幕墙结构胶及幕墙平面内变形计算
4 平面内变形设计

平面内变形设计幕墙变形原因:受风力、地震作用(地震的震级分为十级)、温度作用、主体层间变形、主体沉降、重力……等的影响所致。
1、平面内变形性能分级建筑幕墙平面内变形性能以建筑幕墙层间位移角γ(或以不导致幕墙构件破坏的位移量与幕墙层高之比)为性能指标。
该指标应符合《建筑幕墙》GB/T21089-2007表21的要求。
2、平面内变形性能定级JG102-2003/4.2.6玻璃幕墙平面内变形性能,应按主体结构弹性层间位移角限值进行设计。
非抗震设计时,按表20取其1倍值;表20 主体结构楼层最大弹性层间位移角[θ[θe设防烈度取值)。
3、技术措施玻璃幕墙由面板和金属框架等组成,幕墙自身具有一定的变形能力,但其变形能力较小,幕墙构件不能承受过大的位移,只能通过弹性连接件来避免主体结构过大侧移的影响。
针对幕墙变形的原因采取措施。
(1)非抗震设计①幕墙与主体弹性连接a)框支承式幕墙立柱上端悬挂在主体结构(或连接件)上(5.5.3)。
上端支座为固定铰支座,下端支座为滑动铰支座或弹性铰支座;幕墙连接件与主体建筑(直接与预埋件)间的连接可为焊接(板式埋件),也可为螺栓连接(槽式埋件);上、下立柱间预留伸缩缝δ;赵西安:δ≥ΔL.λ/ε+d;(δ≮15 mm)式中:ΔL----立柱温度变形(mm),ΔL=α.L.ΔT,一般小于10mm。
λ----实际伸缩调整系数,取0.7。
ε----密封胶延伸率。
d----安装误差(3mm)+主体压缩变形(3mm)=6 mm。
立柱、套芯配合间隙:前后0~0.5mm,左右0.5~1.0mm。
侧缝隙的核算:设跨距3500 mm,芯柱插入深度:(250-20)/ 2=115mm;外柱可产生侧向位移量:3500×(0.5~1.0)/ 115=15.22~30.44 mm;混凝土结构侧向最大变形:3500×(3×1/550)=19.09 mm;两者比较:-3.87~+11.35 mm,认可。
幕墙计算规则

幕墙装饰计算规则一、材料预算:1、石材、玻璃、铝板计算时先计算门、窗、玻璃幕墙,再计算铝板、石材;从大面上减去门窗面积,加上进出位的面积即为石材、铝板面积;玻璃的计算:明框应扣减掉铝型材框所占面积;隐框可直接按玻璃分格计算。
2、石材幕墙材料a、分种类计算面积b、辅材:1、钢材:竖龙骨:按龙骨布置图计算,一般间距为1-1.2m之间;横龙骨:每道石材缝都有。
2、挂件3、密封胶:横竖石材缝,先计算米,再折成支数,一般8mm宽的可打3.5m/支4、石材干挂胶:按石材挂件计算:T型36套/公斤,L型27套/公斤5、泡沫棒:同密封胶按长度计算6、防火岩棉:每层结构梁处均有,按平方米计算,其中有镀锌铁皮7、保温岩棉:大面积,按平方米计算挂件分T型挂件与L型挑件 T型挂件用在大面积上,L型用在接地石材,窗洞上方的石材及挑檐、各种洞口上方的一块石材,在窗台下方的一块石材侧边应用T型挂件3、铝板1、钢材:每一道缝均有,分规格计算2、自攻钉:沿缝高度,间距350mm3、铝板副框:为铝型材,按米计算,再折成公斤4、压板(压块):有铝板副框时,即用压板和六角螺栓连接于龙骨间距350MM5、密封胶:同石材,按16mm缝宽计算,一般1.5米/支4、玻璃幕墙1、明框:铝型材分型号计算,龙骨每道缝均有;五金件:按套计算,执平、滑撑、铰链(一扇开启扇各一套);三元乙丙胶条:按米计算,一般玻璃窗内外都有;密封胶同铝板2、隐框:结构胶:按支计算,每块玻璃四周均打;双面胶:同结构胶,按米计算。
5、埋件:每道结构层的竖龙骨上,具体数量看图6、连接件:每块埋件两个连接件,厂家加工的按个,自己现场加工的按公斤二、甲方结算(一般按定额计算规则)无需计算辅材1、石材:实贴面积,乘上合同单价,计算外露面积2、玻璃窗幕墙:按窗框外围面积,同上3、铝板:实贴面积4、其它项目看甲方的合同书,单价确定的方式三、投标1、工程量要准确2、成本计算:取一单元计算辅料,再折成每平方米的含量3、单价要计算工程成本,成本核算用材料预算。
结构胶计算

一、荷载1、标高(1).风荷W k:作用在幕墙上W:作用在幕墙上βgz:20.000m 高处阵μf=1.2248×(βgz=0.8×(1 + 2μμz:20.000m 高处风μz=0.318×( Z/10μs:风荷载体型系对于建筑μs外-1.8对于建筑μs内-0.2 μs1(A):局部a:玻璃短边边长b:玻璃长边边长A:玻璃面板面积1.25×3=3.750LgA=Lg3.750=0.574根据《建筑结对于板块面积Lg3.μs1(A)=μs1=-1.μs=-1.γw:风荷载作用分W k=βgz×μz×μ=2.392×0.62×W=γw ×W k标高20.000米标准层大面处玻璃幕墙设计计算书=1.4×3.700 =(2).自重采用(8+1.52G AK:玻璃板块平均G A:玻璃板块平均γG:自重荷载作用G AK=25.6×(8+8+6+G A = γG ×G AK=1.2×0.717 =(3).地震q EAK:垂直于玻璃幕q EA:垂直于玻璃幕β:动力放大系α:水平地震影响γE:地震作用分项q EAK=β× α×G AK=5.0×0.12×=0.430 kN/m^2q EA=1.3×0.430 =二、玻璃1. 玻璃的强度采用(8+1.52校核依据: σ≤ f g = 84.0σ外2≤ f g = 84.0σ内1≤ f g = 84.0σ内2≤ f g = 84.0q k:玻璃所受组合q:玻璃所受组合荷载采五洲风q k=W k + 0.5q EAk=3.7 + 0.5 ×q=W+ 0.5q EA=5.18 + 0.5 ×q ik:分配到各单片q i:分配到各单片a:玻璃短边边长b:玻璃长边边长ψ:玻璃板面跨中t1:外夹层外片t2:外夹层内片t3:内夹层外片t4:内夹层内片t e12:外层夹胶玻璃t e12 =( t13 +t23 )1/3=(8^3 +8^3=10.08mmt e34:内层夹胶玻璃t e34 =( t33 +t43 )1/3=(6^3 +6^3=7.56 mmt e:整块中空玻璃t e =0.95×(t e123 +=0.95 ×(=10.77mmσi:各单片玻璃所E:玻璃的弹性模θi:参数q1k =1.1×q k ×t e123=1.1×3.915×1.514五洲风q 2k =1.1×q k×t e123=1.1×3.915×=1.514kN/m^2q 3k =q k ×t e343×=3.915×7.56^3=0.581kN/m^2q 4k =q k ×t e343×=3.915×7.56^3=0.581kN/m^2q 1 =1.1×q ×t e123=1.1×5.460×=2.112kN/m^2q 2 =1.1×q ×t e123=1.1×5.460×=2.112kN/m^2q 3 =q ×t e343×=5.460×7.56^3=0.810kN/m^2q 4 =q ×t e343×=5.460×7.56^3=0.810kN/m^2θ1 =q 1k ×a 4/(E×=1.514×10^-3×=12.54θ2 =q 2k ×a 4/(E×=1.514×10^-3×=12.54θ3 =q 3k ×a 4/(E×0.581×=15.20θ4 =q 4k ×a 4/(E×=0.581×10^-3×=15.20ηi :折减系数,可η1=0.95η2=0.95η3=0.94η4=0.948mm 厚外夹层σ1 =6×ψ×q 1×a 2=6×0.110×=32.20N/mm^28 mm 厚外夹层8mm 厚外夹层σ2 =6×ψ×q 2×a 2=6×0.110×=32.20N/mm^28 mm 厚外夹层6mm 厚内夹层σ3 =6×ψ×q 3×a 2=6×0.110×=21.71N/mm^26 mm 厚内夹层6mm 厚内夹层σ4 =6×ψ×q 4×a 2=6×0.110×=21.71N/mm^26 mm 厚内夹层2. 玻璃的挠度玻璃最ν:泊松比,取μ:挠度系数,按a:玻璃短边边长W k :玻璃所受风荷θ:参数θ =W k ×a 4/(E×=3.700×10^-3×=9.33η:折减系数,可D:玻璃弯曲刚度D =E×t e 3/[12=72000×10.77^3=7802112Nmmu:玻璃跨中最大u =μ×Wk×a 4×=0.01116×3.700=12.47mm12.47mm <双夹胶中空玻三、幕墙1. 按风荷载和(1) 风载荷作用C s1:风载荷作用下W:设计值q EA :水平地震作用a:矩形分格短边f 1:结构胶在风荷C s1=( W +0.5 ×=(5.180+= 17.06mm取18.00(2) 自重效应胶由于玻璃自重胶缝宽度计算C s2:永久载荷作用q G :幕墙玻璃单位a:矩形分格短边b :矩形分格长边f 2:结构胶在永久C s2=q G × a × b /=0.860×1.250= 37.94mm取18.00(3) 硅酮结构密a)温度变化所t s :结构胶粘结厚H:玻璃面板高度 θ:风荷载标准值θ:风荷载标准值风荷载标准值本工程为钢筋《建筑抗震设—计算得到:θ=3x1/30δ:硅酮结构密封的伸长率:t s=θ×H×1000/=0.0100×3.000=28.57mm取10.00b)温度变化所ts2=u s2/[δ2u S2=ΔT(α铝- 式中t s2——u s2——温度变根据《建筑气广州地区极端38.7,38.7+10广州地区极端00-10=-10考虑玻璃表面变化幅度ΔT——温度变α铝——铝合α玻——玻璃b——玻璃面板δ2——硅酮结 计算得到:uS2=ΔT(α铝-59×ts1=u s2/[δ1(2+δ=2.55345 /[0.125= 9.613 mm(4) 胶缝强度验C s:胶缝选定宽度t s:胶缝选定厚度(a) 短期荷载和W:风荷载设计值a:矩形分格短边σ1=W ×a ×0.5/C s=5.180×1.250×= 0.180N/mm^2(b) 短期荷载和B:玻璃面板宽度H:玻璃面板高度t:玻璃厚度 t =σ2=12.8×H ×B×= 12.8×3.000×= 0.010N/mm^2(c) 短期荷载和σ=(σ12+σ22)0.5=(0.180^= 0.180N/mm^2结构胶强度可5.铝压压块采用6063-铝合金压码间300mm 截面形状(宽x压码50 mm压块中心钻直压码的截面特压块中心处的A 0=(L -d)×160mm^2压块中心处的W=(L-d)t 2/183mm^3a)1个压块和固Tap=q×△S ×a =5.460×300× 压块两侧接触19 mmM =(2铝合金压块中心处截V=Tap/2=2047/2= 1024 N由弯距引起的σ1=M/W =19449/1 83=106由剪力引起的τ=1.5V/A 1.5×1024/16折算应力:σ=(σ12+3τ2)0.5=(106.088^3+3×铝压码的强度6.压块固玻璃框压块采(1)螺钉旋合螺孔位置,幕n=t/p=6/1=6式中n——螺钉t——幕墙立柱p——螺纹的螺(2)不锈钢螺钉螺纹承受的最落纹承受的最式中F W——螺20 47τ——螺纹承σW——螺纹承k2——螺纹各k2=6p/d=6x1.0/ p——螺纹的螺h——螺纹牙的d1——外螺纹b——螺纹牙根n——螺钉的旋a)不锈钢螺钉τ=F W/(k2×π×=2047.31 25/(1×25.387万鑫 .五洲风b)不锈钢螺钉σW=3×F W×h/(k2×=3×2047.31=47.361 N/mm^2c)铝型材螺纹τ=F W/(k2×π×=2047.31 25/(1×=25.387 N/mm^2d)铝型材螺纹σW=3×F W×h/(k2×=3×2047.31=47.361 N/mm^2计算结果,不均小于其强度一、荷载1、标高(1).风荷W k:作用在幕墙上W:作用在幕墙上βgz:20.000m 高处阵μf=1.2248×(βgz=0.8×(1 + 2μμz:20.000m 高处风μz=0.318×( Z/10μs:风荷载体型系对于建筑μs外-1.8对于建筑μs内-0.2 μs1(A):局部a:玻璃短边边长b:玻璃长边边长A:玻璃面板面积1.25×3=3.750LgA=Lg3.750=0.574根据《建筑结对于板块面积Lg3.μs1(A)=μs1=-1.μs=-1.γw:风荷载作用分W k=βgz×μz×μ=2.392×0.62×W=γw ×W k标高20.000米标准层大面处玻璃幕墙设计计算书=1.4×3.700 =(2).自重采用(8+1.52G AK:玻璃板块平均G A:玻璃板块平均γG:自重荷载作用G AK=25.6×(8+8+6+G A = γG ×G AK=1.2×0.717 =(3).地震q EAK:垂直于玻璃幕q EA:垂直于玻璃幕β:动力放大系α:水平地震影响γE:地震作用分项q EAK=β× α×G AK=5.0×0.12×=0.430 kN/m^2q EA=1.3×0.430 =二、玻璃1. 玻璃的强度采用(8+1.52校核依据: σ≤ f g= 84.0(JGJ102-2003σ外2≤ f g= 84.0(JGJ102-2003σ内1≤ f g= 84.0(JGJ102-2003σ内2≤ f g= 84.0(JGJ102-2003q k:玻璃所受组合q:玻璃所受组合荷载采用 S W +五洲风标准层大面处q k =W k +0.5q EAk=3.7 +0.5 ×q =W+0.5q EA=5.18 +0.5 ×q ik :分配到各单片q i :分配到各单片a:玻璃短边边长b:玻璃长边边长ψ:玻璃板面跨中t 1:外夹层外片t 2:外夹层内片t 3:内夹层外片t 4:内夹层内片t e12:外层夹胶玻璃t e12 =( t 13 +t 23 )1/3=(8^3 +8^3=10.08mm t e34:内层夹胶玻璃t e34 =( t 33 +t 43 )1/3=(6^3 +6^3=7.56 mm t e :整块中空玻璃t e =0.95×(t e123 +=0.95 ×(=10.77mm σi :各单片玻璃所E:玻璃的弹性模θi :参数q 1k =1.1×q k×t e123=1.1×3.915×=1.514kN/m^2(JGJ102-2003五洲风标准层大面处q 2k =1.1×q k×t e123=1.1×3.915×=1.514kN/m^2(JGJ102-2003q 3k =q k ×t e343×=3.915×7.56^3=0.581kN/m^2(JGJ102-2003q 4k =q k ×t e343×=3.915×7.56^3=0.581kN/m^2(JGJ102-2003q 1 =1.1×q ×t e123=1.1×5.460×=2.112kN/m^2(JGJ102-2003q 2 =1.1×q ×t e123=1.1×5.460×=2.112kN/m^2q 3 =q ×t e343×=5.460×7.56^3=0.810kN/m^2(JGJ102-2003q 4 =q ×t e343×=5.460×7.56^3=0.810kN/m^2(JGJ102-2003θ1 =q 1k ×a 4/(E×(JGJ102-2003=1.514×10^-3×=12.54θ2 =q 2k ×a 4/(E×(JGJ102-2003=1.514×10^-3×=12.54θ3 =q 3k ×a 4/(E×(JGJ102-2003=0.581×10^-3×=15.20θ4 =q 4k ×a 4/(E×(JGJ102-2003=0.581×10^-3×=15.20ηi :折减系数,可η1=0.95η2=0.95η3=0.94η4=0.948mm 厚外夹层σ1 =6×ψ×q 1×a 2(JGJ102-2003=6×0.110×=32.20N/mm^28 mm 厚外夹层8mm 厚外夹层σ2 =6×ψ×q 2×a 2(JGJ102-2003=6×0.110×=32.20N/mm^28 mm 厚外夹层6mm 厚内夹层σ3 =6×ψ×q 3×a 2(JGJ102-2003=6×0.110×=21.71N/mm^26 mm 厚内夹层6mm 厚内夹层σ4 =6×ψ×q 4×a 2(JGJ102-2003=6×0.110×=21.71N/mm^26 mm 厚内夹层2. 玻璃的挠度玻璃最ν:泊松比,取μ:挠度系数,按a:玻璃短边边长W k :玻璃所受风荷θ:参数θ =W k ×a 4/(E×(JGJ102-2003=3.700×10^-3×=9.33η:折减系数,可D:玻璃弯曲刚度D =E×t e 3/[12(JGJ102-2003=72000×10.77^3=7802112Nmmu:玻璃跨中最大u =μ×Wk×a 4×(JGJ102-2003=0.01116×3.700=12.47mm12.47mm <双夹胶中空玻三、幕墙1. 按风荷载和(1) 风载荷作用C s1:风载荷作用下W:设计值q EA :水平地震作用a:矩形分格短边f 1:结构胶在风荷C s1=( W +0.5 ×( JGJ 102-2003=(5.180+= 17.06mm取18.00(2) 自重效应胶由于玻璃自重胶缝宽度计算C s2:永久载荷作用q G :幕墙玻璃单位a:矩形分格短边b :矩形分格长边f 2:结构胶在永久C s2=q G × a × b /( JGJ 102-2003=0.860×1.250= 37.94mm取18.00(3) 硅酮结构密a)温度变化所t s :结构胶粘结厚H:玻璃面板高度 θ:风荷载标准值θ:风荷载标准值风荷载标准值本工程为钢筋《建筑抗震设—计算得到:θ=3x1/30δ:硅酮结构密封的伸长率:t s=θ×H×1000/=0.0100×3.000=28.57mm取10.00b)温度变化所ts2=u s2/[δ2u S2=ΔT(α铝- 式中t s2——u s2——温度变根据《建筑气广州地区极端38.7,38.7+10广州地区极端00-10=-10考虑玻璃表面变化幅度ΔT——温度变α铝——铝合α玻——玻璃b——玻璃面板δ2——硅酮结 计算得到:uS2=ΔT(α铝-59×ts1=u s2/[δ1(2+δ=2.55345 /[0.125= 9.613 mm(4) 胶缝强度验C s:胶缝选定宽度t s:胶缝选定厚度(a) 短期荷载和W:风荷载设计值a:矩形分格短边σ1=W ×a ×0.5/C s=5.180×1.250×= 0.180N/mm^2(b) 短期荷载和B:玻璃面板宽度H:玻璃面板高度t:玻璃厚度 t =σ2=12.8×H ×B×= 12.8×3.000×= 0.010N/mm^2(c) 短期荷载和σ=(σ12+σ22)0.5=(0.180^= 0.180N/mm^2结构胶强度可5.铝压压块采用6063-铝合金压码间300mm 截面形状(宽x压码50 mm压块中心钻直压码的截面特压块中心处的A 0=(L -d)×160mm^2压块中心处的W=(L-d)t 2/183mm^3a)1个压块和固Tap=q×△S ×a =5.460×300× 压块两侧接触19 mmM =(Tap/2)(204铝合金压码计心处截V=Tap/2=2047/2= 1024 N由弯距引起的σ1=M/W =19449/1 83=106由剪力引起的τ=1.5V/A 1.5×1024/16折算应力:σ=(σ12+3τ2)0.5=(106.088^3+3×铝压码的强度6.压块固玻璃框压块采(1)螺钉旋合螺孔位置,幕n=t/p=6/1=6式中n——螺钉t——幕墙立柱p——螺纹的螺(2)不锈钢螺钉螺纹承受的最落纹承受的最式中F W——螺20 47τ——螺纹承σW——螺纹承k2——螺纹各k2=6p/d=6x1.0/ p——螺纹的螺h——螺纹牙的d1——外螺纹b——螺纹牙根n——螺钉的旋a)不锈钢螺钉τ=F W/(k2×π×=2047.31 25/(1×=25.387 N/mm^2钢螺钉σW=3×F W×h/(k2×=3×2047.31=47.361 N/mm^2c)铝型材螺纹τ=F W/(k2×π×=2047.31 25/(1×=25.387 N/mm^2d)铝型材螺纹σW=3×F W×h/(k2×=3×2047.31=47.361 N/mm^2计算结果,不均小于其强度。
3.1.1.A-明框幕墙平面变形计算

五、平面变形性能校核1、计算说明为避免明框玻璃幕墙板块平面内变形时产生破坏,我们必须根据主体结构的弹性层间位移角限值确定我们明框玻璃幕墙板块平面内的变形等级。
以便选择相应的结构和尺寸,并保证在设计允许的相对位移范围内,明框玻璃幕墙板块不损坏。
明框玻璃幕墙板块平面内变形性能按不同的结构类型弹性计算的位移控制值的3倍进行设计。
2、平面变形性能确定α:主体结构的弹性层间位移角限值,取α=1/550。
由主体结构为钢筋混凝土框架结构,查《玻璃幕墙工程技术规范》JGJ102-2003条文说明中表4.1得γ:明框玻璃幕墙板块平面内变形性能按《玻璃幕墙工程技术规范》JGJ102-2003第4.3.12条γ=3α=3×1/550=1/1831/150>γ=1/183>1/200该明框玻璃幕墙的变形性能应为Ⅲ级。
3、平面变形性能校核l 1:矩形玻璃板块竖向边长, l 1=2900 mml 2:矩形玻璃板块横向边长, l 2=1010 mmc 1:玻璃与边框的左、右平均间隙,考虑了1.5 mm 的施工误差,取c 1=7 mm c 2:玻璃与边框的上、下平均间隙,考虑了1.5 mm 的施工误差,取c 2=7 mm△u :玻璃幕墙的平面变形性能按《玻璃幕墙工程技术规范》JGJ102-2003第4.3.12条△u=)1(212211c c l l c ⨯+ =)77101029001(72⨯+⨯⨯ =17.9 mmH :该明框玻璃幕墙所在层的层高,取H=2900 mmγ=△u/H=17.9/3200=1/1621/150>γ=1/162>1/200平面变形性能符合规范要求。
根据以上计算,玻璃面板的各个构件均符合规范要求,满足设计要求,达到使用功能,可以正常使用。
结构胶计算实例及说明

结构胶计算玻璃采用结构胶与铝合金框粘接,主要承受温度和组合荷载。
1、基本参数胶的短期强度设计值: f1=0.2 N/mm2胶的长期强度设计值: f2=0.01N/mm2年温差最大值: △T=80℃铝型材线膨胀系数: a1=2.35×10-5玻璃线膨胀系数: a2=1.0×10-5(以上基本参数可以在计算书第二部分、基本参数及主要材料设计指标里找到)另外根据厂家提供的数据,得到以下参数:硅酮结构密封胶温差效应变位承受能力δ1=0.125θ2C)S1式中C SWaf12式中qE3、在玻璃永久荷载作用下,粘结宽度C S应按下式计算:式中qG幕墙玻璃单位面积重力荷载设计值(KN/m2);a、b分别为矩形玻璃的短边和长边长度(mm);f2硅酮结构密封胶在永久荷载作用下的强度设计值,取0.01 N/mm2。
4、水平倒挂的隐框、半隐框玻璃和铝框之间硅酮结构密封胶的粘结宽度C S应按下式计算:非抗震设计时,可取第1、3款计算的较大值;抗震设计时,可取第2、3款计算的较大值。
(根据玻璃幕墙规范5.6)3、胶的粘结厚度(胶的粘结厚度包过两种情况1、在温度作用下的粘结厚度2、在地震作用下的粘结厚度,取两者中的较大值。
其中玻璃幕墙规范5.6.5中指的就是硅酮结构密封胶在地震作用下的粘结厚度)玻璃板块在年温差作用下玻璃与铝型材相对位移量:U S1 =b·△T·(a1-a2)=2000×80×(2.35×10-5-1.0×10-5)=2.16m(b 为玻璃面板长边△T 为年温差a1 为铝型材线膨胀系数a2为玻璃线膨胀系数)年温差作用下结构胶粘结厚度:S1t===4.2mm,取5.0mm。
(1δ硅酮结构密封胶的变位承受能力,取对应于其受拉应力为0.14N/mm2时的伸长率,在温度作用下一般取0.125)U S(uθ(h gS1t(t s1δ0.4)。
幕墙结构计算方法

幕墙结构计算方法我折腾了好久幕墙结构计算方法,总算找到点门道。
咱先说,一开始我真是瞎摸索啊。
我就知道幕墙结构嘛,肯定得先考虑它受到的各种力,就像人站着得能承受自身重量,还得能扛住风来吹是一个道理。
我当时就先从荷载计算开始。
这个荷载计算可真是个头疼的事儿。
比如说风荷载,我一开始就简单按照书本上那种很笼统的公式去套,结果算出来的数据跟实际情况差老远。
这就好比你做菜,只看个食谱上大概的量瞎放调料,做出来的菜指定不好吃。
后来我才意识到,不同地区、不同建筑高度、不同幕墙朝向,那个风荷载的取值都大不一样。
我就专门去查当地的气象数据,像多少年一遇的最大风速啥的,这才慢慢把风荷载算得靠谱点。
还有自重荷载,这听起来好像简单,不就是幕墙材料自己的重量嘛。
但是,你得考虑到那些连接构件的重量啊。
我当时就犯浑,光算了玻璃和框架的重量,把那些螺栓、压板之类小部件的重量给忽略了。
等算出来整个结构受力的时候就发现问题大了,结构好像比想象中脆弱很多。
这就告诉我,可千万不能小看任何小部件的影响力。
应力计算这一块也不好搞。
很多人觉得,按照力学书上的简单公式套就完事儿了。
我试过啊,可没那么简单。
构件的形状、约束条件都会影响应力分布。
这东西就像水流一样,如果河道弯弯扭扭的,水的流动分布就不一样。
我会把幕墙结构简化成力学模型,但是简化过头或者简化得不对都会出问题。
关于幕墙结构计算还有好多小细节。
比如说温度荷载,一天天的温度变化会让幕墙材料伸缩,这也会产生应力。
这个一开始我根本就没考虑到。
还有地震作用,不同抗震设防烈度下,幕墙该怎么计算确保安全性也是千差万别。
我现在觉得,算幕墙结构呀,得特别细心。
每一个小因素都可能影响最终结果。
计算过程中多查规范,多跟做过实际项目的人交流,不要怕犯错,因为犯错的过程就是让你越来越懂的过程。
就比如建筑高度很高的时候,除了风荷载,你要考虑的东西又多了很多,像高空的气流紊流啥的,对幕墙结构都有影响。
有时候可能自己的数学功底不够强,算不了复杂的方程,我就想办法找一些计算软件帮忙。
4 平面内变形设计

平面内变形设计幕墙变形原因:受风力、地震作用(地震的震级分为十级)、温度作用、主体层间变形、主体沉降、重力……等的影响所致。
1、平面内变形性能分级建筑幕墙平面内变形性能以建筑幕墙层间位移角γ(或以不导致幕墙构件破坏的位移量与幕墙层高之比)为性能指标。
该指标应符合《建筑幕墙》GB/T21089-2007表21的要求。
表21 建筑幕墙平面内变形性能分级表2、平面内变形性能定级JG102-2003/4.2.6玻璃幕墙平面内变形性能,应按主体结构弹性层间位移角限值进行设计。
非抗震设计时,按表20取其1倍值;表20 主体结构楼层最大弹性层间位移角[θe][θe设防烈度取值)。
表弹性层间位移角限值γ3、技术措施玻璃幕墙由面板和金属框架等组成,幕墙自身具有一定的变形能力,但其变形能力较小,幕墙构件不能承受过大的位移,只能通过弹性连接件来避免主体结构过大侧移的影响。
针对幕墙变形的原因采取措施。
(1)非抗震设计①幕墙与主体弹性连接a)框支承式幕墙立柱上端悬挂在主体结构(或连接件)上(5.5.3)。
上端支座为固定铰支座,下端支座为滑动铰支座或弹性铰支座;幕墙连接件与主体建筑(直接与预埋件)间的连接可为焊接(板式埋件),也可为螺栓连接(槽式埋件);上、下立柱间预留伸缩缝δ;赵西安:δ≥ΔL.λ/ε+d;(δ≮15 mm)式中:ΔL----立柱温度变形(mm),ΔL=α.L.ΔT,一般小于10mm。
λ----实际伸缩调整系数,取0.7。
ε----密封胶延伸率。
d----安装误差(3mm)+主体压缩变形(3mm)=6 mm。
立柱、套芯配合间隙:前后0~0.5mm,左右0.5~1.0mm。
侧缝隙的核算:设跨距3500 mm,芯柱插入深度:(250-20)/ 2=115mm;外柱可产生侧向位移量:3500×(0.5~1.0)/ 115=15.22~30.44 mm;混凝土结构侧向最大变形:3500×(3×1/550)=19.09 mm;两者比较:-3.87~+11.35 mm,认可。
风荷载作用下幕墙铝板的内力和变形的计算【最新资料】

风荷载作用下幕墙铝板的内力和变形的计算【最新资料】风荷载作用下幕墙铝板的内力和变形的计算来源:* 作者:毛伙南日期:2014-1-9摘要:本文阐述了槽型铝板和加劲肋构成的单元式幕墙的内力及变形计算。
首先采用ANSYS软件对单元板块由槽型铝板与5条加劲肋组成的结构的内力和变形进行计算,其次,研究了加劲肋转角处由于局部铆钉松脱由刚结点变成铰接点后其计算模型发生改变的应力及位移计算,最后介绍实际应用。
关键词:单元式幕墙;铝板;加劲肋;内力;位移。
现代建筑的单元式幕墙设计要求美观大方,富于立体感,外立面越来越复杂多变。
造成单元板块种类丰富多样,其中槽型、转角型单元铝板应用较为广泛[1-3]。
其受风荷载作用较为复杂,有单向受正风压的、也有三向受风荷载的,更有双向受正风压、转角处立面受负风压作用的情况,其受力和变形较为复杂,引起业内的日益关注[4-7]。
同时,由于单元板块在车间组装后运至现场吊装时,少数加劲肋的连接螺丝由于运输原因可能产生脱落,由于板块内部空间狭窄,在施工现场板块内部的加劲肋连接螺丝已难以重新补装,这样原正常状态下的计算模型发生了改变。
因此,计算模型的可靠性也也越来越引起设计人员的重视[8]。
本文讨论了在正向风压作用下,槽型铝板与加劲肋组成的单元式幕墙板块结构的计算问题,同时考虑了加劲肋与铝板转角处局部铆钉松脱造成的非正常状态下的受力与变形计算,并与正常状态下的计算结果进行了比较。
1.槽型铝板与加劲肋正常状态受力与变形计算槽型铝板单元板块结构如图1所示,由槽型铝板和5条加劲肋组成。
槽型铝板与加劲肋(可看作门式框架)由铆钉紧固,槽型铝板与加劲肋在紧密接触处x、y、z方向线位移和角位移应协调一致,加劲肋转折处采用连接片连接,每侧2个螺丝固定,能承担约束力矩及约束反力,可视为刚结点[9-10]。
一般情况下,在风荷载作用下的槽型铝板与加劲肋的内力与变形计算均简化为平面问题且各自独立计算。
为更好地模拟槽型铝板和加劲肋之间的空间协调变形及承载能力,槽型铝板可视为空间壳体结构[11],加劲肋视为空间梁,二者协同承担荷载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、0.55KN/m 238.7m B 类风压高度变化系数m Z : 1.5421.502.00
=2×1.542×1.5×0.55 2.54KN/m 2风荷载标准值w K :玻璃高度H:1800mm 玻璃宽度W:1100mm 玻璃的短边长度a:1100mm 玻璃的长边长度b:1800mm 结构胶短期强度允许值f 1:0.14N/mm 2结构胶长期强度允许值f 2:0.007N/mm 2结构胶的粘结宽度C S :C S =w K a/(2000f 1)
=2.54×1100/(2000×0.14)
10.0mm 玻璃实际厚度t:8mm 玻璃材料体积密度r V :25.6KN/m 3玻璃面密度r=r V t :0.20KN/m 2C S =r ab/[2000(a+b)f 2]
10.0mm B 、在玻璃自重作用下,结构胶的粘结宽度: =0.2×1100×1800/[2000×(1100+1800)×0.007]
风荷载体型系数m S :瞬时风压的阵风系数b Z :风荷载标准值:w K =b Z m Z m S w 0
横隐竖明幕墙结构胶及幕墙平面内变形计算
基本风压w 0:
计算高度处离地面距离:地面粗糙度类别:结构胶计算:
A 、在风荷载作用下,结构胶的粘结宽度:
C S 最小值:
10.0mm
C 、温度变化作用下粘结厚度计算取年最大温差
D T:80o C 铝材的线膨胀系数a A : 2.35×10-5玻璃的线膨胀系数a G :
1.0×10-5
(a A -a G )×b×D T
1.9mm 结构胶的温差变位承受能力d:10%
结构胶粘结厚度
=1.9/[0.1×(2+0.1)]^0.5 4.2mm t S 最小值:(不小于6mm) 6.0mm
二、玻璃的宽度b:1100mm 玻璃的高度h:
1800mm 1/450
[D U]=h/a ×3+315.0mm 玻璃与左、右边框的平均间隙C 1:7.5mm 玻璃与上、下边框的平均间隙C 2:7.5mm
2C 1(1+h/b×C 2/C 1)
=2×7.5×(1+1800/1100×7.5/7.5)
39.5mm 满足平面内变形要求
=(2.35-1)×10^(-5)×1800×80则有玻璃与铝框的相对位移量[D U]: =1800/450×3+3
幕墙平面内变形性能计算:
主体结构为框架结构,结构的层间位移值a :则有玻璃与铝框的相对位移量m S:)
2(δδm +=
S
S t。