氮杂环卡宾本科生论文
氮杂环卡宾对二异丙基碳二亚胺的活化【开题报告文献综述毕业论文】.doc

毕业设计幵题报告应用化学氮杂卡宾对异丙基碳二亚胺的活化一、选题的背景和意义氮杂环卡宾(N-heterocycle carbine,简称NHC),是一类具有优良的给电子特性,能与金属形成反馈键的新型金属配体。
20世纪50年代skell等人就开始了对卡宾的研究。
1964年Fischer等人将卡宾引入无机和有机化学中,金属卡宾在有机合成和大分子化学中得到了广泛的应用。
1991年Arduengo等第一次成功分离得到游离的氮杂环卡宾,才引起人们的注意,氮杂环卡宾的金属络合物作为催化剂,开始得到广泛应用。
氮杂环卡宾的发展吋间尽管比较短,但是凭借非常高的反应活性己在诸多化学反应中扮演十分重要的作用,尤其是在氮杂环卡宾的金属配合物合成与催化研宄方面报道较多。
不过环己基氮杂环卡宾与有机小分子的研究较少,对于与N, N1- 二异丙基碳二亚胺研宄仍未见到报道。
本论文我们主要探索氮杂环卡宾对碳二亚胺的活化反应,即环己基氮杂环卡宾对异丙基碳二亚胺分子屮的N=C=N双键活化,并对生成新的化合物并进行分离和表征检测。
实验得到的一种新化合物,从作用来看,该化合物可与其它类似实验得到的新化合物起到一个对比研究作用,也推动氮杂环卡宾与有机小分子合成的发展。
二、研宄目标与主要内容(含论文提纲)研究目标:探索氮杂卡宾对异丙基碳二亚胺的活化反应,成功分离并表征目标化合物。
1引言1.1概述1.2氮杂环卡宾1.2.1氮杂环卡宾的分类及其结构1.2.2氮杂环卡宾的合成1.3氮杂环卡宾的应用1.3.1氮杂环卡宾的反应性能1. 1与路易斯酸生成加合物1.3.1.2与路易斯碱生成加合物1.3.1.3与金属反应生成络合物1.3.2氮來环卡宾的催化性能1.4N-榮环卡宾金属配合物的应用1.4.1 N-杂环卡宾金属配合物在碳一碳多重键硅氢加成反应屮的应用1.4. 2 N-杂环卡宾金属配合物在酮硅氢加成反疲的疲用1. 4. 3 N-杂环卡宾金属配合物在.Suzuki偶联反应的应用4. 4 N-來环卡宾金展配合物在Buchwald-Hartwig反应中的应用1.5碳二亚胺化合物1.5.1碳二亚胺化合物的性能与应用1.5.2N, N’-二异丙基碳二亚胺2实验部分1实验原理2.2实验试剂及仪器2.2. 1实验试剂2.2.2实验试剂规格参数2.2.3实验仪器2.3实验步骤2.3. 1 N, N’ -二环己基硫脲的合成1,3二环已基咪唑-2-硫酮的合成2.3.3二环己基氮杂环卡宾的制备2.3.41, 3-二环己基咪唑-2-亚基对异丙基碳二亚胺的活化反应3结果与讨论3.1产物的表征3.1.1对屮间体硫脲的表征与分析3.1.2对硫酮的表征与分析3.1.3对目标产物的表征与分析4结语致谢附录三、拟采取的研宄方法、研宄手段及技术路线、实验方案等本论文根据文献报道以及考虑到本校的实验设施限制,采用原位合成法中的环硫脲去硫法:制取氮杂环卡宾采用环硫脲去硫法;其中硫酮的合成方法参照捷克科学家Lipophilic的合成方法。
一种氮杂环卡宾铂络合物催化剂及其制备与应用

一种氮杂环卡宾铂络合物催化剂及其制备与应用一种氮杂环卡宾铂络合物催化剂及其制备与应用氮杂环卡宾铂络合物催化剂是一种在有机合成中具有重要应用价值的化合物。
它可以作为催化剂,促进各种有机反应的进行,具有高效、高选择性和环境友好等特点。
本文将介绍氮杂环卡宾铂络合物催化剂的制备方法以及其在有机合成中的应用。
氮杂环卡宾铂络合物是指含有氮杂环卡宾配体的铂配合物。
氮杂环卡宾是一种具有氮杂环结构的碳负离子,可以与金属离子形成络合物。
其中,铂是一种常用的金属离子,可以与氮杂环卡宾形成稳定的络合物。
这种络合物具有较高的催化活性和选择性,广泛应用于有机合成领域。
制备氮杂环卡宾铂络合物催化剂的方法有多种。
一种常用的方法是将氮杂环卡宾与铂盐反应,生成络合物。
例如,可以将氮杂环卡宾与氯铂酸反应,在适当的条件下得到氮杂环卡宾铂络合物。
此外,还可以利用其他金属盐与氮杂环卡宾反应,再通过还原得到目标产物。
氮杂环卡宾铂络合物催化剂在有机合成中具有广泛的应用。
首先,它可以催化碳-碳键的形成。
例如,可以将烯烃与醇反应,在氮杂环卡宾铂络合物的催化下实现烯烃和醇之间的加成反应,生成醚化合物。
此外,氮杂环卡宾铂络合物还可以催化烯烃的环化反应、烯烃的异构化反应等。
此外,氮杂环卡宾铂络合物催化剂还可以催化碳-氧、碳-氮、碳-硫等键的形成。
例如,可以将醇与醛或酮反应,在氮杂环卡宾铂络合物的催化下实现醇和醛(或酮)之间的缩合反应,生成醚化合物。
此外,氮杂环卡宾铂络合物还可以催化胺与酸酐之间的缩合反应,生成酰胺化合物。
此外,氮杂环卡宾铂络合物催化剂还可以催化不对称合成。
通过选择不同的配体和反应条件,可以实现对手性产物的高选择性催化合成。
这在药物合成和精细化学品合成中具有重要意义。
总之,氮杂环卡宾铂络合物催化剂是一种在有机合成中具有重要应用价值的化合物。
通过适当的制备方法,可以获得高效、高选择性的催化剂。
在有机合成中,它可以催化碳-碳、碳-氧、碳-氮、碳-硫等键的形成反应,并且具有不对称合成的能力。
《氮杂环卡宾银、钯功能化的配位聚合物的合成及其催化性质的研究》

《氮杂环卡宾银、钯功能化的配位聚合物的合成及其催化性质的研究》一、引言近年来,随着科学技术的不断发展,金属与配体的配合物已成为众多化学和材料科学研究领域的重要组成部分。
特别地,含氮杂环卡宾银和钯的功能化配位聚合物,因其独特的结构特点和潜在的应用价值,引起了广泛的关注。
本篇论文主要针对此类配位聚合物的合成及其催化性质进行研究。
二、实验部分1. 材料与试剂实验所用的原料和试剂均购买自正规供应商,并在使用前未进行进一步的纯化处理。
实验中所使用的溶剂如甲醇、乙醇等均为分析纯。
2. 氮杂环卡宾银、钯功能化配位聚合物的合成根据预先设计好的实验方案,以氮杂环卡宾为配体,通过与银盐或钯盐进行反应,成功合成了氮杂环卡宾银、钯功能化的配位聚合物。
反应条件为:在适当的温度和压力下,将配体与金属盐溶液混合,经过一定时间的搅拌后,得到目标产物。
三、表征与分析通过核磁共振、X射线衍射、扫描电镜等手段对合成的配位聚合物进行了详细的表征。
结果表明,所合成的配位聚合物具有预期的结构和形态。
四、催化性质研究1. 催化加氢反应在适当的条件下,以所合成的氮杂环卡宾银、钯功能化的配位聚合物为催化剂,进行了催化加氢反应的实验。
实验结果表明,该催化剂在反应中表现出良好的催化活性,能有效地促进反应的进行。
2. 催化氧化反应此外,我们还研究了该催化剂在催化氧化反应中的性能。
实验结果表明,该催化剂在氧化反应中同样表现出良好的催化效果,能够有效地提高反应的转化率和选择性。
五、结论本论文成功合成了氮杂环卡宾银、钯功能化的配位聚合物,并对其进行了详细的表征。
通过催化加氢和氧化反应的实验研究,发现该催化剂具有良好的催化性能。
这为该类配位聚合物在催化领域的应用提供了有力的理论依据和实践经验。
未来我们将进一步研究其在实际工业生产中的应用前景。
六、展望尽管本论文对氮杂环卡宾银、钯功能化的配位聚合物的合成及其催化性质进行了研究,但仍有许多问题值得进一步探讨。
例如,可以尝试合成更多种类的此类配位聚合物,研究其结构与性能的关系;还可以探索其在其他类型反应中的应用,如烷基化反应等。
《氮杂环卡宾贵金属配合物的合成及其催化性能探究》

《氮杂环卡宾贵金属配合物的合成及其催化性能探究》一、引言随着对化学科学与技术的深入发展,对贵金属配合物的研究已日益增多。
特别是氮杂环卡宾贵金属配合物,由于其独特的结构和性质,在有机合成、催化、材料科学等领域中得到了广泛的应用。
本篇论文主要研究氮杂环卡宾贵金属配合物的合成及其催化性能,为该领域的研究提供理论依据和实验数据。
二、氮杂环卡宾贵金属配合物的合成1. 合成原料与试剂本实验采用氮杂环卡宾配体、贵金属盐等作为主要原料和试剂。
所有试剂均为分析纯,使用前未进行进一步处理。
2. 合成方法氮杂环卡宾贵金属配合物的合成主要采用溶液法。
首先将氮杂环卡宾配体与贵金属盐在有机溶剂中混合,加热搅拌一定时间后,冷却、过滤、洗涤、干燥,得到目标产物。
3. 合成结果与讨论通过单晶X射线衍射、元素分析、红外光谱等手段对合成的氮杂环卡宾贵金属配合物进行表征。
结果表明,我们成功合成了目标产物,其结构与预期相符。
三、催化性能探究1. 催化反应类型本实验主要探究氮杂环卡宾贵金属配合物在有机反应中的催化性能,如氢化反应、氧化反应、加成反应等。
2. 催化实验方法将氮杂环卡宾贵金属配合物作为催化剂,加入到底物中,在一定温度、压力和时间内进行反应。
通过对比有无催化剂条件下的反应结果,评估催化剂的催化性能。
3. 催化结果与讨论实验结果表明,氮杂环卡宾贵金属配合物在有机反应中具有良好的催化性能。
它能有效地降低反应活化能,提高反应速率,且对反应的选择性也有显著提高。
此外,该类催化剂具有良好的重复使用性,能有效降低生产成本。
四、结论本论文成功合成了氮杂环卡宾贵金属配合物,并对其催化性能进行了探究。
结果表明,该类催化剂在有机反应中具有良好的催化性能和重复使用性。
这为氮杂环卡宾贵金属配合物在有机合成、催化、材料科学等领域的应用提供了理论依据和实验数据。
未来,我们将进一步研究该类催化剂的合成方法和催化性能,以期在工业生产中发挥更大的作用。
五、展望随着科学技术的不断发展,对催化剂的性能要求也越来越高。
氮杂环卡宾

N‑Heterocyclic Carbene-Palladium(II)-1-Methylimidazole Complex-Catalyzed Direct C−H Bond Arylation of(Benz)imidazoles with Aryl ChloridesZheng-Song Gu,†Wen-Xin Chen,†and Li-Xiong Shao*,†,‡†College of Chemistry and Materials Engineering,Wenzhou University,Chashan University Town,Wenzhou,Zhejiang Province 325035,People’s Republic of China‡College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua,Zhejiang Province321004,People’s Republic of China *Supporting InformationINTRODUCTIONC2-arylated(benz)imidazoles are frequently found in various pharmaceuticals,biologically active compounds and materials.1 Recently,the transition metal-catalyzed direct C−H bond arylation of(benz)imidazoles has been noticed as a potentially more efficient and convenient alternative for the straightfor-ward synthesis of such compounds.2However,during the past years,the scope of the arylating reagents is limited to the more active aryl iodides and bromides.3To the best of our knowledge,only very few examples on the palladium-catalyzed direct C2-arylation of(benz)imidazoles using aryl chlorides in the presence of phosphine ligands were reported to date, despite their lower cost and more easy availability.4Therefore, despite that some progress has been made in the direct C2-arylation of(benz)imidazoles,the research for efficient methods using the more applicable,while less active,aryl chlorides as the arylating reagents is still in great demand.5 Previously,we have reported that a well-defined N-heterocyclic carbene-Pd(II)-1-methylimidazole[NHC-Pd(II)-Im]complex 1can easily activate aryl chlorides in traditional C−C couplings such asα-arylation of carbonyl compounds,6Suzuki−Miyaura coupling,7Mizoroki−Heck reaction,8Hiyama reaction9and C−N coupling.10Furthermore,in a very recent communication,we found that NHC-Pd(II)-Im complex1can also efficiently catalyze the direct C−H bond arylation of(benzo)oxazoles using aryl chlorides as the arylating reagents.11These results thus prompted us to further investigate its application in activating aryl chlorides toward the direct C2-arylation of (benz)imidazoles.Herein,we report these results in detail.■RESULTS AND DISCUSSIONInitially,1-methylbenzimidazole2a(0.49mmol)was chosen as the model substrate for the reaction with chlorobenzene3a(2.0equiv)in the presence of NHC-Pd(II)-Im complex1(2.0mol%)under various conditions.For example,in thefirst round, toluene/H2O(2.0mL/0.5equiv)was chosen as the solvents to evaluate the effect of bases.The best result was achieved usingKO t Bu as the base to give the desired product4a in89%yield (Table1,entry6),while in the presence of other bases such asK2CO3,KOH,K3PO4·3H2O,LiO t Bu and NaO t Bu,almost no product could be detected(Table1,entries1−5).The replacement of solvents from toluene/H2O to THF/H2O anddioxane/H2O resulted in product4a only being isolated in48 and40%yields,respectively(Table1,entries7and8).In addition,in the presence of other solvents such as DMSO/ H2O,DMF/H2O,CH3CN/H2O and DME/H2O,no desired product could be detected(Table1,entries9−12). Furthermore,after careful investigations,it was found that the amount of H2O dramatically affected the reaction.That is,the introduction of0.5equiv of H2O was found to be necessary for such transformation.For instance,only18%yield of product4a was obtained when dry toluene was used as the solvent(Table 1,entry13).When1.0equiv of H2O was added,a significantly higher yield(84%)was achieved(Table1,entry14).However, when the amount of H2O was increased to3.0equiv,the yield of4a drastically decreased to5%(Table1,entry15).These results thus encouraged us to further investigate the effect of H2O.It is known that KO t Bu will be partially hydrolyzed to KOHand HO t Bu under the above reaction conditions.Therefore, three more control experiments were carried out:(1)the combination of KO t Bu(1.5equiv),KOH(0.5equiv)and HO t Bu(0.5equiv)was introduced instead of KO t Bu(2.0Received:May9,2014Published:May28,2014©2014American Chemical /10.1021/jo5010058|.Chem.2014,79,5806−5811equiv)and H 2O (0.5equiv),and product 4a was obtained in a comparable yield (84%)(Table 1,entry 6and Scheme 1,eq 1);(2)the combination of KO t Bu (1.5equiv)and HO t Bu (0.5equiv)was introduced,and product 4a was also formed in a comparable yield (82%)(Table 1,entry 6and Scheme 1,eq 2);(3)the combination of KO t Bu (1.0equiv)and HO t Bu (1.0equiv)was introduced,and a similar yield of product 4a was observed (84%)(Table 1,entry 14and Scheme 1,eq 3).On the basis of these results,although the real function of H 2O was unclear at this stage,it could be inferred that when a combination of toluene and H 2O was used as the solvent,HO t Bu derived from the hydrolysis of KO t Bu might play an important role in such transformation.12We next explored the scope of the C2-arylation of 1-methylbenzimidazole 2a with a variety of aryl chlorides 3under the identical optimal experimental conditions.Under the suitable conditions,the procedure proved to be general on all substrates tested (Table 2).It seems that the substituents on the aryl chlorides 3a ffected the reactions to some extent.For example,for the reaction involving sterically hindered 2-methylphenyl chloride 3d ,good yields are obtained by simplyincreasing the catalyst loading,although only moderate yield can be obtained under the optimal reaction conditions (Table 2,entries 3and 4).For electron-rich aryl chlorides such as 4-methoxyphenyl chloride 3e and 4-dimethylaminophenyl chloride 3g ,slightly higher catalyst loading or elevated temperature is necessary for the achievement of higher yields (Table 2,entries 5and 6;entries 8and 9).In addition,heteroaryl chlorides such as 2-chloropyridine 3k and 2-chlorothiophene 3l could be used,giving rise to the desired products 4k and 4l in acceptable yields,respectively (Table 2,entries 13and 14).The reaction was further investigated using a variety of benzimidazoles 2and aryl chlorides 3as the substrates under the optimal conditions.As can be seen from Table 3,all 1-methylbenzimidazoles 2,regardless of electron-rich substituents such as 5,6-Me 2(2b ),5-Me (2c ),5-MeO (2e )or electron-poor substituents such as 5-F (2d )attaching on the phenyl groups,could react with aryl chlorides 3smoothly to give the desired C2-arylated products 4in good to high yields (Table 3,entries 1−17).In addition,it seems that for the reactions involving electron-poor 5-F-benzimidazole 2d ,better yields can be achieved under identical conditions (Table 3,entries 11−15).1-Benzylbenzimidazole 2f was also suitable for this reaction to give the corresponding products 4ad −4ag in good yields (Table 3,entries 18−21).Encouraged by the above results using benzimidazoles as the substrates,the optimal conditions were then expanded to theTable 1.Optimization for Complex 1Catalyzed Direct C −H Bond Arylation of 1-Methylbenzimidazole 2a with Chlorobenzene 3aentry a solvent base yield (%)1toluene/H 2O K 2CO 3ND2toluene/H 2O KOH ND3toluene/H 2O K 3PO 43H 2O ND4toluene/H 2O LiO t Bu ND5toluene/H 2O NaO t Bu <56toluene/H 2O KO t Bu 897THF/H 2O KO t Bu 488dioxane/H 2O KO t Bu 409DMSO/H 2O KO t Bu ND10DMF/H 2O KO t Bu ND11CH 3CN/H 2O KO t Bu ND12DME/H 2O KO t Bu ND13toluene KO t Bu 1814b toluene/H 2O KO t Bu 8415c toluene/H 2O KO t Bu 5a If not otherwise speci fied,all reactions were carried out using 2a (0.49mmol),3a (2.0equiv),base (2.0equiv),1(2.0mol %)in organic solvents (2.0mL)and H 2O (0.5equiv)at 120°C for 6h.b H 2O (1.0equiv)was added.c H 2O (3.0equiv)was added.Scheme 1.Three Control Experiments Table 2.NHC-Pd(II)-Im 1Catalyzed Direct C −H Bond Arylation of 1-Methylbenzimidazole 2a with Aryl Chlorides 3aIf not otherwise speci fied,all reactions were carried out using 2a (0.49mmol),3(2.0equiv),1(X mol %),KO t Bu (2.0equiv)in toluene/H2O (2.0mL/0.5equiv)at 120°C for 6h.b The temperature was 130°C./10.1021/jo5010058|J.Org.Chem.2014,79,5806−58115807reactions between 1-methylimidazole and aryl chlorides.It was found that the ratio between two substrates dramatically a ffected the reaction.For example,when the reaction between 1-methylimidazole (0.49mmol)and chlorobenzene (2.0equiv)was carried out under the optimal conditions shown in Table 1,entry 6,the desired C2-arylated product was obtained only in 29%yield,along with the 2,5-diarylated byproduct in 8%yield.To our pleasure,subtly changing the ratio of the substrates will result in exclusive C2-arylated selectivity.For instance,when excess 1-methylimidazole (2.0equiv)was used as the substrate,the desired C2-arylated products could be achieved in good to high yields as the sole product under the optimal conditions.The results are shown in Table 4.It seems that substituents on the aryl chlorides have some e ffect on the reaction.For example,aryl chlorides having electron-rich groups such as 4-Me (3b )and 3-Me (3c )gave better yields than that having electron-neutral (3a )and electron-poor 4-F group (3i )(Table 4,entries 2and 3vs entries 1and 5).In addition,2-methylphenyl chloride 3d gave inferior result (74%),maybe partially due to its steric hindrance (Table 4,entry 4).■CONCLUSIONS In conclusion,NHC-Pd(II)-Im complex,as the nonphosphine complex,was first used as the catalyst in the direct C −H bond arylation of (benz)imidazoles using the less expensive,less active,and easily available aryl chlorides as the arylating reagents.Under the optimal conditions,various (benz)-imidazoles can react with kinds of activated,unactivated,and deactivated aryl chlorides smoothly to give the desired C2-arylated products in good to high yields.13For instance,both substrates bearing electron-rich,-neutral,and -poor substituents are tolerated in such transformation.The NHC-Pd(II)complex catalyzed direct C −H bond arylation between (benz)imidazoles and aryl chlorides reported in this paper will become a good,economical,and e fficient supplement to the traditional methods for the formation of 2-aryl (benz)imidazoles.■EXPERIMENTAL SECTIONGeneral Remarks.Melting points are uncorrected.NMR spectra wererecordedat 300/500(for 1H NMR)or 75/125MHz (for 13CNMR),respectively.1H NMR and 13C NMR spectra recorded inCDCl 3solutionswere referenced to TMS (0.00ppm)and the residual solvent peak (77.0ppm),respectively.J -values are in anic solvents used were dried by standard methods.The mass analyzer type for thehigh resolution mass spectra (HRMS,ESI)is quadrupole.Other commercially obtained reagents were used without further puri fication.Flash column chromatography was performed on silica gel.General Procedure for the NHC-Pd(II)-Im Complex 1Catalyzed Reactions Between (Benz)imidazoles and Aryl Chlorides.Under N 2atmosphere,KO t Bu (0.98mmol),NHC-Pd(II)-Im complex 1(0.0098mmol),toluene (2.0mL),H 2O (0.245mmol),benzimidazoles 2(0.49mmol)and aryl chlorides 3(0.98mmol)weresuccessivelyadded into a Schlenk reaction tube.Themixture wasstirred vigorously at 120°C for 6h.Then the solvent wasremoved under reduced pressure,and the residue was puri fied by flashchromatography (eluent:petroleum ether/ethyl acetate =10:1forbenzimidazole derivatives and 3:1for imidazole derivatives)to give thepure products pound 4a :3j white solid (90.7mg,89%);1H NMR (CDCl 3,300MHz,TMS)δ7.85−7.76(m,3H),7.57−7.52(m,3H),7.41−7.29(m,3H);13C{H}NMR (CDCl 3,75MHz)δ153.7,142.9,136.5,130.1,129.7,129.4,128.6,122.7,122.4,119.8,109.6,pound 4b :3j white solid (92.6mg,85%);1H NMR (CDCl 3,300MHz,TMS)δ7.85−7.80(m,1H),7.64(d,J =8.1Hz,2H),7.36−7.25(m,5H),3.80(s,3H),2.42(s,3H);13C{H}NMR (CDCl 3,75MHz)δ153.8,142.8,139.7,136.4,129.24,129.17,127.1,122.5,122.2,119.5,109.5,31.5,21.3.Compound 4c :3j white solid (94.0mg,86%);1H NMR (CDCl 3,500MHz,TMS)δ7.83−7.81(m,1H),7.60(s,1H),7.49(d,J =7.5Hz,1H),7.37(t,J =7.5Hz,1H),7.34−7.28(m,4H),3.79(s,3H),2.42(s,3H);13C{H}NMR (CDCl 3,75MHz)δ153.8,142.7,138.5,136.4,130.4,130.1,129.9,128.3,126.2,122.6,122.3,119.6,109.5,31.5,21.3.Compound 4d :14white solid(80.4mg,74%);1H NMR (CDCl 3,500MHz,TMS)δ7.84−7.82(m,1H),7.44−7.30(m,7H),3.63(s,3H),2.27(s,3H);13C{H}NMR (CDCl 3,75MHz)δ153.7,142.9,Table 3.NHC-Pd(II)-Im 1Catalyzed Direct C −H Bond Arylation of Benzimidazoles 2with Aryl Chlorides 3entry a 2(R 2/R 3)3(R 1)yield (%)12b (5,6-Me 2/Me)3a (H)4m ,8722b 3b (4-Me)4n ,843b 2b 3e (4-OMe)4o ,8242b 3i (4-F)4p ,865b 2b 3j (4-vinyl)4q ,8462c (5-Me/Me)3a 4r ,8672c 3b 4s ,858b 2c 3e 4t ,8492c 3i 4u ,8810b 2c 3j 4v ,86112d (5-F/Me)3a 4w ,97122d 3b 4x ,96132d 3e 4y ,86142d 3i 4z ,96152d 3j 4aa ,88162e (5-OMe/Me)3a 4ab ,86172e 3b 4ac ,84182f (H/benzyl)3a 4ad ,84192f 3b 4ae ,8520b 2f 3e 4af ,82212f 3j 4ag ,84a If not otherwise speci fied,all reactions were carried out using 2a (0.49mmol),3(2.0equiv),1(2.0mol %),KO tBu (2.0equiv)in toluene/H 2O (2.0mL/0.5equiv)at 120°C for 6h.b NHC-Pd(II)-Im 1(3.0mol %)was added.Table 4.NHC-Pd(II)-Im 1Catalyzed Direct C −H Bond Arylation of 1-Methylimidazole 5with Aryl Chlorides 3entry a 3(R 1)[X]t (°C)yield (%)13a (H)21204ah ,8623b (4-Me)31404ai ,9933c (3-Me)31304aj ,9743d (2-Me)41404ak ,7453i (4-F)41404al ,8463j (4-vinyl)31304am ,87a All reactions were carried out using 5(2.0equiv),3(0.75mmol),KO tBu (2.0equiv),1(X mol %)in toluene/H 2O (2.0mL/0.5equiv)for 12h./10.1021/jo5010058|J.Org.Chem.2014,79,5806−58115808137.9,135.5,130.4,130.2,129.9,129.8,125.7,122.5,122.2,119.8, 109.4,30.5,19.6.Compound4e:3j white solid(96.2mg,82%);1H NMR(CDCl3, 300MHz,TMS)δ7.82−7.78(m,1H),7.72(d,J=7.5Hz,2H), 7.40−7.29(m,3H),7.05(d,J=7.5Hz,2H),3.89(s,3H),3.86(s, 3H);13C{H}NMR(CDCl3,75MHz)δ160.6,153.6,142.8,136.5, 130.7,122.38,122.37,122.2,119.4,114.0,109.4,55.3,31.6. Compound4f:15white solid(96.8mg,83%);1H NMR(CDCl3, 500MHz,TMS)δ7.84−7.82(m,1H),7.46−7.40(m,2H),7.34−7.30 (m,4H),7.07−7.05(m,1H),3.89(s,3H),3.88(s,3H);13C{H} NMR(CDCl3,75MHz)δ159.7,153.6,142.8,136.5,131.3,129.6, 122.8,122.4,121.6,119.8,115.9,114.6,109.6,55.4,31.7. Compound4g:16white solid(83.8mg,68%);1H NMR(CDCl3, 500MHz,TMS)δ7.80(dd,J=6.0,2.5Hz,1H),7.69(d,J=9.0Hz, 2H),7.35(dd,J=6.0,2.5Hz,1H),7.36−7.27(m,2H),6.81(d,J= 9.0Hz,2H),3.87(s,3H),3.05(s,6H);13C{H}NMR(CDCl3,75 MHz)δ154.6,151.0,143.0,136.6,130.3,121.94,121.91,119.1,117.2, 111.6,109.2,40.1,31.7.Compound4h:yellow liquid(107.2mg,87%);1H NMR(CDCl3, 300MHz,TMS)δ7.86−7.80(m,1H),7.39−7.28(m,4H),7.12−7.11 (m,1H),7.01−6.97(m,1H),6.87−6.83(m,1H),3.84(s,3H),3.01 (s,6H);13C{H}NMR(CDCl3,75MHz)δ154.7,150.6,142.8,136.5, 130.7,129.0,122.5,122.2,119.6,117.2,113.6,113.4,109.5,40.5,31.6; MS(ESI)252[M+H]+;HRMS(ESI)calcd for C16H18N3[M+H]+ 252.1495,found252.1506;IR(neat)ν2363,1607,1483,1436,1348, 1284,1242,1126,1062,990,956,845,776,737,695cm−1. Compound4i:17white solid(90.8mg,82%);1H NMR(CDCl3, 500MHz,TMS)δ7.82−7.80(m,1H),7.74(dd,J=8.5,5.0Hz,2H), 7.38−7.29(m,3H),7.21(t,J=8.5Hz,2H),3.82(s,3H);13C{H} NMR(CDCl3,125MHz)δ163.6(d,J C−F=249.0Hz),152.7,142.8, 136.5,131.3(d,J C−F=8.5Hz),130.2,126.3(d,J C−F=3.1Hz),123.8, 122.8,122.5,119.8,115.8(d,J C−F=21.6Hz),109.6,31.6. Compound4j:white solid(98.6mg,86%);mp116−117°C;1H NMR(CDCl3,300MHz,TMS)δ7.84−7.81(m,1H),7.71(d,J=8.1 Hz,2H),7.52(d,J=8.1Hz,2H),7.35−7.27(m,3H),6.75(dd,J= 17.7,10.8Hz,1H),5.84(d,J=17.7Hz,1H),5.34(d,J=10.8Hz, 1H),3.80(s,3H);13C{H}NMR(CDCl3,75MHz)δ153.1,142.3, 138.8,136.3,135.9,129.5,128.9,126.3,122.8,122.5,119.4,115.4, 109.6,31.6;MS(ESI)235[M+H]+;HRMS(ESI)calcd for C16H15N2[M+H]+235.1230,found235.1228;IR(neat)ν1630, 1464,1402,1377,1322,1250,993,909,851,821,760,745,738,702 cm−1.Compound4k:18white solid(57.5mg,56%);1H NMR(CDCl3, 300MHz,TMS)δ8.69−8.67(m,1H),8.38(d,J=8.1Hz,1H), 7.85−7.80(m,2H),7.44−7.28(m,4H),4.25(s,3H);13C{H}NMR (CDCl3,75MHz)δ150.5,150.2,148.5,142.3,137.2,136.8,124.7, 123.7,123.3,122.6,119.9,109.9,32.6.Compound4l:16white solid(61.0mg,58%);1H NMR(CDCl3, 300MHz,TMS)δ7.81−7.77(m,1H),7.57−7.55(m1H),7.51−7.49 (m,1H),7.35−7.26(m,3H),7.19−7.16(m,1H),3.94(s,3H);13C{H}NMR(CDCl3,75MHz)δ147.7,142.6,136.4,132.3,128.5,127.9,127.8,122.9,122.6,119.6,109.3,31.6.Compound4m:white solid(100.6mg,87%);mp171−172°C;1H NMR(CDCl3,300MHz,TMS)δ7.76−7.73(m,2H),7.57(s,1H), 7.54−7.47(m,3H),7.15(s,1H),3.81(s,3H),2.42(s,3H),2.40(s, 3H);13C{H}NMR(CDCl3,75MHz)δ152.9,141.5,135.2,131.9, 131.2,130.5,129.4,129.3,128.6,119.8,109.8,31.6,20.6,20.3;MS (ESI)237[M+H]+;HRMS(ESI)calcd for C16H17N2[M+H]+ 237.1386,found237.1402;IR(neat)ν1601,1534,1438,1381,1318, 1176,1020,1000,924,846,818,771,690cm−1.Compound4n:white solid(103.0mg,84%);mp122−123°C;1H NMR(CDCl3,300MHz,TMS)δ7.63(d,J=7.8Hz,2H),7.57(s, 1H),7.29(d,J=7.8Hz,2H),7.12(s,1H),3.77(s,3H),2.41(s,3H), 2.40(s,3H),2.38(s,3H);13C{H}NMR(CDCl3,75MHz)δ152.7, 140.6,139.7,134.8,131.9,131.3,129.25,129.18,126.9,119.3,109.8, 31.6,21.3,20.5,20.2;MS(ESI)251[M+H]+;HRMS(ESI)calcd for C17H19N2[M+H]+251.1543,found251.1552;IR(neat)ν1604, 1478,1461,1377,1323,1180,1140,1107,1014,871,850,819,729, 681cm−1.Compound4o:white solid(107.0mg,82%);mp147−148°C;1H NMR(CDCl3,300MHz,TMS)δ7.72(d,J=8.7Hz,2H),7.56(s, 1H),7.13(s,1H),7.01(d,J=8.7Hz,2H),3.86(s,3H),3.82(s,3H), 2.41(s,3H),2.38(s,3H);13C{H}NMR(CDCl3,75MHz)δ160.6, 153.0,141.5,135.2,131.6,131.0,130.7,122.9,119.6,114.0,109.7, 55.4,31.6,20.6,20.3;HRMS(ESI)calcd for C17H19N2O[M+H]+ 267.1492,found267.1495;IR(neat)ν1610,1481,1436,1382,1320, 1289,1242,1171,1022,875,831,792,750,717cm−1. Compound4p:white solid(107.0mg,86%);mp172−173°C;1H NMR(CDCl3,300MHz,TMS)δ7.74−7.68(m,2H),7.55(s,1H), 7.20−7.12(m,3H),3.77(s,3H),2.41(s,3H),2.38(s,3H);13C{H} NMR(CDCl3,75MHz)δ163.5(d,J C−F=248.8Hz),151.6,140.6, 134.8,132.2,131.6,131.3(d,J C−F=8.4Hz),130.2,126.0,123.5, 119.4,115.7(d,J C−F=21.7Hz),109.9,31.6,28.8,20.5,20.2;MS (ESI)255[M+H]+;HRMS(ESI)calcd for C16H15N2F[M+H]+ 255.1292,found255.1294;IR(neat)ν1607,1525,1436,1377,1318, 1219,1157,1003,837,809,730,706,674cm−1.Compound4q:white solid(107.9mg,84%);mp142−143°C;1H NMR(CDCl3,300MHz,TMS)δ7.74(d,J=8.4Hz,2H),7.58(s, 1H),7.53(d,J=8.4Hz,2H),7.15(s,1H),6.75(dd,J=17.4,11.1Hz, 1H),5.85(d,J=17.4Hz,1H),5.36(d,J=11.1Hz,1H),3.84(s,3H), 2.41(s,3H),2.38(s,3H);13C{H}NMR(CDCl3,75MHz)δ152.2, 140.7,138.7,136.0,134.9,132.1,131.5,129.4,129.0,126.3,119.4, 115.2,109.8,31.7,20.5,20.2;MS(ESI)263[M+H]+;HRMS(ESI) calcd for C18H19N2[M+H]+263.1543,found263.1545;IR(neat)ν1627,1461,1382,1323,1143,1059,1008,990,903,841,761,716, 686cm−1.Compound4r:white solid(93.6mg,86%);mp122−123°C;1H NMR(CDCl3,500MHz,TMS)δ7.73−7.71(m,2H),7.61(s,1H), 7.50−7.46(m,3H),7.22(d,J=8.0Hz,1H),7.12(d,J=8.0Hz,1H), 3.77(s,3H),2.49(s,3H);13C{H}NMR(CDCl3,125MHz)δ153.3, 142.6,134.4,132.0,129.8,129.5,129.2,128.5,124.2,119.2,109.1, 31.5,21.4;MS(ESI)223[M+H]+;HRMS(ESI)calcd for C15H15N2 [M+H]+223.1230,found223.1232;IR(neat)ν1494,1461,1372, 1322,1013,927,862,793,768,743,701,675cm−1.Compound4s:white solid(98.4mg,85%);mp118−119°C;1H NMR(CDCl3,300MHz,TMS)δ7.75(d,J=8.1Hz,2H),7.60(s, 1H),7.31(d,J=8.1Hz,2H),7.24(d,J=8.1Hz,1H),7.13(d,J=8.1 Hz,1H),3.81(s,3H),2.49(s,3H),2.42(s,3H);13C{H}NMR (CDCl3,75MHz)δ153.3,142.1,140.0,134.3,132.3,129.33,129.26, 126.6,124.3,119.0,109.1,31.7,21.5,21.4;MS(ESI)237[M+H]+; HRMS(ESI)calcd for C16H17N2[M+H]+237.1386,found 237.1401;IR(neat)ν1613,1475,1444,1377,1318,1020,878, 848,821,789,747,727cm−1.Compound4t:white solid(103.7mg,84%);mp105−106°C;1H NMR(CDCl3,300MHz,TMS)δ7.66(d,J=8.7Hz,2H),7.58(s, 1H),7.18(d,J=8.4Hz,1H),7.08(d,J=8.1Hz,1H),6.98(d,J=9.0 Hz,2H),3.82(s,3H),3.74(s,3H),2.48(s,3H);13C{H}NMR (CDCl3,75MHz)δ160.6,153.2,142.5,134.4,131.9130.6123.8, 122.1,118.9,113.9,108.9,55.2,31.5,21.4;MS(ESI)253[M+H]+; HRMS(ESI)calcd for C16H17N2O[M+H]+253.1335,found 253.1344;IR(neat)ν1607,1481,1464,1448,1385,1328,1179, 1245,1109,833,781,763,738,682cm−1.Compound4u:white solid(103.4mg,88%);mp129−130°C;1H NMR(CDCl3,300MHz,TMS)δ7.77−7.68(m,2H),7.58(s,1H), 7.27−7.11(m,4H),3.81(s,3H),2.49(s,3H);13C{H}NMR(CDCl3, 75MHz)δ163.6(d,J C−F=249.1Hz),152.3,142.2,134.3,132.5, 131.4(d,J C−F=8.5Hz),125.8,124.5,123.5,119.1,115.8(d,J C−F= 21.7Hz),109.2,31.6,28.8,21.5;MS(ESI)241[M+H]+;HRMS (ESI)calcd for C15H14N2F[M+H]+241.1136,found241.1132;IR (neat)ν1607,1537,1467,1381,1315,1235,1152,838,804,791,756, 733,682cm−1.Compound4v:white solid(104.5mg,86%);mp121−122°C;1H NMR(CDCl3,300MHz,TMS)δ7.68(d,J=8.1Hz,2H),7.60(s, 1H),7.49(d,J=8.1Hz,2H),7.19(d,J=8.4Hz,1H),7.10(d,J=8.4 Hz,1H),6.73(dd,J=17.7,10.8Hz,1H),5.82(d,J=17.7Hz,1H), 5.32(d,J=10.8Hz,1H),3.75(s,3H),2.48(s,3H);13C{H}NMR (CDCl3,75MHz)δ152.9,142.6,138.6,135.9,134.5,132.0,129.4, 129.0,126.2,124.2,119.1,115.2,109.0,31.6,21.4;MS(ESI)249[M +H]+;HRMS(ESI)calcd for C17H17N2[M+H]+249.1386,found/10.1021/jo5010058|.Chem.2014,79,5806−5811 5809249.1390;IR(neat)ν1621,1455,1382,1323,1250,1146,1059, 1017,985,899,843,791,739,686cm−1.Compound4w:white solid(107.5mg,97%);mp102−103°C;1H NMR(CDCl3,300MHz,TMS)δ7.73−7.70(m,2H),7.50−7.45(m, 4H),7.25−7.22(m,1H),7.02(td,J=9.0,2.4Hz,1H),3.80(s,3H);13C{H}NMR(CDCl3,75MHz)δ159.4(d,J C−F=236.0Hz),154.8,142.7(d,J C−F=12.6Hz),132.9,129.9,129.3(d,J C−F=19.1Hz), 128.6,111.1,110.7,109.9(d,J C−F=10.2Hz),105.1(d,J C−F=24.1 Hz),31.7;MS(ESI)227[M+H]+;HRMS(ESI)calcd for C14H12N2F[M+H]+227.0979,found227.0976;IR(neat)ν1621, 1593,1489,1472,1424,1374,1326,1143,1020,956,900,852,791, 776,751,702cm−1.Compound4x:a white solid(113.0mg,96%);mp117−118°C;1H NMR(CDCl3,300MHz,TMS)δ7.63(d,J=8.1Hz,2H),7.47(dd,J =9.3,2.4Hz,1H),7.33−7.25(m,3H),7.04(td,J=9.3,2.4Hz,1H), 3.83(s,3H),2.43(s,3H);13C{H}NMR(CDCl3,75MHz)δ159.5 (d,J C−F=236.3Hz),154.9,142.4,142.3,140.4,132.8,129.3(d,J C−F= 14.7Hz),126.3,111.2,110.8,110.0(d,J C−F=10.2Hz),105.0(d,J C−F =24.2Hz),31.8,21.4;MS(ESI)241[M+H]+;HRMS(ESI)calcd for C15H14N2F[M+H]+241.1136,found241.1147;IR(neat)ν1618, 1593,1483,1430,1382,1326,1242,1124,1014,955,855,828,803, 775,734,716cm−1.Compound4y:white solid(107.9mg,86%);mp105−106°C;1H NMR(CDCl3,300MHz,TMS)δ7.67(d,J=8.7Hz,2H),7.44(dd,J =9.0,2.4Hz,1H),7.23(dd,J=9.0,4.5Hz,1H),7.04−6.98(m,3H), 3.85(s,3H),3.80(s,3H);13C{H}NMR(CDCl3,75MHz)δ160.9, 159.4(d,J C−F=235.7Hz),154.8,142.6(d,J C−F=12.8Hz),132.8, 130.7,121.6,114.1,110.8,110.5,109.8(d,J C−F=10.2Hz),104.9(d, J C−F=24.1Hz),55.3,31.8;MS(ESI)257[M+H]+;HRMS(ESI) calcd for C15H14N2FO[M+H]+257.1085,found257.1098;IR(neat)ν1610,1481,1436,1334,1292,1242,1183,1115,1020,955,844, 826,796,778,741,716cm−1.Compound4z:a white solid(114.8mg,96%);mp124−125°C;1H NMR(CDCl3,300MHz,TMS)δ7.73(dd,J=8.4,5.4Hz,2H),7.45 (dd,J=9.3,2.4Hz,1H),7.29−7.18(m,3H),7.04(td,J=9.3,2.4Hz, 1H),3.82(s,3H);13C{H}NMR(CDCl3,75MHz)δ163.7(d,J C−F= 249.6Hz),159.5(d,J C−F=236.3Hz),153.9,142.6(d,J C−F=12.8 Hz),132.8,131.3(d,J C−F=8.5Hz),130.2,125.6(d,J C−F=3.2Hz), 115.9(d,J C−F=21.8Hz),111.3,111.0,110.0(d,J C−F=10.1Hz), 105.1(d,J C−F=24.1Hz),31.7;MS(ESI)245[M+H]+;HRMS (ESI)calcd for C14H11N2F2[M+H]+245.0885,found245.0895;IR (neat)ν1587,1483,1430,1388,1326,1233,1155,1121,1090,961, 850,803,733cm−1.Compound4aa:white solid(108.8mg,88%);mp144−145°C;1H NMR(CDCl3,300MHz,TMS)δ7.74(d,J=7.8Hz,2H),7.54(d,J =7.8Hz,2H),7.47(d,J=9.0Hz,1H),7.31(dd,J=9.0,4.5Hz,1H), 7.08(t,J=9.0Hz,1H),6.77(dd,J=17.4,10.8Hz,1H),5.87(d,J= 17.7Hz,1H),5.38(d,J=10.8Hz,1H),3.88(s,3H);13C{H}NMR (CDCl3,75MHz)δ159.4(d,J C−F=236.2Hz),154.5,142.7(d,J C−F =12.8Hz),139.0,135.8,132.9,129.4,128.6,126.4,115.5,111.0(d, J C−F=26.0Hz),109.9(d,J C−F=10.3Hz),105.1(d,J C−F=24.1Hz), 31.8;MS(ESI)252[M+H]+;HRMS(ESI)calcd for C16H14N2F[M +H]+253.1136,found253.1150;IR(neat)ν1624,1481,1438,1405, 1326,1273,1143,1000,959,909,895,851,803,738,712cm−1. Compound4ab:19white solid(100.4mg,86%);1H NMR(CDCl3, 300MHz,TMS)δ7.75−7.72(m,2H),7.53−7.47(m,3H),7.31(d,J =2.1Hz,1H),7.23(d,J=8.7Hz,1H),6.95(dd,J=9.0,5.4Hz,1H), 3.86(s,3H),3.80(s,3H);13C{H}NMR(CDCl3,75MHz)δ156.4, 153.5,142.9,130.9,129.7,129.6,129.2,128.6,112.9,110.0,101.5, 55.7,31.6.Compound4ac:white solid(103.7mg,84%);mp100−101°C;1H NMR(CDCl3,300MHz,TMS)δ7.63(d,J=8.1Hz,2H),7.32−7.30 (m,3H),7.23(d,J=8.7Hz,1H),6.95(dd,J=8.7,2.4Hz,1H),3.87 (s,3H),3.80(s,3H),2.43(s,3H);13C{H}NMR(CDCl3,75MHz)δ156.3,153.9,143.4,139.7,131.2,129.3,129.1,127.2,112.6,109.8, 101.7,55.8,31.7,21.3;MS(ESI)253[M+H]+;HRMS(ESI)calcd for C16H17N2O[M+H]+253.1335,found253.1351;IR(neat)ν1618,1590,1486,1433,1377,1332,1273,1194,1160,1028,948,826, 798,729,713cm−1.Compound4ad:20white solid(117.1mg,84%);1H NMR(CDCl3, 300MHz,TMS)δ7.88(d,J=8.1Hz,1H),7.68−7.66(m,2H), 7.44−7.38(m,3H),7.31−7.23(m,4H),7.20−7.15(m,2H),7.06(d,J =6.6Hz,2H),5.40(s,2H);13C{H}NMR(CDCl3,75MHz)δ154.0, 143.0,136.2,136.0,129.9,129.8,129.1,128.9,128.6,127.6,125.8, 122.9,122.5,119.8,110.4,48.2.Compound4ae:20white solid(124.2mg,85%);1H NMR(CDCl3, 300MHz,TMS)δ7.88(d,J=7.8Hz,1H),7.58(d,J=7.8Hz,2H), 7.29−7.15(m,8H),7.07(d,J=6.9Hz,2H),5.41(s,2H),2.38(s, 3H);13C{H}NMR(CDCl3,75MHz)δ154.0,142.5,140.1,136.2, 135.8,129.4,129.0,128.9,127.6,126.6,125.8,122.9,122.6,119.6, 110.4,48.3,21.3.Compound4af:20white solid(126.2mg,82%);1H NMR(CDCl3, 300MHz,TMS)δ7.86(d,J=8.1Hz,1H),7.63(d,J=8.7Hz,2H), 7.34−7.25(m,4H),7.23−7.15(m,2H),7.10−7.07(m,2H),6.97−6.92(m,2H),5.42(s,2H),3.81(s,3H);13C{H}NMR(CDCl3,75 MHz)δ160.9,153.8,142.4,136.2,135.8,130.6,129.0,127.7,125.8, 122.8,122.7,121.7,119.4,114.1,110.3,55.2,48.3.Compound4ag:white solid(127.6mg,84%);mp134−135°C;1H NMR(CDCl3,300MHz,TMS)δ7.90(d,J=7.8Hz,1H),7.67(d,J =7.2Hz,2H),7.47(d,J=7.2Hz,2H),7.30−7.08(m,8H),6.73(dd, J=17.4,10.5Hz,1H),5.82(d,J=17.4Hz,1H),5.45(s,2H),5.33(d, J=10.5Hz,1H);13C{H}NMR(CDCl3,75MHz)δ153.5,142.5, 138.9,136.0,135.81,135.78,129.2,128.9,128.7,127.6,126.4,125.7, 123.0,122.7,119.6,115.4,110.4,48.2;MS(ESI)311[M+H]+; HRMS(ESI)calcd for C22H19N2[M+H]+311.1543,found 311.1551;IR(neat)ν1604,1452,1388,1354,1326,1242,1157, 1076,980,917,854,778,761,724,716,695cm−1.Compound4ah:21colorless liquid(101.9mg,86%);1H NMR(500 MHz,CDCl3,TMS)δ7.62(d,J=8.0Hz,2H),7.45−7.38(m,3H), 7.11(s,1H),6.95(s,1H),3.72(s,3H);13C{H}NMR(125MHz, CDCl3)δ147.7,130.5,128.5,128.45,128.36,128.3,122.2,34.3. Compound4ai:22colorless liquid(127.8mg,99%);1H NMR(500 MHz,CDCl3,TMS)δ7.52(d,J=8.0Hz,2H),7.26(d,J=8.0Hz, 2H),7.10(d,J=0.9Hz,1H),6.95(d,J=0.9Hz,1H),3.73(s,3H), 2.40(s,3H);13C{H}NMR(125MHz,CDCl3)δ147.9,138.4,129.1, 128.4,128.2,127.7,122.0,34.6,21.2.Compound4aj:23colorless liquid(125.1mg,97%);1H NMR(500 MHz,CDCl3,TMS)δ7.47(s,1H),7.38(d,J=7.5Hz,1H),7.32(t,J =7.5Hz,1H),7.20(d,J=7.5Hz,1H),7.10(d,J=1.5Hz,1H),6.93 (d,J=1.5Hz,1H),3.71(s,3H),2.39(s,3H);13C{H}NMR(125 MHz,CDCl3)δ147.8,138.1,130.3,129.3,129.2,128.11,128.10, 125.3,122.1,34.3,21.2.Compound4ak:colorless liquid(95.5mg,74%);1H NMR(500 MHz,CDCl3,TMS)δ7.34−7.24(m,4H),7.13(s,1H),6.97(s,1H), 3.47(s,3H),2.22(s,3H);13C{H}NMR(125MHz,CDCl3)δ147.6, 138.2,130.3,130.22,130.18,129.1,128.0,125.4,120.4,33.2,19.5;MS (ESI)173[M+H]+;HRMS(ESI)calcd for C11H13N2[M+H]+ 173.1073,found173.1088;IR(neat)ν1623,1557,1471,1401,1338, 1282,1143,1116,1013,987,914,906,844,791,750,717,685cm−1. Compound4al:24colorless liquid(110.8mg,84%);1H NMR(500 MHz,CDCl3,TMS)δ7.60(dd,J=8.5,5.5Hz,2H),7.14(t,J=8.5 Hz,2H),7.10(d,J=1.0Hz,1H),6.96(d,J=1.0Hz,1H),3.72(s, 3H);13C{H}NMR(125MHz,CDCl3)δ162.9(d,J C−F=247.1Hz), 146.9,130.5(d,J C−F=8.3Hz),128.3,126.8(d,J C−F=3.3Hz),122.3, 115.5(d,J C−F=21.6Hz),34.3.Compound4am:colorless liquid(120.0mg,87%);1H NMR(500 MHz,CDCl3,TMS)δ7.60(d,J=8.5Hz,2H),7.48(d,J=8.5Hz, 2H),7.11(d,J=1.0Hz,1H),6.94(d,J=1.0Hz,1H),6.74(dd,J= 18.0,10.5Hz,1H),5.81(dd,J=18.0,0.5Hz,1H),5.30(dd,J=10.5, 0.5Hz,1H),3.72(s,3H);13C{H}NMR(125MHz,CDCl3)δ147.4, 137.5,136.1,129.8,128.5,128.3,126.1,122.4,114.6,34.4;MS(ESI) 185[M+H]+;HRMS(ESI)calcd for C12H13N2[M+H]+185.1073, found185.1083;IR(neat)ν1600,1504,1467,1454,1338,1275, 1129,1017,949,914,846,804,778,727,692cm−1./10.1021/jo5010058|.Chem.2014,79,5806−5811 5810ASSOCIATED CONTENT*Supporting InformationCopy of1H and13C NMR spectra of compounds4.This material is available free of charge via the Internet at http://.■AUTHOR INFORMATIONCorresponding Author*Fax:86-577-86689300.E-mail:shaolix@.NotesThe authors declare no competingfinancial interest.■ACKNOWLEDGMENTSFinancial support from Open Research Fund of Top Key Discipline of Chemistry in Zhejiang Provincial Colleges and Key Laboratory of the Ministry of Education for Advanced Catalysis Materials(Zhejiang Normal University)(No.ZJHX201305)is greatly appreciated.■REFERENCES(1)For some selected examples,please see:(a)Zhou,B.-H.;Li,B.-J.; Yi,W.;Bu,Z.-Z.;Ma,L.Bioorg.Med.Chem.Lett.2013,23,3759−3763.(b)Do,T.T.;Bae,J.H.;Yoo,S.I.;Lim,K.T.;Woo,H.Y.;Kim, J.H.Mol.Cryst.Liq.Cryst.2013,581,31−37.(c)Rahim,A.S.A.; Salhimi,S.M.;Arumugam,N.;Pi,L.C.;Yee,N.S.;Muttiah,N.N.; Keat,W.B.;Hamid,S.A.;Osman,H.;Mat,I.b.J.Enzyme Inhib.Med. Chem.2013,28,1255−1260.(d)Kamal,A.;Kashi Reddy,M.;Shaik, T.B.;Rajender;Srikanth,Y.V.V.;Santhosh Reddy,V.;Bharath Kumar,G.;Kalivendi,S.V.Eur.J.Med.Chem.2012,50,9−17.(e)Vitale,G.;Corona,P.;Loriga,M.;Carta,A.;Paglietti,G.;La Colla, P.;Busonera,B.;Marongiu,E.;Collu,D.;Loddo,R.Med.Chem.2009, 5,507−516.(f)Dahiya,R.;Pathak,D.Eur.J.Med.Chem.2007,42, 772−798.(g)Falco,J.L.;Pique,M.;Gonza l ez,M.;Buira,I.;Terencio, J.;Pe r ez,C.;Príncep,M.;Palomer,A.;Guglietta,A.Eur.J.Med.Chem. 2006,41,985−990.(h)Bhongade,B.A.;Gouripur,V.V.;Gadad,A. K.Bioorg.Med.Chem.2005,13,2773−2782.(2)For recent selected reviews on the transition metal-catalyzed direct C−H bond functionalizations,please see:(a)Kuhl,N.; Hopkinson,M.N.;Wencel-Delord,J.;Glorius,F.Angew.Chem.,Int. Ed.2012,51,10236−10254.(b)Engle,K.M.;Mei,T.-S.;Wasa,M.; Yu,J.-Q.Acc.Chem.Res.2012,45,788−802.(c)Arockiam,P.B.; Bruneau, C.;Dixneuf,P.H.Chem.Rev.2012,112,5879−5918.(d)Yamaguchi,J.;Yamaguchi,A.D.;Itami,K.Angew.Chem.,Int.Ed. 2012,51,8960−9009.(e)Shibahara,F.;Murai,n .Chem. 2013,2,624−636.(f)Mousseau,J.J.;Charette,A.B.Acc.Chem.Res. 2013,46,412−424.(g)Bonin,H.;Sauthier,M.;Felpin,F.-X.Adv. Synth.Catal.2014,356,645−671.(h)Zhao,C.;Crimmin,M.R.; Toste,F.D.;Bergman,R.G.Acc.Chem.Res.2014,47,517−529. (3)(a)Shibahara,F.;Yamauchi,T.;Yamaguchi,E.;Murai,. Chem.2012,77,8815−8820.(b)Zhang,W.;Zeng,Q.-L.;Zhang,X.-M.;Tian,Y.-J.;Yue,Y.;Guo,Y.-J.;Wang,.Chem.2011,76, 4741−4745.(c)Yan,X.-M.;Mao,X.-R.;Huang,Z.-Z.Heterocycles 2011,83,1371−1376.(d)Shibahara,F.;Yamaguchi,E.;Murai,T.J. Org.Chem.2011,76,2680−2693.(e)Joo,J.M.;Barry Toure,B.; Sames,.Chem.2010,75,4911−4920.(f)Lewis,J.C.; Berman,A.M.;Bergman,R.G.;Ellman,J.A.J.Am.Chem.Soc.2008, 130,2493−2500.(g)Yoshizumi,T.;Tsurugi,H.;Satoh,T.;Miura,M. Tetrahedron2008,49,1598−1600.(h)Bellina, F.;Calandri, C.; Cauteruccio,S.;Rossi,R.Tetrahedron2007,63,1970−1980.(i)Bellina,F.;Cauteruccio,S.;Rossi,.Chem.2007,72, 8543−8546.(j)Lewis,J.C.;Wu,J.Y.;Bergman,R.G.;Ellman,J.A. Angew.Chem.,Int.Ed.2006,45,1589−1591.(k)Bellina, F.; Cauteruccio,S.;Mannina,L.;Rossi,R.;Viel,.Chem. 2006,693−703.(l)Bellina,F.;Cauteruccio,S.;Rossi,. Chem.2006,1379−1382.(m)Bellina,F.;Cauteruccio,S.;Mannina, L.;Rossi,R.;Viel,.Chem.2005,70,3997−4005.(n)Lewis,J.C.;Wiedemann,S.H.;Bergman,R.G.;Ellman,.Lett.2004,6,35−38.(4)(a)Chiong,H.A.;Daugulis,.Lett.2007,9,1449−1451.(b)Liu,B.;Wang,Z.;Wu,N.-J.;Li,M.-L.;You,J.-S.;Lan,J.-B.Chem. Eur.J.2012,18,1599−1603.(5)In2011,Lee and co-workers reported the direct C5-arylation ofimidazoles with aryl chlorides by Pd complexes bearing phosphines and N-heterocyclic carbenes;please see:Vijaya Kumar,P.;Lin,W.-S.;Shen,J.-S.;Nandi,D.;Lee,anometallics2011,30,5160−5169.(6)(a)Yin,H.-Y.;Liu,M.-Y.;Shao,.Lett.2013,15,6042−6045.(b)Xiao,Z.-K.;Yin,H.-Y.;Shao,.Lett.2013,15, 1254−1257.(c)Xiao,Z.-K.;Shao,L.-X.Synthesis2012,44,711−716.(7)(a)Tang,Y.-Q.;Lu,J.-M.;Shao,anomet.Chem.2011,696,3741−3744.(b)Zhou,X.-X.;Shao,L.-X.Synthesis2011,3138−3142.(8)Gao,T.-T.;Jin,A.-P.;Shao,L.-X.Beilstein .Chem.2012,8,1916−1919.(9)Gu,Z.-S.;Shao,L.-X.;Lu,anomet.Chem.2012,700,132−134.(10)(a)Chen,W.-X.;Shao,.Chem.2012,77,9236−9239.(b)Zhu,L.;Ye,Y.-M.;Shao,L.-X.Tetrahedron2012,68,2414−2420.(c)Zhu,L.;Gao,T.-T.;Shao,L.-X.Tetrahedron2011,67, 5150−5155.(11)Shen,X.-B.;Zhang,Y.;Chen,W.-X.;Xiao,Z.-K.;Hu,T.-T.;Shao,.Lett.2014,16,1984−1987.(12)For some selected reviews on the transition metal-catalyzedreactions in the presence of water,please see:(a)Li,B.;Dixneuf,P.H.Chem.Soc.Rev.2013,42,5744−5767.(b)Velazquez,H.D.;Verpoort,F.Chem.Soc.Rev.2012,41,7032−7060.(c)Lipshutz,B.H.;Ghorai,S.Aldrichimica Acta2008,41,59−72.(d)Carril,M.;SanMartin,R.;Domínguez,E.Chem.Soc.Rev.2008,37,639−647.(e)Cornils,B.;Herrmann,W.Aqueous-Phase Organometallic Catalysis2;Wiley-VCH: Weinheim,Germany,2004.(f)Genet,J.P.;Savignac,anomet.Chem.1999,576,305−317.(13)While we were preparing this manuscript,Huynh and co-workerreported the example of NHC-Pd complex catalyzed direct C5-arylation of1-methylimidazole with aryl bromides and chlorides in low to moderate yields;please see:Guo,S.;Huynh,anometallics 2014,33,2004−2011.(14)Hachiya,H.;Hirano,K.;Satoh,T.;Miura,M.Angew.Chem.,Int.Ed.2010,49,2202−2205.(15)Huang,J.-K.;Chan,J.;Chen,Y.;Borths,C.J.;Baucom,K.D.;Larsen,R.D.;Faul,M.M.J.Am.Chem.Soc.2010,132,3674−3675.(16)Chakrabarty,M.;Mukherji,A.;Mukherjee,R.;Arimab,S.;Harigaya,Y.Tetrahedron Lett.2007,48,5239−5242.(17)Jin,X.-K.;Liu,Y.-X.;Lu,Q.-Q.;Yang,D.-J.;Sun,J.-K.;Qin,S.-S.;Zhang,J.-W.;Shen,J.-X.;Chu,C.-H.;Liu,.Biomol.Chem.2013,11,3776−3780.(18)Huang,W.-K.;Cheng,C.-W.;Chang,S.-M.;Lee,Y.-P.;Diau,E.mun.2010,46,8992−8994.(19)Hubbard,J.W.;Piegols,A.M.;So d erberg,B.C.C.Tetrahedron2007,63,7077−7085.(20)Guru,M.M.;Ali,M.A.;Punniyamurthy,.Chem.2011,76,5295−5308.(21)Truong,T.;Daugulis,O.J.Am.Chem.Soc.2011,133,4243−4245.(22)Jose l glesias,M.J.;Prieto,A.;Carmen Nicasio,.Lett.2012,14,4318−4321.(23)Oi,S.;Sato,H.;Sugawara,S.;Inoue,.Lett.2008,10,1823−1826.(24)Brauer, D.J.;Kottsieper,K.W.;Like, C.;Stelzer,O.;Waffenschmidt,H.;Wasserscheid,anomet.Chem.2001,630, 177−184./10.1021/jo5010058|.Chem.2014,79,5806−5811 5811。
N杂环卡宾毕业论文

天津师范大学本科毕业论文(设计)题目:烃基桥联N-杂环卡宾金属配合物的合成和荧光性能的研究学院:化学学院学生姓名:赵丽轩学号:08507051专业:化学年级:2008级完成日期:2012年5月指导教师:柳清湘烃基桥联N-杂环卡宾金属配合物的合成和荧光性能的研究摘要:N -杂环卡宾配体由于其给电子能力强、易于制备而且对环境友好等特点而成为金属有机化学领域的研究热点,其在催化、新型材料、抗菌药物及液晶材料等方面均有令人瞩目的应用。
N-杂环卡宾是具有优良的给电子特性且能与金属形成反馈键。
它的反应活性高,几乎能够与周期表中的所有元素反应。
本文采用了烃基桥联的氮杂环卡宾作为配体,得到了一个N-杂环卡宾金属Co (Ⅱ)的配合物晶体。
用X-单晶衍射、核磁共振表征其结构,并对配合物荧光性能进行了研究。
关键词:N-杂环卡宾;金属配合物;晶体结构;荧光性能N-heterocyclic Carbene Metal Complexes by Alkyl Bridge Linkage: Synthesis and Fluorescent Properties StudiesAbstract:N-heterocyclic carbene ligands have electron-donating ability, easy preparation and environmentally friendly characteristics. Due to these characteristics, this field became a research hot spot of organometallic chemistry. It has compelling applications in homogeneous catalysis, new materials, antibacterial agents and liquid crystal materials. N-heterocyclic carbene has excellent electrical characteristic,and it can form back donating bonds with metal. It has high reactivity which is able to react with almost all elements in the periodic table.In this paper, we obtained a crystal of Co(Ⅱ) with the alkyl-bridged heterocyclic carbene as a ligand. And its structure was characterized by NMR and X-ray diffraction. And the fluorescent properties were studied.Keywords : N-heterocyclic carbene, metal complexes, crystal structure, fluorescent properties目录1 前言 (1)2N-杂环卡宾的研究进展 (2)2.1卡宾及N-杂环卡宾的定义及其分类 (2)2.1.1 卡宾及N-杂环卡宾的定义 (2)2.1.2 N-杂环卡宾的分类 (2)2.2 N-杂环卡宾的电子结构及稳定性 (3)2.2.1 N-杂环卡宾的自旋多重性 (4)2.2.2 N-杂环卡宾的电子效应 (5)2.2.3 N-杂环卡宾的体积效应 (5)2.2.4 N-杂环卡宾的电子结构及稳定性 (5)2.3 N-氮杂环卡宾的合成 (6)2.3.1 1,3-二取代咪唑盐的一般合成方法 (6)2.3.2 N-杂环咪唑鎓盐强碱脱质子法 (7)2.3.3 环硫脲去硫法 (8)2.4 N-杂环卡宾的反应性能 (8)2.4.1 N-杂环卡宾与路易斯酸生成的加合物 (8)2.4.2 N-杂环卡宾的质子化 (9)2.4.3 N-杂环卡宾与氮族、氧族、卤族元素生成的加合物 (9)2.4.4 N-杂环卡宾与路易斯碱生成的加合物 (10)2.5 N-杂环卡宾金属配合物的催化性能 (11)2.6 N-杂环卡宾金属配合物的荧光性能 (11)3 选题意义和设计思路 (12)3.1选题意义 (12)3.2设计思路 (12)4 实验部分 (13)4.1配体的合成 (14)4.1.1 1-(2’-亚甲基吡啶基)苯并咪唑 (14)4.1.2 1,3-二[1-(2’-吡啶亚甲基)-3-苯并咪唑]正丙烷溴化物(2) (14)4.1.3 1,3-二[1-(2’-吡啶亚甲基)-3-苯并咪唑]正丙烷六氟磷酸盐(3) (15)4.2配合物[Co(L3).2Cl]的合成(4) (15)5 结果与讨论 (16)5.1 环状N-杂环双卡宾Co配合物的晶体结构 (16)5.2 配合物4的晶体结构参数及选择的键长键角 (18)5.3 配体3及配合物4的荧光性质 (20)5.4 小结: (20)参考文献 (21)致谢 (23)1前言随着科学技术的发展,N-杂环卡宾金属配合物的研究现已成为金属有机化学的前沿领域之一[1]。
《氮杂环卡宾贵金属配合物的合成及其催化性能探究》

《氮杂环卡宾贵金属配合物的合成及其催化性能探究》一、引言随着科学技术的不断发展,人们对有机合成与催化过程的需求愈发增长。
贵金属配合物以其独特的物理和化学性质,在许多化学反应中扮演着重要角色。
近年来,氮杂环卡宾贵金属配合物作为一种重要的催化剂体系,其合成与催化性能研究已成为化学领域的热点之一。
本文将就氮杂环卡宾贵金属配合物的合成及其催化性能进行详细探究。
二、氮杂环卡宾贵金属配合物的合成1. 合成方法氮杂环卡宾贵金属配合物的合成通常包括两个步骤:首先合成氮杂环卡宾配体,然后将其与贵金属盐进行配位反应。
常见的合成方法包括:溶剂法、固相法、微波法等。
本文采用溶剂法进行合成,以获得较高纯度的产品。
2. 实验步骤(1)配体的合成:以合适的氮杂环化合物为原料,通过适当的反应条件,合成氮杂环卡宾配体。
(2)配合物的合成:将合成的氮杂环卡宾配体与贵金属盐(如钯、铂、铑等)在溶剂中混合,控制温度和时间,进行配位反应。
通过优化反应条件,可得到较高产率的氮杂环卡宾贵金属配合物。
三、催化性能探究1. 反应类型氮杂环卡宾贵金属配合物在有机合成中具有广泛的应用,如烯烃氢化、烯烃氧化、交叉偶联等反应。
本文将着重探讨其在烯烃氢化反应中的催化性能。
2. 催化过程及性能评价(1)烯烃氢化反应:以氮杂环卡宾贵金属配合物为催化剂,加入底物和氢源,控制反应条件(如温度、压力、时间等),进行烯烃氢化反应。
通过对比不同催化剂的活性、选择性及稳定性,评价其催化性能。
(2)性能评价标准:以转化率、选择性、催化剂寿命等指标评价催化剂的催化性能。
同时,通过分析反应产物的结构,验证氮杂环卡宾贵金属配合物在催化过程中的作用机制。
四、结果与讨论1. 合成结果通过优化反应条件,成功合成了不同种类的氮杂环卡宾贵金属配合物。
通过元素分析、红外光谱、核磁共振等手段对产物进行表征,确认其结构与纯度。
2. 催化性能分析(1)烯烃氢化反应结果:在相同反应条件下,对比不同催化剂的催化性能。
N-杂环卡宾催化下的呋喃、吡喃及吡啶类衍生物的串联合成

硕士学位论文(2012 届)N-杂环卡宾催化下的呋喃、吡喃及吡啶类衍生物的串联合成Cascade Synthesis of Furan, Pyran and Pyridine Derivatives Catalyzed By N-heterocyclic Carbenes作者陆俊导师姚昌盛副教授江苏师范大学化学化工学院二○一二年五月江苏师范大学学位论文版权使用授权书本学位论文作者完全了解江苏师范大学有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权江苏师范大学可以将本学位论文的全部或部分内容编入有关数据库进行检索和传播,可以采用影印、缩印或扫描等手段保存、汇编、出版本学位论文。
保密的学位论文在解密后适用本授权书。
作者签名:导师签名:年月日年月日中图分类号:单位代码:10320 UDC:密级:硕士学位论文N-杂环卡宾催化下的呋喃、吡喃及吡啶类衍生物的串联合成Cascade Synthesis of Furan, Pyran and Pyridine Derivatives Catalyzed By N-heterocyclic Carbenes作者陆俊导师姚昌盛副教授申请学位理学硕士培养单位化学化工学院学科专业化学研究方向有机合成答辩委员会主席冯长君评阅人二〇一二年五月致 谢值此论文完成之际,我谨向我的导师姚昌盛副教授表示衷心的感谢。
感谢姚昌盛副教授在我攻读硕士学位期间对我学业上的悉心指导和生活上的热情关心。
姚昌盛副教授严谨的治学态度,踏实的工作作风,扎实深厚的理论功底,开阔灵活的学术思想深深的影响了我,使我受益匪浅,永远值得我学习。
在化学化工学院学习期间,感谢于晨侠老师、李团结老师、屠树江老师、杜百祥老师等毫无保留的向我传授知识、细心的解答问题,使我在学业上有了很大的进步和提高。
感谢实验室同学张红红、王冬林、秦兵彬、焦威辉、王影、鹿婷、肖兆新、刘蕊等对我实验工作的大力支持和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津师范大学本科毕业论文(设计)题目:烷基桥联的N-杂环卡宾金属配合物的合成及其结构的研究学院:化学学院学生姓名:方漪芸学号:08507018专业:化学年级:08级完成日期:2012年05月指导教师:柳清湘烷基桥联的氮杂环卡宾金属配合物的合成及其结构的研究摘要:N-杂环卡宾及其金属配合物在金属配位化学和有机化学中的应用非常广泛,它不仅能与元素周期表中的许多金属元素发生反应并且其得到的金属配合物所显示出来的优良催化活性使其成为最具潜质的催化剂。
除此之外,它也开始广泛地应用于精细化工产品的合成中,成为现代有机化学中必不可少的重要物质之一。
因此为了使氮杂环卡宾金属配合物的相关合成方法有新的拓展,本文采用烷基桥联的氮杂环卡宾作配体,合成并且得到了一个N-杂环卡宾镍金属配合物的晶体,并对其结构进行了相关研究。
关键词:N-杂环卡宾;金属配合物;合成;结构研究Synthesis of N-heterocyclic Carbene Metal Complexes byAlkyl Bridge LinkageAbstract:N-heterocyclic carbene and N-heterocyclic carbene mental complexes are widely used in coordination organometallic chemistry and coordination chemistry. Now, it has became one of the hotest topics in the field of chemistry. The study of N-heterocyclic carbine began in 1991, when first free N-heterocyclic carbene was isolated by Ardengo, this has evoked considerable attention. N-heterocyclic carbine always shows high activity, it can react with almost all elements in periodical table.Besides, the excellent catalytic activity of N-heterocyclic carbene mental complexes makes it beco me the most potential catalyst. What’s more, N-heterocyclic carbine have made signficant progesses in the synthesis of fine chemical products,which makes it occupy an important position in organic chemistry. In order to expand the synthesis of N-heterocyclic carbine mental complexes ,we used N-heterocyclic carbine which bridged by alkyl as ligand and one N-heterocyclic carbene nickel complex was prepared. And we have the structure researched..Key words : N-heterocyclic carbene; metal complex; prepare; structure research目录一、前言 (1)二、N-杂环卡宾的简介及研究进展 (2)2.1 N-杂环卡宾的定义及分类 (2)2.2 N-杂环卡宾的电子结构效应及其稳定性 (3)2.2.1 N-杂环卡宾的电子效应 (3)2.2.2 N-杂环卡宾中的取代基效应 (3)2.2.3 N-杂环卡宾的电子结构及稳定性 (4)2.3 N-杂环卡宾的化学反应 (5)2.3.1 N-杂环卡宾与路易斯酸的反应 (6)2.3.1.1 N-杂环卡宾的质子化 (6)2.3.1.2 N-杂环卡宾与卤素的反应 (6)2.3.1.3 N-杂环卡宾与氮族元素的反应 (7)2.3.1.4 N-杂环卡宾与氧族元素的反应 (7)2.3.1.5 N-杂环卡宾与碳族元素的反应 (8)2.3.2 N-杂环卡宾与路易斯碱的反应 (9)2.4 N-杂环卡宾的合成方法及其与金属之间的反应 (10)2.4.1 N-杂环卡宾的合成 (10)2.4.2 N-杂环卡宾与金属的反应 (10)2.4.2.1 N-杂环卡宾与碱金属和碱土金属形成配合物的反应 (10)2.4.2.2 N-杂环卡宾与过渡金属之间生成的配合物 (11)2.5展望N-杂环卡宾的研究前景 (12)三、选题意义和设计思路 (12)3.1 选题意义 (12)3.2 设计思路 (13)四、实验部分 (14)4.1配体的合成 (15)4.1.1 2-氯甲基苯并咪唑 (15)4.1.2 1,2-二-3-苯并咪唑丁烷 (16)4.1.3 1,4-二[1-氯甲基苯并咪唑基-3-苯并咪唑]丁烷化合物 (16)4.2金属Ni的配合物20的合成 (20)五、结果与讨论 (16)5.1环状N-杂环双卡宾镍配合物的晶体结构 (16)5.2 配合物20的晶体结构参数及选择的键长键角 (17)5.3实验结果: (18)六、小结 (19)参考文献: (19)致谢 (22)一、前言随着科技的不断发展,N-杂环卡宾金属配合物研究已经跃升至金属有机化学的前沿领域。
关于卡宾的报道最早出现在上个世纪五十年代,Skell涉足卡宾这一未知的的领域[1],并做了相当量的探索性研究,为卡宾的后续发展奠定了坚实的基础。
而后Fischer[2]等人在1964年将这一领域扩展到了有机化学和无机化学,使得金属卡宾(做为溶剂和催化剂)在有机合成和高分子化学中得到了广泛的应用[3]。
随着研究的不断深入,氮杂环卡宾以其优异的性能受到了越来越多的关注,并且成为了金属有机化学领域新的新宠。
早在1968年,Ofele[4]和Wanzlick[5]先后得到了N-杂环卡宾的金属络合物(其结构如下图一中的1,2所示),但是,这个成果仅受到了一部分关注,其真正的发展则始于1991年,由Arduengo领导的研究小组,成功分离了第一个在室温下可稳定存在的游离态的氮杂环卡宾(NHC)。
随后,Arduengo[6]领导的研究小组利用如下反应(图一),得到了游离的氮杂环卡宾3,即以二-(1-金刚烷基)咪唑盐和氢化钠作为反应物,四氢呋喃作为反应溶剂,少量DMSO作为催化剂。
所得到的产品1为热稳定的晶体,可用X-单晶衍射分析方法确定它的结构。
后来,他们又利用1,3-位连有较小体积取代基的咪唑盐[7]制得了其它类型的稳定NHC。
这些研究均促进了N-杂环卡宾在有机化学领域的快速发展。
N NRu ClPR3CHPhR1R2 ClN-杂环卡宾配体1N NNNPhPhPhPhHg2+2ClO4-N-杂环卡宾配体2N N +Cl -Ad Ad Ad=adamantyl N AdAd 2Ad=adamantly 3 图一 N-杂环卡宾在金属有机领域中主要担任配体的角色,与其它带有两对孤电子的配体相比难免有相似之处,如膦配体,它们均是一类强的给电子配体,与金属键的结合能力很强;但它还存在一些独特的优点使得其比膦配体在催化反应中的应用的更广泛,比如易于制备,结构类型多样化以及其对水、热和空气的稳定性等,最为重要的是它在催化反应中可表现出更高的活性,并且,由于它不易解离的特质使它在应用的过程中并不需要过量的配体,且能牢固地负载在树脂上使均相反应固相化。
正如德国著名的化学家Herrman [8]所说:“N-杂环卡宾在金属有机与无机配位化学上已成为“多功能”配体,它将在新一代的金属有机催化剂中取代或部分取代现有的有机膦配体”。
除了应用于催化领域以外,其在材料科学领域及光物理领域的应用也崭露头角,相信随着研究的不断深入,N-杂环卡宾将有更加广阔的应用前景[9]。
二、N-杂环卡宾的简介及研究进展2.1 N-杂环卡宾的定义及分类卡宾通常是由含易离去集团的分子消去一个中性分子而生成,N-杂环卡宾是一种电中性的分子,其中心碳原子是二价,最外层有六个电子,属于比较稳定和较为典型的卡宾。
一般根据成环原子个数不同,N-杂环卡宾通常可分为四元环、五元环、六元环和七元环卡宾。
其中最常见的是五元环的,又根据环上N 原子数目N 原子位置的不同把它分为:咪唑型卡宾、三唑型卡宾、咪唑啉型卡宾、噻唑型卡宾等。
2.2 N-杂环卡宾的电子结构效应及其稳定性2.2.1 N-杂环卡宾的电子效应一般而言,N-杂环卡宾的电子效应主要包括如下两个方面,一个是诱导效应,另一个是中介效应。
而诱导效应通常占主导地位,当存在σ拉电子取代基的时侯,它的诱导效应能够通过增加s成分并且pП保持不变的情况下,使得σ-p之间的能级差增大以起到稳定σ非键轨道的作用,这样便有利于单线态的稳定;相反,从另一个角度来考虑,若为σ给电子取代基,必然会减少σ-p之间的能级差,从而又起到了稳定三线态的作用,(如下图五中的a,b所示)。
由此也不难推出,取代基电负性的大小会间接地影响卡宾的结构。
如图五:(a)σ拉电子取代基给电子取代基(b)σ图五2.2.2 N-杂环卡宾中的取代基效应从动力学角度来看,较大体积的取代基对卡宾往往可起到稳定的作用。
若忽略电子效应,立体效应又能控制卡宾基态自旋的多重性。
又由于卡宾中心碳原子有较高的反应活性并且呈电中性,基于这两点,早在1960年Pauling[13] 就提出了保持卡宾电中性的取代基即为稳定单线态卡宾的理想取代基。
后来大量的实验验证了以上推断的正确性。
与此同时,总结出了三种不同构型可以实现保持卡宾的电中性结构(如图六所示),(1)两个取代基都有σ拉电子诱导效应和π共轭给电子效应,例如二胺基型卡宾,由于其所连的两个取代基中的N原子在P轨道上有一对未成键的孤电子恰好和卡宾中心碳原子上的孤对电子形成了离域大π键,从而弥补了卡宾的缺电子性,而又因为N的电负性高于中心碳原子,所以其拉电子诱导效应又可使卡宾上的孤电子对保持稳定;(2)当所连的两个取代基均有σ给电子诱导效应和π共轭拉电子效应时,如二硼基卡宾,首先由于B的电负性低于中心碳原子的电负性,使其有σ给电子诱导效应从而使得中心碳原子的缺电子性得到了补偿,与此同时,B原子又存在空的轨道,恰好分散了卡宾中心碳原子上的孤对电子,从而稳定了卡宾中心碳原子;(3)当一个取代基为π电子受体,而另一个为π共轭给电子效应时,其诱导效应可被看作次要因素,属于这类卡宾常见的有膦基硅基型或者膦基膦基型。