(完整word版)高中有机化学常见官能团
[超全]官能团地性质及有机知识的总结
![[超全]官能团地性质及有机知识的总结](https://img.taocdn.com/s3/m/4a980c6cd4d8d15abf234e82.png)
有机物官能团与性质有机物官能团代表物主要化学性质烃烷烃C-C 甲烷取代〔氯气、光照〕、裂化烯烃C=C 乙烯加成、氧化〔使KMnO4褪色〕、加聚炔烃C=C 乙炔加成、氧化〔使KMnO4褪色〕、加聚苯与其同系物—R苯甲苯取代〔液溴、铁〕、硝化、加成氧化〔使KMnO4褪色,除苯外〕烃的衍生物卤代烃—X 溴乙烷水解〔NaOH/H2O〕、消去〔NaOH/醇〕醇—OH 乙醇置换、催化氧化、消去、脱水、酯化酚—OH苯酚弱酸性、取代〔浓溴水〕、显色、氧化〔露置空气中变粉红色〕醛—CHO 乙醛复原、催化氧化、银镜反响、斐林反响羧酸—COOH 乙酸弱酸性、酯化酯—COO—乙酸乙酯水解重要的营养物质葡萄糖—OH、—CHO / 具有醇和醛的性质蔗糖麦芽糖前者无—CHO前者有—CHO/无复原性、水解〔产物两种〕有复原性、水解〔产物单一〕淀粉纤维素〔C6H10O5〕n后者有—OH/水解水解油脂—COO—/ 氢化、皂化氨基酸蛋白质NH2-、-COOH—CONH—/两性、酯化水解其中:1、能使KMnO4褪色的有机物:烯烃、炔烃、苯的同系物、醇、酚、醛、葡萄糖、麦芽糖、油脂2、能使Br2水褪色的有机物:烯烃、炔烃、酚、醛、葡萄糖、麦芽糖、油脂3、能与Na反响产生H2的有机物:醇、酚、羧酸、氨基酸、葡萄糖4、具有酸性〔能与NaOH、Na2CO3反响〕的有机物:酚、羧酸、氨基酸5、能发生银镜反响或与新制Cu(OH)2反响的有机物:醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖6、既有氧化性,又有复原性的有机物:醛、烯烃、炔烃7、能发生颜色〔显色〕反响的有机物:苯酚遇FeCl3显紫色、淀粉遇I2变蓝、蛋白质遇浓硝酸变黄、葡萄糖遇Cu(OH)2显绛蓝有机物的物理性质1、状态:℃以下〕;气态:C4以下的烷、烯、炔烃、甲醛、一氯甲烷、新戊烷;液态:油状:乙酸乙酯、油酸;粘稠状:石油、乙二醇、丙三醇。
2、气味:无味:甲烷、乙炔〔常因混有PH3、H2S和AsH3而带有臭味〕;稍有气味:乙烯;特殊气味:甲醛、乙醛、甲酸和乙酸;香味:乙醇、低级酯;3、颜色:白色:葡萄糖、多糖黑色或深棕色:石油4、密度:比水轻:苯、液态烃、一氯代烃、乙醇、乙醛、低级酯、汽油;比水重:溴苯、乙二醇、丙三醇、CCl4。
常见官能团-化学结构式

问:若一有机物结构式中有多个官能团,则在分类时依据哪个官能团?答:按官能团顺序规则。
顺序是:-COOH>-SO3H>-COOR>-COX>-CONH2>-CO-O-CO->-CN>-CHO>-CO->-OH(醇羟基)>-OH(酚羟基)>-NH2>-OR>-R>-X>-NO2>-NO 含氧官能团不同的碳氧键会因其中原子杂化程度的不同而有性质上的差异。
sp2杂化的氧原子有吸电子效应,而sp3则有给电子效应。
乙酰氯甲醇丁酮乙醛乙酸钠乙酸乙醚RCOOR'丁酸乙酯过氧化甲乙酮二叔丁基过氧化物[编辑]含氮官能团乙酰胺甲胺二甲胺三甲胺胆碱叠氮苯R'甲基黄ROCNRNCRNCO异氰酸甲酯RNCS异硫氰酸烯丙酯硝酸正戊酯RCN苯甲腈RONO亚硝酸异戊酯硝基甲烷RNO亚硝基苯尼古丁吲哚基吡唑环咪唑环喹啉环嘧啶环吡咯吗啉[编辑]含磷、硫官能团与同族的氮和氧相比,有机磷化合物和有机硫化合物中的杂原子倾向于成更多的键。
甲基丙基膦亚磷酸苄酯23-磷酸甘油醛二甲基硫醚R'二甲基砜H苯磺酸RSOR'二苯基亚砜乙硫醇RSSR'二苯基二硫化物烃基根据所含π键的不同,不同的烃基官能团具有不同的性质。
注意:烷烃基(如甲基、亚甲基)不算官能团,而苯基是官能团。
甲烷乙烯乙炔异丙苯溴甲苯[编辑]含卤素取代基卤代烃中含有碳-卤素键,键能随卤素不同而有变化。
一般除氟代烃外,卤代烃都可发生亲核取代反应和消去反应。
氯乙烷一氟甲烷一氯甲烷一溴甲烷一碘甲烷(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。
(完整word版)最全的官能团化合物的红外吸收峰特征.doc

官能团化合物的红外吸收峰特征类别R━ X键和官能团C━ F 1350~1100 cm-1(强)C━ CI 750~ 700 cm-1(中)C━ Br 700~ 500 cm-1(中)C━ I 610~ 485 cm-1(中)拉伸说明1.如果同一碳上卤素增多,吸收位置向高波数位移2.卤化物,尤其是氟化物与氯化物的伸缩振动吸收易受邻近基团的影响,变化较大3. δC━CI与δC━H(面外)的值较接近醇游离:3650~3610 cm-1(峰尖,强度不定)分子内缔合:3500~ 3000 cm-1分子间缔合:二聚: 3600~3500 cm-1多聚: 3400~3200 cm-1━OH伯醇δ1500~1260cm-1OH仲醇δOH 1350~ 1260cm-1-1在解谱时要注意,H2 O 和 N 上质子的伸缩振动也会在━1.缔合体峰形较宽(缔合程度越大,峰越宽,越向低波数移)2.一般羟基吸收峰出现在比碳氢吸收峰所在频率高的部位,即大于3000cm-1,故> 3000cm-1的吸收峰通常表示分子中含有羟基━O H 的面内变形振动在,吸收位置与醇的类型、缔合状态、浓度有关(稀释时稀释带移向低波数)OH 的伸缩振动区域出现,如H2O酚醚的νOH在~3400 cm-1,νNH会在3500~3200 cm-1出峰1200~1100±5 cm-1 1.这也是分子中含有羟基的一个特征吸收峰伯醇νC━O1070~1000cm-12.有时可根据该吸收峰确定醇的级数,如:C━ O 三级醇: 1200~ 1125cm-1-1二级醇、烯丙型三级醇、环三级醇:1125~仲醇C━ O 1120~1030cm1085cm -1ν-1一级醇、烯丙型二级醇、环二级醇:1085~叔醇C━ O1170~ 1100cm 1050cm -1νO━ H 极稀溶液:3611~3603 cm-1(尖锐)多数情况下,两个吸收峰浓溶液:3500~ 3200 cm-1(较宽)并存C━ O 1300~1200 cm-1醚的特征吸收为碳氧碳键的伸缩振动as 1275~1020cm-1 ν C━ O ━C 和νas C━O━C脂肪族醚s asas脂肪族醚中νC━O━C太小,只能根据νC 1275~1020cm -1 (νC━O━C)━O━C 来判断C━ OPh━ O━R、Ph━O━ Ph、 R━C=C━芳香族和乙烯基醚as sas O━ R'都具有νC━O━C和νC━O━C 1310~ 1020cm-1 (νC━O━C)(强)吸收带。
有机化学高中官能团总结

有机化学高中官能团总结有机化学中,官能团是决定有机化合物化学性质的关键部分。
在高中有机化学中,常见的官能团及其性质如下:1. 烃基(Alkyl Groups):烃分子中失去一个或几个氢原子而剩余的部分。
它们没有特殊的化学性质,但可以根据其碳原子数来命名,如甲基(CH₃−)、乙基(CH3CH2−)等。
2. 羟基(Hydroxyl Group, -OH):存在于醇类化合物中,具有弱酸性,能发生取代、酯化等反应。
3. 羧基(Carboxyl Group, -COOH):存在于羧酸中,具有酸性,能发生酯化反应。
4. 醛基(Aldehyde Group, -CHO):存在于醛类中,具有还原性,能发生氧化、加成等反应。
5. 酮基(Ketone Group, -CO-):存在于酮类中,具有还原性,能发生加成、氧化等反应。
6. 酯基(Ester Group, -COO-):存在于酯类中,能发生水解反应生成酸和醇。
7. 氨基(Amino Group, -NH2):存在于胺类中,具有碱性,能发生取代、酰化等反应。
8. 卤素原子(Halogen Atoms, -X, X=F, Cl, Br, I):存在于卤代烃中,能发生取代、消除等反应。
9. 双键(Double Bond, =C=):存在于烯烃中,能发生加成、氧化、还原等反应。
10. 三键(Triple Bond, ≡C≡):存在于炔烃中,能发生加成、氧化、还原等反应。
11. 苯环(Benzene Ring):存在于芳香烃中,具有特殊的稳定性,能发生取代、加成等反应。
了解这些官能团的性质,对于理解和预测有机化合物的化学行为至关重要。
在高中有机化学学习中,应熟练掌握这些官能团的基本性质和反应类型。
高三化学有机物知识点总结

高三化学有机物知识点总结
以下是高三化学有机物知识点的一些总结:
有机化学是研究碳及其化合物的科学。
有机化合物的分类、命名原则和方法以及各种化合物的结构与性质是高三必修三中的重要内容。
了解有机化学反应常见的机理和应用,对于学生的化学思维能力和解题能力的提升具有重要意义。
高中有机化学知识点是历年高考必考内容之一,例如有机物的分类、结构与组成、有机反应类型、有机物的相互转化、有机物的制取和合成以及石油化工、煤化工等。
常见的官能团及名称:—X(卤原子:氯原子等)、—OH(羟基)、—CHO(醛基)、—COOH(羧基)、—COO—(酯基)、—CO—(羰基)、—O—(醚键)、C=C (碳碳双键)、—C≡C—(碳碳叁键)、—NH2(氨基)、—NH—CO—(肽键)、—NO2(硝基)。
常见有机物的通式:烷烃:CnH2n+2;烯烃与环烷烃:CnH2n;炔烃与二烯烃:CnH2n-2;苯的同系物:CnH2n-6;饱和一元卤代烃:CnH2n+1X;饱和一元醇:CnH2n+2O或CnH2n+1OH;苯酚及同系物:CnH2n-6O或CnH2n-7OH;醛:CnH2nO 或CnH2n+1CHO;酸:CnH2nO2或CnH2n+1COOH;酯:CnH2nO2或CnH2n+1COOCmH2m+1。
高中有机化学所有官能团[精品文档]
![高中有机化学所有官能团[精品文档]](https://img.taocdn.com/s3/m/fae026b649649b6648d747ce.png)
官能团,是决定有机化合物的化学性质的原子或原子团。
常见官能团烯烃、醇、酚、醚、醛、酮等。
有机化学反应主要发生在官能团上,官能团对有机物的性质起决定作用,-X、-OH、-CHO、-COOH、-NO2、-SO3H、-NH2、RCO-,这些官能团就决定了有机物中的卤代烃、醇或酚、醛、羧酸、硝基化合物或亚硝酸酯、磺酸类有机物、胺类、酰胺类的化学性质。
官能团是决定有机化合物的化学性质的原子或原子团。
常见官能团:官能团的定义:●烷烃:碳碳单键(C—C)(每个C各有三键) 【注】碳碳单键不是官能团,其异构是碳链异构●烯烃:碳碳双键(>C=C<)加成反应、氧化反应。
(具有面式结构,即双键及其所连接的原子在同一平面内)●炔烃:碳碳叁键(-C≡C-)加成反应。
(具有线式结构,即三键及其所连接的原子在同一直线上)●卤代烃:卤素原子(-X),X代表卤族元素(F,Cl,Br,I);●醇、酚:羟基(-OH);伯醇羟基可以消去生成碳碳双键,酚羟基可以和NaOH反应生成水,与Na2CO3反应生成NaHCO3,二者都可以和金属钠反应生成氢气.●醚:醚键(-C-O-C-)可以由醇羟基脱水形成。
最简单的醚是甲醚(二甲醚DME)●硫醚:(-S-)由硫化钾(或钠)与卤代烃或硫酸酯反应而得易氧化生成亚砜或砜,与卤代烃作用生成锍盐(硫翁盐)。
分子中硫原子影响下,α-碳原子可形成碳正、负离子或碳自由基。
●醛:醛基(-CHO);可以发生银镜反应,可以和斐林试剂反应氧化成羧基。
与氢气加成生成羟基。
●酮:羰基(>C=O);可以与氢气加成生成羟基。
由于氧的强吸电子性,碳原子上易发生亲核加成反应。
其它常见化学反应包括:亲核还原反应,羟醛缩合反应。
●羧酸:羧基(-COOH);酸性,与NaOH反应生成水(中和反应),与NaHCO3、Na2CO3反应生成二氧化碳,与醇发生酯化反应●酯: 酯(-COO-) 在酸性条件下水解生成羧酸与醇(不完全反应),碱性条件下生成盐与醇(完全反应)。
高中化学学习细节(人教版)之有机合成及糖类、油脂、蛋白质:官能团的变化Word版含解析

高中化学学习细节(人教版)之有机合成及糖类、油脂、蛋白质:官能团的变化Word版含解析有机合成是高考中不可缺少的题型,其命题方式如下:? 以烃及烃的衍生物的转化关系为内容的考查方式。
? 有机合成推断中渗透有机实验、有机物的相关信息处理等有机综合性问题。
有机合成的实质和相关知识:有机合成的实质是利用有机基本反应原理,进行必要的官能团反应,合成目标产物。
而有机推断的实质是具体物质的合成流程中的某个环节、物质、反应条件缺省,或通过已知的信息推断出未知物的各种信息。
在推断和合成过程中都常涉及到下列情况:官能团的引入、官能团的消除、官能团的衍变、碳骨架即碳链的增减等。
在解有机合成试题时首先要注意:1(合成方法:识别有机物的类别,含何官能团,以及与之有关的信息。
据现有原料,信息及反应原理,尽可能合理把目标分子分成若干片断,或寻求官能团的引入、转换,保护方法或设法将各片断拼接衍变。
正逆推,综合比较选择最佳方案。
一定要注意有机合成中断的什么线(化学键),连的什么点(原子)。
2(合成原则:原料价廉,原理正确路线简捷,便于操作,条件适宜易于分离,产率高3(解题思路:剖析要合成的物质(目标分子),选择原料,路线(正向、逆向思维,结合题给信息)。
合理的合成路线进行什么基本反应,目标分子骨架。
目标分子中官能团引入。
?原料分子(官能团有何不同)过渡中间产物(碎片分子中的官能团如何转化来的)碎片分子切割(断键部位要合理)目标分子【学习目标】认识有机合成中官能团之间的转化。
细节诠释一. 官能团的引入引入官能团有关反应烯烃与水加成,醛/酮加氢,卤代烃水解,酯的水解羟基-OH烃与X取代,不饱和烃与HX或X加成,(醇与HX取代) 22卤素原子(,X)某些醇或卤代烃的消去,炔烃不完全加氢碳碳双键C=C某些醇(,CHOH)氧化,烯氧化,糖类水解,(炔水化) 2醛基-CHO醛氧化, 酯酸性水解, 羧酸盐酸化,(苯的同系物被强氧化剂氧化) 羧基-COOH 酯化反应酯基-COO-二. 官能团的衍变:1. 烃和烃的衍生物转变主线2. 官能团的消除(1)与H加成消除不饱和键; 2(2)消去反应消除卤原子而形成新的C,C双键; (3)消去反应、氧化反应或酯化反应等消除羟基(—OH);(4)加成反应或氧化反应等消除醛基(—CHO); (5)酯水解消除酯基。
(完整word版)最全的官能团化合物的红外吸收峰特征

六元双氧环1124 878
六元单氧环1098 813
五元单氧环1071 913
四元单氧环983 1028
三元单氧环839 1270
饱和六元环醚与非环醚谱带位置接近。环减小时,νasC━O━C频率降低,而νasC━O━C频率升高
环氧化合物8μ峰1280~1240cm-1
11μ峰950~810cm-1
醛基质子的伸缩振动
醛基的在2880~2650 cm-1出现两个强度相近的中强吸收峰,一般这两个峰在~2820cm-1和2740~2720cm-1出现,后者较尖,是区别醛与酮的特征谱带。这两个吸收是由于醛基质子的νCH与δCH的倍频的费米共振产生
C━C━C(O)面内弯曲振动
脂肪醛在695~665cm-1有此中强吸收,当α位有取代基时则移动到665~635cm-1
2.羰基与苯环共轭时,芳环在1600cm-1区域的吸收峰分裂为两个峰,即在~1580cm-1位置又出现一个新的吸收峰,称为环振吸收峰
醛
醛有νC=O和醛基质子νCH的两个特征吸收带
醛的νC=O高于酮。饱和脂肪醛νC=O1740~1715cm-1;α,β不饱和脂肪醛νC=O1705~1685cm-1;芳香醛νC=O1710~1695cm-1
3.δC━CI与δC━H(面外)的值较接近
醇
━OH
游离:3650~3610 cm-1(峰尖,强度不定)
分子内缔合:3500~3000 cm-1
分子间缔合:二聚:3600~3500 cm-1
多聚:3400~3200 cm-1
1.缔合体峰形较宽(缔合程度越大,峰越宽,越向低波数移)
2.一般羟基吸收峰出现在比碳氢吸收峰所在频率高的部位,即大于3000 cm-1,故>3000cm-1的吸收峰通常表示分子中含有羟基
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烷烃——无官能团:
1.一般C4及以下是气态,C5以上为液态。
2.化学性质稳定,不能使酸性高锰酸钾溶液,溴水等褪色。
3.可以和卤素(氯气和溴)发生取代反应,生成卤代烃和相应的卤化氢,条件光照。
4.烷烃在高温下可以发生裂解,例如甲烷在高温下裂解为碳和氢气。
烯烃——官能团:碳碳双键
1.性质活泼,可使酸性高锰酸钾溶液褪色。
2.可使溴水或溴的四氯化碳溶液褪色,发生加成反应,生成邻二溴代烷,例如乙烯和溴加成生成1,2-二溴乙烷。
3.酸催化下和水加成生成醇,如乙烯在浓硫酸催化下和水加成生成乙醇。
4.烯烃加成符合马氏规则,即氢一般加在氢多的那个C上。
5.乙烯在银或铜等催化下可以被空气氧化为环氧乙烷。
6.烯烃可以在镍等催化剂存在下和氢气加成生成烷烃
7.烯烃可以发生加聚反应生成高聚物,如聚乙烯,聚丙烯,聚苯乙烯等。
实验室制乙烯通过乙醇在浓硫酸作用下脱水生成,条件170℃。
炔烃——官能团:碳碳三键
1.性质与烯烃相似,主要发生加成反应。
也可让高锰酸钾,溴水等褪色。
2.炔烃加水生成的产物为烯醇,烯醇不稳定,会重排成醛或酮。
如乙
炔加水生成乙烯醇,乙烯醇不稳定会重拍生成乙醛。
3.乙炔和氯化氢加成的产物为氯乙烯,加聚反应后得到聚氯乙烯。
4.炔烃加成同样符合马氏规则
5.实验室制乙炔主要通过电石水解制的(用饱和食盐水)。
芳香烃——含有苯环的烃。
1.苯的性质很稳定,类似烷烃,不与酸性高锰酸钾,溴的四氯化碳反应,与溴水发生萃取(物理变化)。
2.苯可以发生一系列取代反应,主要有:
和氯,溴等卤素取代,生成氯苯或溴苯和相应的卤化氢(条件:液溴,铁或三溴化铁催化,不可用溴水。
)
和浓硝酸,浓硫酸的混合物发生硝化反应,生成硝基苯和水。
条件加热。
和浓硫酸反应生成苯磺酸,条件加热。
3.苯可以加氢生成环己烷。
4.苯的同系物的性质不同,取代基性质活泼,只要和苯环直接相连的碳上有氢,就可以被酸性高锰酸钾溶液氧化为苯甲酸。
如甲苯可以使酸性高锰酸钾溶液褪色,被氧化为苯甲酸。
无论取代基有多长,氧化产物都为苯甲酸。
5.苯分子中所有原子都在同一平面上。
6.苯环中不存在碳碳双键,六个碳原子之间的键完全相同,是一种特殊的大π键。
卤代烃——官能团:卤素原子
1.全部难溶于水,除了一氯甲烷,一溴甲烷为气体之外,其余均为液体或固体。
2.卤代烃可在碱的水溶液中水解,生成醇。
如溴乙烷在氢氧化钠溶液中水解,生成乙醇。
3.卤代烃可以在氢氧化钠的额醇溶液中发生消除(消去)反应,生成烯烃,前提是卤素原子连接的碳原子的相邻碳原子上有氢。
(仔细看好了,这话有点绕口。
)
4.卤代烃通常通过醇和卤化氢在酸催化下发生取代反应制备。
如乙醇在氢溴酸中,用浓硫酸催化制得溴乙烷。
5.卤代芳烃(卤素原子直接连接在苯环上,如溴苯)很难发生水解反应,需要极端条件,一般做题认为不反应。
醇——官能团:醇羟基
1.醇羟基上的氢是活泼氢,可以被活泼金属置换得到氢气。
例如乙醇和金属钠反应得到乙醇钠和氢气。
2.醇可以在铜或银的催化作用下被氧气氧化成醛或酮。
例如乙醇在铜催化下被氧气氧化为乙醛。
前提是和醇羟基连接的碳的相邻碳原子上有氢。
3.醇可以发生消去反应生成烯烃和水。
前提是和醇羟基连接的碳的相邻碳原子上有氢。
4.醇可以和卤化氢在硫酸催化下取代生成卤代烃。
5.醇可以和羧酸发生酯化反应生成酯。
酚——官能团:酚羟基
1.和苯环直接相连的羟基才叫酚羟基,形成的物质才是酚,否则为醇。
2.受苯环的影响,酚羟基的酸性比醇羟基强,苯酚可以和氢氧化钠反应生成苯酚钠和水。
苯酚的酸性比碳酸弱但强于碳酸氢根。
例如苯酚钠和二氧化碳,水反应生成苯酚和碳酸氢钠。
3.苯酚比苯更容易发生苯环上的取代反应,例如苯酚可以直接和溴水反应生成2,4,6-三溴苯酚,不需要纯溴,也不需要任何催化剂,主要是由于羟基的影响。
4.酚类可以与三氯化铁发生显色反应,例如苯酚遇到三氯化铁溶液会显紫色。
5.酚类物质有较强还原性,放在空气中就可被氧化,强氧化剂类似高锰酸钾自然也可以氧化之。
6.酚很难与羧酸形成酚酯,酚酯往往通过其他方法制备。
醛和酮——官能团:醛基和酮羰基
1.醛的还原性比醇强,放在空气中就可以被氧化成羧酸。
2.醛可以与银氨溶液,新制氢氧化铜等反应。
典型的银镜反应可用于鉴定醛基的存在。
新制氢氧化铜亦可被还原为砖红色的氧化亚铜沉淀。
而酮无此反应。
3.醛和酮可以在羰基上发生加氢还原,生成醇。
4.甲醛其实是二元醛,氧化了一边还有另一边。
5.甲醛可以和苯酚反应生成酚醛树脂。
羧酸和酯——官能团:羧基和酯基
1.羧酸酸性比碳酸强,可以和碳酸盐反应生成二氧化碳和水。
但依旧是弱酸。
2.羧酸可以喝醇发生酯化反应,通常是“酸脱羟基醇脱氢”。
3.羧酸通常是除燃烧反应外一般有机物氧化的最终产物。
4.酯化反应是可逆反应,酸性条件下亦可水解,而碱性条件下可以发生完全水解。
5.酯类化合物通常具有水果或花香,常用作香料。
6. 1mol醇酯碱性水解消耗1mol氢氧化钠,1mol酚酯水解消耗2mol 氢氧化钠。
羧酸和酯的羰基不能发生催化加氢反应,还原羧酸和酯需要用其他方法。
糖类化合物——官能团:醛基,酮羰基,醇羟基。
1.葡萄糖和果糖是最常见的两种6碳单糖,葡萄糖为醛糖可以发生银镜反应,果糖为酮糖,不能发生银镜反应,但果糖在碱性条件下会异构化变成可以发生银镜反应的物质。
2.蔗糖是非还原性糖,水解产生1分子果糖和1分子葡萄糖。
麦芽糖是还原性糖,水解产生两分子葡萄糖。
3.葡萄糖的醛基被氧化后生成葡萄糖酸,其钙盐和锌盐常用作补钙补锌的药物。
4.淀粉和纤维素都是以葡萄糖为单元的高聚物,因聚合度不同的分子
混合所以是混合物。
纤维素的聚合度比淀粉高,所以水解条件也更苛刻。
5.淀粉和纤维素水解的最终产物都是葡萄糖。
6.淀粉遇碘会变成蓝色。
7.淀粉在唾液淀粉酶作用下初步水解为麦芽糖而不是葡萄糖。
8.糖类从分子结构上看都为多羟基酮或多羟基醛。
羟基一样可以发生酯化反应。
油脂——官能团:酯基
1.油脂是甘油(丙三醇)和高级脂肪酸(C10~C26)组成的酯类。
2.通常常温下为液态的是油,固态的是脂。
3.油脂发生碱性水解生成高级脂肪酸的钠盐和甘油,由于高级脂肪酸钠为肥皂的主要成分,因此酯类的碱性水解也成为皂化反应。
4.油脂中的羧基碳链部分,含有不饱和键会降低熔点呈液态,用氢气加成不饱和键可升高其熔沸点变成固态,因此不饱和脂肪酸的加氢也称为油脂的硬化。
氨基酸和蛋白质——官能团:氨基,羧基和肽键
1.氨基酸是两性化合物,氨基是碱性基团,可以和酸反应成盐。
羧基是酸性集团,可以和碱反应成盐。
2.氨基酸之间通过氨基和羧基脱水缩合形成肽。
多个肽键的肽就是多肽,多肽在空间扭曲成一定形状就形成了蛋白质。
3.多肽和蛋白质可以喝双缩脲试剂发生反应变成紫色。
此反应多用于
蛋白质的鉴定。
4.蛋白质可以水解为相应的氨基酸。
5.蛋白质可以和少数盐如硫酸铵,硫酸钠等发生盐析。
主要是电解质降低了蛋白质在水中的溶解度,这个过程是可逆的,加水可以继续溶解,不影响生理活性。
6.蛋白质在重金属盐,或某些有机物如甲醛等作用下可以发生变性而失去生理活性。
此过程是不可逆的。
主要是含硫的蛋白质会和重金属离子生成不溶性而破坏蛋白质的结构。
7.若组成蛋白质的氨基酸中含有苯丙氨酸(一般都会有),则浓硝酸可以与其中的苯环发生硝化反应,生成黄色的硝基化合物,此反应称为蛋白质的颜色反应。