> 即所求二面角的正切值为22. 20*.解:如图,设斜三棱柱ABC —A 1B 1C 1的侧面BB 1C 1C 的面积为10,A 1A 和面BB 1C 1C 的距离为6,在AA 1上取一点P 作截面PQR ,使AA 1⊥截面PQR ,AA 1∥CC 1,∴截面PQR ⊥侧面BB 1C 1C ,过P 作PO ⊥QR 于O ,则PO ⊥侧面BB 1C 1C ,且PO =6.∴V 斜=S △PQR ·AA 1=21·QR ·PO ·AA 1 =21·PO ·QR ·BB 1 =21×10×6 =30.<第20题>。

必修二数学a第二章测试题答案及解析

必修二数学a第二章测试题答案及解析

必修二数学a第二章测试题答案及解析一、选择题1. 已知函数f(x) = 2x^2 + 3x - 5,求f(-1)的值。

A. 1B. -1C. 3D. -3答案:D解析:将x=-1代入函数f(x) = 2x^2 + 3x - 5,得到f(-1) =2*(-1)^2 + 3*(-1) - 5 = 2 - 3 - 5 = -6。

2. 计算下列不等式中x的取值范围:x^2 - 4x + 4 ≤ 0。

A. x ≤ 2B. x ≥ 2C. 0 ≤ x ≤ 4D. -2 ≤ x ≤ 2答案:D解析:将不等式x^2 - 4x + 4 ≤ 0进行因式分解,得到(x-2)^2 ≤ 0,由于平方项非负,所以(x-2)^2 = 0,解得x = 2。

因此,x的取值范围为-2 ≤ x ≤ 2。

二、填空题3. 已知等差数列{a_n}的首项a_1 = 3,公差d = 2,求第5项a_5的值。

答案:13解析:根据等差数列的通项公式a_n = a_1 + (n-1)d,代入n=5,得到a_5 = 3 + (5-1)*2 = 3 + 8 = 11。

4. 计算圆的面积,已知半径r = 4。

答案:50π解析:圆的面积公式为A = πr^2,代入半径r = 4,得到A =π*4^2 = 16π。

三、解答题5. 求函数y = x^3 - 3x^2 + 4在x = 1处的导数。

答案:4解析:首先求函数y = x^3 - 3x^2 + 4的导数,得到y' = 3x^2 - 6x。

然后代入x = 1,得到y'(1) = 3*1^2 - 6*1 = 3 - 6 = -3。

6. 已知抛物线方程为y = ax^2 + bx + c,且抛物线过点(1,2)和(2,5),求a的值。

答案:1解析:将点(1,2)和(2,5)代入抛物线方程,得到两个方程:2 = a*1^2 + b*1 + c5 = a*2^2 + b*2 + c解这个方程组,得到a = 1,b = -2,c = 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ACDDD BCBDD DB
二、填空题(每小题4分,共16分)
13、 14、 15、 16、
三、解答题(共74分,要求写出主要的证明、解答过程)
17、解:设圆台的母线长为 ,则1分
圆台的上底面面积为 3分
圆台的上底面面积为 5分
所以圆台的底面面积为 6分
又圆台的侧面积 8分
于是 9分
即 为所求. 10分
∴不论λ为何值恒有平面BEF⊥平面ABC.6分
(Ⅱ)由(Ⅰ)知,BE⊥EF,又平面BEF⊥平面ACD,
∴BE⊥平面ACD,∴BE⊥AC.9分
∵BC=CD=1,∠BCD=90°,∠ADB=60°,
∴ 11分
由AB2=AE·AC得 13分
故当 时,平面BEF⊥平面ACD.14分
A、 B、 C、 D、
12、如图:直三棱柱ABC—A1B1C1的体积为V,点P、Q分别在侧棱AA1和
CC1上,AP=C1Q,则四棱锥B—APQC的体积为
A、 B、 C、 D、
二、填空题(每小题5分,共20分)
13、已知直线a⊥直线b, a//平面 ,则b与 的位置关系为.
14、正方体 中,平面 和平面 的位置关系为
2、下列说法正确的是
A、三点确定一个平面B、四边形一定是平面图形
C、梯形一定是平面图形D、平面 和平面 有不同在一条直线上的三个交点
3、垂直于同一条直线的两条直线一定
A、平行B、相交C、异面D、以上都有可能
4、在正方体 中,下列几种说法正确的是
A、 B、 C、 与 成 角D、 与 成 角
5、若直线 ∥平面 ,直线 ,则 与 的位置关系是
15、已知 垂直平行四边形 所在平面,若 ,平行则四边形
一定是.
16.α、β是两个不同的平面,m、n是平面α及β之外的两条不同直线,
给出四个论断:
①mn②αβ③mβ④nα
以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:______________________________________.
高二数学必修2第二章测试题及答案
试卷满分:150分 考试时间:120分钟
班级___________姓名__________学号_________分数___________
一、选择题(每小题5分,共60分)
1、线段 在平面 内,则直线 与平面 的位置关系是
A、 B、 C、由线段 的长短而定D、以上都不对
20.如图,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC=2(1)求证:平面AEF⊥平面PBC;
(2)求二面角P—BC—A的大小;(3)求三棱锥P—AEF的体积.(12分)
21、已知正方体 , 是底 对角线的交点.。求证:(1) ∥面
(2)面 //面C1BD(3) 面 (12分)
22、已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,
∠ADB=60°,E、F分别是AC、AD上的动点,且
(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)当λ为何值时,平面BEF⊥平面ACD?(12分)
高中数学必修2第二章测试题参考答案
一、选择题(每小题5分,共60分)
9、点P为ΔABC所在平面外一点,PO⊥平面ABC,垂足为O,若PA=PB=PC,则点O是ΔABC的( )
A、内心B、外心C、重心D、垂心
10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是面角是锐角 , 内一点 到 的距离为3,点C到棱 的距离为4,那么 的值等于
A、点必 在直线 上B、点 必在直线BD上
C、点 必在平面 内D、点 必在平面 外
8、a,b,c表示直线,M表示平面,给出下列四个命题:①若a∥M,b∥M,则a∥b;②若b M,
a∥b,则a∥M;③若a⊥c,b⊥c,则a∥b;④若a⊥M,b⊥M,则a∥b.其中正确命题的个数有
A、0个B、1个C、2个D、3个
18、证明: 面 , 面
面 6分
又 面 ,面 面 ,
12分
19、证明: 1分
又 面 4分
面 7分
10分

面 12分
20、解:如图,设所截等腰三角形的底边边长为 .
在 中,
, 3分
所以 , 6分
于是 10分
依题意函数的定义域为 12分
21、证明:(1)连结 ,设
连结 , 是正方体 是平行四边形
且 2分
A、 ∥ B、 与 异面C、 与 相交D、 与 没有公共点
6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;
(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有
A、1 B、2 C、3 D、4
7、在空间四边形 各边 上分别取 四点,如果与 能相交于点 ,那么
三、解答题(共70分,要求写出主要的证明、解答过程)
18、已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.
求证:EH∥BD. (10分)
17、如图,PA⊥平面ABC,平面PAB⊥平面PBC求证:AB⊥BC(12分)
19、已知 中 , 面 , ,求证: 面 .(12分)
又 分别是 的中点, 且
是平行四边形4分
面 , 面
面 6分
(2) 面 7分
又 , 9分
11分
同理可证 ,12分

面 14分
22、证明:(Ⅰ)∵AB⊥平面BCD,∴AB⊥CD,
∵CD⊥BC且AB∩BC=B,∴CD⊥平面ABC.3分

∴不论λ为何值,恒有EF∥CD,∴EF⊥平面ABC,EF 平面BEF,
相关文档
最新文档