第四章 交通流理论

合集下载

第四章 交通流

第四章  交通流
2
[
]
从S与m的比值看,用泊松分布或负二项分布拟合可能是合适的. 若用泊松分布拟合,起分布参数m=5.254 若用负二项分布拟合,它的两个分布参数计算如下: p=m/ S=5.254/6.753=0.78 β= m/( S-m)=5.254 /(6.753-5.254)=18.4
P (0) = e m m P (k ) P ( k + 1) = k +1
1 N 1 g 2 S = (ki m ) = (k j m )2 f j ∑ ∑ N 1 i =1 N 1 j =1
2
应用举例
例题1 : 设60辆汽车随机分布在4km长的道路上,服从泊松分 60辆汽车随机分布在 辆汽车随机分布在4km长的道路上 长的道路上,
布,求任意400m路段上有4辆及4辆以上汽车的概率. 求任意400m路段上有 辆及4辆以上汽车的概率. 路段上有4
∑k
m=
j =1
g
j
fj =
N
1 × (0 × 2 + 1 × 15 + 2 × 20 + ......12 × 2) = 5.254 232
1 g 1 2 2 2 2 S = ( k j m )2 f j = × 2 × (0 5.254) + 15 × (1 5.254) + 20 × (2 5.254) + ... + 2 × (12 5.254) = 6.753 ∑ N 1 j =1 232 1
车辆到达数kj 包含kj的间隔出现次数 <3 3 4 5 6 7 8 9 10 11 12 >12 1 1 0
0 3 0 8 10 11 10 11 9
表4-1
上午高峰期间以15s间隔观测车辆到达的数据 上午高峰期间以 间隔观测车辆到达的数据

第四章 交通流理论

第四章  交通流理论

第一节 概述-2
交通流理论是发展中的科学,虽然现在还没有形成完 整的体系,但有很多理论在探讨各种交通现象,它们是: (1)交通流量、速度和密度的相互关系及量测方法;。 *(2)交通流的统计分布特性; *(3)排队论的应用; *(4)跟驰理论; (5)驾驶员处理信息的特; *(6)交通流的流体力学模拟理论; (7)交通流模拟。
8 10
3. 在交通工程学中应用二项分布时: (1)适用条件:车辆比较拥挤、自由行驶机会不多的车流。 (2)基本公式: (3)递推公式: p C p (1 p) , (k 0,1,2,, n)
k 1 k n k nk
p k 1
(4)分布的均值和方差分别为 M=np, D=np(1-p) (5)如果通过观测数据计算样本均值m和方差,则可分别 代替M和D,用下式求出p和n的估计值:
第二节 交通流的统计分布特性-11
P(t)的图象如图所示, 曲线是单调下降的,说明车头 时距愈短,其出现的概率愈大。 这种情形在不能超车的单列车 流中是不可能出现的。因为车 辆的车头至车头的间距至少为 一个大于零的最小值τ 。负指 数分布在应用中的局限性即在 于此。
第二节 交通流的统计分布特性-12
xn 1 (t T )为后车在时刻(t T )的加速度,
1 称为后车的反应; 称为敏感度; xn (t ) xn 1 (t ) T 称为时刻t的刺激。

反应 敏感度 刺激
第五节 流体动力学模拟理论-1
一、引言 A 连续理论: Q1=Q2 A1*V1=A2*V2 Q:立方米/秒 A2V2Q2
第五节 流体动力学模拟理论-3
虚线与运行轨迹的交点就是车队密度不同的两部分的 分界(对某一确定时刻而),而虚线则表示此分界既沿车 队向后一辆辆地传播下去,又沿着道路而移动,虚线的斜 率就是波速。虚线AB是低度状态向密度状态转变的分界, 它所体现的车流波称为集结波;而Ac是高密度状态向低密 度状态转变的分界,它所体现的车流波称为疏散波,两种 不同的车流波可统称为集散波。

交通流理论(4)

交通流理论(4)
第4章 交通流理论
The theory of traffic flow
2009年3月 年 月
4.6 车流波理论
车流波理论运用流体动力学的基本原理,模拟流体的连续性方程, 车流波理论运用流体动力学的基本原理,模拟流体的连续性方程, 建立车流的连续性方程。 建立车流的连续性方程。该理论把车流密度的疏密变化比拟成水波的 起伏而抽象成车流波。 起伏而抽象成车流波。当车流因道路或交通状况的改变而引起密度的 改变时,在车流中产生车流波的传播。该理论通过分析车流波的传播 改变时,在车流中产生车流波的传播。该理论通过分析车流波的传播 速度来得到流量、速度、密度三者之间的关系。 速度来得到流量、速度、密度三者之间的关系。 来得到流量
二、 车流中的波
流量密度曲线上的车流波分析
Q B
A C 0 Kj K
二、 车流中的波
车辆运行时间-空间轨迹图 车辆运行时间 空间轨迹图
X
Ⅲ G C Ⅱ D B E 1 2 3 4 F Ⅰ 5 6 t A
内容提要: 内容提要: 车流连续性方程 车流波 车流波的应用
一、车流连续性方程
q
k
q+dq
k -dk


由质量守恒定律可知:流入量-流出量 数量上的变化 由质量守恒定律可知:流入量-流出量=数量上的变化 (dk/ dt)+( dq / dx)=0 上述的守恒等式表明: 上述的守恒等式表明: 当流量随距离降低时,密度则随着时间而增大。 当流量随距车流中的波
波速公式
Vw V1 K1 A K2 X S B V2
波速公式:
VW=(q1-q2)/(K1-K2).
二、 车流中的波
集结波与疏散波 由低密度状态向高密度状态转变时所形成的车流波叫集结波; 由低密度状态向高密度状态转变时所形成的车流波叫集结波; 由高密度状态向低密度状态转变时所形成的车流波叫疏散波。 由高密度状态向低密度状态转变时所形成的车流波叫疏散波。 前进波与后退波 当车流波的波速> 时 我们称为前进波; 当车流波的波速>0时,我们称为前进波; 当车流波的波速< 时 我们称为后退波。 当车流波的波速<0时,我们称为后退波。

第4章 交通流理论

第4章 交通流理论

P(h t) e。t
4.2.3.1 负指数分布(续)/λ2,用样本均值m代替M、样本的方差S2代替D,
既可算出负指数分布的参数λ 。 (3)适用条件:用于描述有充分超车机会的单列车流
和密度不大的多列车流的车头时距分布,它常与计 数的泊松分布相对应。
(3)排队系统:既包括了等待服务的,又包括了正在被服 务的车辆。
(4)排队论的应用:电话自动交换机;车辆延误、通行能 力、信号灯配时以及停车场、加油站等交通设施的设计 与管理;收费亭的延误估计。
4.3.2 基本原理
(1)排队系统的3个组成部分 输入过程:各种类型的“顾客(车辆或行人)”
按怎样的规律到达。如定长输入;泊松输入;爱 尔郎输入。(到达时距符合什么样的分布)
可算出移位负指数分布的参数λ和τ 。
4.2.3.2 移位负指数分布(续)
(3)适用条件 用于描述不能超车的单列车流的车头时距分布和
车流量低的车流的车头时距分布。 (4)移位负指数分布的局限
移位负指数分布的概率密度函数曲线是随t-τ单 调递降的,车头时距愈接近τ,其出现的可能性愈大。 这在一般情况下是不符合驾驶员的心理习惯和行车特 点的。从统计角度看,车头时距分布的概率密度曲线 一般总是先升后降的。
4.5.1 理论概述
1955年,英国学者莱脱希尔和惠特汉提出。 车流波动理论的定义:通过分析车流波的传播速
度,以寻求车流流量和密度、速度之间的关系, 并描述车流的拥挤——消散过程。 适用条件:流体力学模拟理论假定在车流中各个 单个车辆的行驶状态与它前面的车辆完全一样, 这与实际不符,因此该模型运用于车辆拥挤路段 较为合适。
4.2 交通流的统计分布特 性
4.2.1 交通流统计分布的含义 4.2.2 离散型分布 4.2.3 连续性分布

[工学]交通流理论

[工学]交通流理论
Fi 为理论上观测数值出现在第i组的频数。
且有:∑fi =N,∑Fi =N
3、确定统计量的临界值χ2a
χ2a值与置信水平α和自由度DF有关,α通常取0.05 。
DF=g-q-1,式中,q为约束数,指原假设中需确定的未知数的个 数,对泊松分布q=1(只有m需确定),对二项分布和负二项分布 q=2(需确定P、n两个参数)。
N1=λ·P(h≥a1)= λe-λa1 主要道路车流中车头时距大于a2的数目:N2= λe-λa2
…… 则,主要道路车流中允许一辆车穿过的车头间隔数目为:N1-N2
主要道路车流中允许二辆车穿过的车头间隔数目为:N2-N3 主要道路车流中允许三辆车穿过的车头间隔数目为:N3N4
……
15
∴到达率为λ的车流允许穿越的车辆数总和为: Q次=1(N1-N2)+2(N2-N3)+3(N3-N4)+… =N1+N2+N3+N4+…=λ[e-λa1 + e-λa2 + e-λa3 +…] =λ[e-λa + e-λ(a+a0) + e-λ(a+2a0) +…]
P(h≥t) =e-λ(t-τ) t≥τ 其概率密度函数为: λe-λ(t-τ) t≥τ
P(t) =
0
t<τ
1
1
移位负指数分布的均值M= +τ ,方差D= 2
用样本的均值(平均车头时距)m和方差S2代替M、D,即可求
得λ和τ。
17
2、适用条件 用于描述不能超车的单列车流和车流量低的车流的车头时距分布。 3、移位负指数分布的局限性
2
第一节 离散型概率统计模型
我们在观测交通量或车辆的车头时距时,会发现在固定的计 数时间间隔内,每个间隔内查到的车辆数是变化的,所观测到 的连续车头时距也是不同的,这说明车辆的到达是有一定随即 性的,为了描述这种随机性而采用的概率统计方法可分为两种: 离散型和连续型。

交通工程学 第4章 交通流理论

交通工程学 第4章 交通流理论

k
j 1
g
j
fj
k
j 1
g
j
fj
fj
N
式中:g——观测数据分组数; fj——计算间隔t内到达kj辆车(人)这一事件发生的次(频)数; kj——计数间隔t内的到达数或各组的中值; N——观测的总计间隔数。
(2)递推公式
P(0) e m P(k 1) P(k ) k 1
(3)应用条件
• 在第一个环节上,重点研究设计什么样的模型才能对所 关心的交通流现象有一个很好的描述,此环节的关键是 对系统的识别,也即对所研究对象的充分认识。这种认 识越深刻,所建立的模型就越符合实际; • 在第二个环节上,重点研究如何确定模型中的参数使模 型得以具体应用,参数的确定是一项非常具体、细致的 工作,其好坏直接决定了模型的应用效果。优秀的交通 流模型应该只包含若干个有现实的变量和参数,而且它 们是容易测量的。 • 此外,一个好的模型还应在理论上前后一致,便于进行 数值模拟且能做出新的预测,简单而言,优秀的交通流 模型必须有鲁棒性、现实性、一致性和简单性。 • 无论是模型结构的建立还是模型参数的标定,简单和适 用是第一原则 ,但随着计算手段的改善和交通工程技 术人员素质的提高,复杂交通流模型推广和应用的也日 益广泛了。
§4-2 概率统计模型
本节内容
• • • • 离散型分布特征、分布函数 排队论模型的基本概念 M/M/N与N个M/M/1的指标计算与比较 流体模拟理论及实例分析
问题的提出
一个实际问题及其解决方法的思路分析
1.某随机车流,求30秒内平均到达的车辆数(均值)、方差(参考p74 4-8 4-10 ) 2.假定该车流服从泊松分布,求没有车到达的概率、到达四辆车的概率、到达 大于四辆车的概率分别是多少 )

交通流理论

交通流理论

第四章交通流理论交通流理论(TrafficFlowTheory)是研究交通流随时间和空间变化规律的模型和方法体系,被广泛应用于交通系统规划与控制的各个方面。

第一节交通流理论的发展历程在本节中,我们一起回顾交通流理论的发展历程。

交通流理论的兴起大致在20世纪30年代,在20世纪50年代到60年代经历了繁荣和快速发展,70年代以后,主要是对既有理论的发展完善和应用拓展。

一、交通流理论的萌芽期萌芽期从20世纪30年代到第二次世界大战结束。

由于发达国家汽车使用和道路建设的发展,需要探索道路交通流的基本规律,产生了研究交通流理论的初步需求。

Adams在1936发表的论文中将概率论用于描述道路交通流,格林息尔治(Greenshields)在1935年开创性提出了流量和速度关系式(也就是格林息尔治关系),并调查了交叉口的交通状态。

二、交通流理论的繁荣期繁荣期从第二次世界大战结束到20世纪50年代末。

汽车使用显着增长和道路交通系统建设加快,应用层面对交通特性和交通流理论的研究提出了急切需求。

此阶段是交通流理论最为辉煌的时期,经典交通流理论和模型几乎全部出自这一时期。

交通流理论中的经典方法、理论和模型相继涌现,如车辆跟驰(Car-following)模型、车流波动(KinematicWave)理论和排队论(QueuingTheory)。

这一时期群星闪耀,许多在自然科学其他领域中的大师级人物(如数学家、物理学家、力学家、经济学家)都投入到交通流理论的研究中,其中不乏诺贝尔奖金的获得者,如1977年的诺贝尔化学奖获得者伊利亚?普列高津(IlyaPrigogine)。

着名人物有赫曼(Herman)、鲁切尔(Reuschel)、沃德卢普(Wardrop)、派普斯(Pipes)、莱特希尔(Lighthill)、惠特汉(Whitham)、纽维尔(Newell)、盖热斯(Gazis)、韦伯斯特(Webster)、伊迪(Edie)、福特(Foote)和钱德勒(Chandler)。

第四章 交通流理论ppt课件

第四章  交通流理论ppt课件
度的时间内到达某场所交通的间隔时间的统计分布; 4) 研究交通分布的意义:预测交通流的到达规律(到达数及到
达时间间隔),为确定设施规模、信号配时、安全对策提供依 据;
.
4.2.1 离散型分布
车辆的到达具有随机性
描述对象:
在一定的时间间隔内到达的车辆数, 在一定长度的路段上分布的车辆数
4.2 概率统计模型
.
4.2 概率统计模型
4.2.1 离散型分布
2. 二项分布:
适用条件:车辆比较拥挤、自由行驶机会不多的车流 基本模型:计数间隔t内到达k辆车的概率
P (k)C n k n t k 1 n t nk,k1 ,2,.n ..
λ:平均到达率(辆或人/秒) 令:p=λt/n, 0 <p <1
出分布参数 p 和 n;
.
4.2 概率统计模型
4.2.1 离散型分布
3. 负二项分布:
适用条件:到达的车流波动性很大时适用。 典型:信号交叉口下游的车流到达。
4. 离散型分布拟合优度检验——χ2检验
用于根据现场实测数据来判断交通流服从何种分布 原理和方法:
1) 建立原假设:随机变量X服从某给定的分布 2) 选择合适的统计量 3) 确定统计量的临界值 4) 判断检验结果
.
4.2 概率统计模型
4.2.1 离散型分布
1. 泊松分布:
递推公式:由参数m及数量k可递推出Pk+1;
P0 em
Pk1
m k 1Pk
分布的均值M与方差D皆等于λt,这是判断交通流到达规律是否 服从泊松分布的依据。
运用模型时的留意点:关于参数m=λt可理解为时间间隔 t 内的 平均到达车辆数。
4. 有效性指标——延误
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.4 跟驰模型
4.4.3 线性跟驰模型的稳定性
跟驰的稳定性
局部稳定性——前后两车间距摆动大小,大则不稳定,小则稳 定;只在车队的局部发生。 渐进稳定性——引导车的状态变化向后传播,传播过程中,状 态变化的振幅越来越大(发散),则不稳定,状态变化振幅越 来越小(收敛)则稳定。
4.4 跟驰模型
4.4.3 线性跟驰模型的稳定性
4.4 跟驰模型
4.4.4 非线性跟驰模型
线性跟驰模型的局限性
后车的反应仅与两车的相对速度有关,而与车辆间距无关。
非线性跟驰模型
1959,Gazis 灵敏度系数λ与车头间距成反比
xn1 t T
其中 Vm
Vf 2
k t k
P(k ) Cn 1 n n
λ:平均到达率(辆或人/秒) 令:p=λt/n, 0 <p <1
t
n k
, k 1,2,...n
P(k ) C P 1 p
k n k
nk
, k 1,2,...n
4.2 概率统计模型
4.3 排队论模型
4.3.3 M/M/N系统
简述——两类多通道服务
1)单路排队多通道服务——排成一条队等待数 条通道服务
4.3 排队论模型
2)多路排队多通道服务——每个通道各排一队,每个通道只为 其相对应的一队顾客服务,顾客不能随意换队。
计算公式由M/M/1系统的计算公式确定
4.4 跟驰模型
4.4 跟驰模型
1. 简述
定义:研究在无法超车的单一车道上车辆列队行驶时,后车跟 随前车行驶的状态,并且借数学和动力学的模式表达并加以分 析的一种理论。 研究目的:通过观察各个车辆逐一跟驰的方式来了解单车道交 通流的特性,并用来检验管理技术和通讯技术,以预测短途车 辆对市区交通流的影响,在稠密交通时使尾撞事故减到最低限 度等
Pk
t
k
e k!
t
m e k!
k
m
λ:平均到达率(辆或人/秒) m:=λt,在计数间隔t内平均到达的车辆或人数,也称为泊松 分布参数
4.2 概率统计模型
4.2.1 离散型分布
1. 泊松分布:
递推公式:由参数m及数量k可递推出Pk+1;
P 0 e
m
4.3 排队论模型
4.3.1 基本概念
1. 排队与排队系统
2. 排队系统的三个组成部分
1)输入过程?
定长、泊松输入、爱尔朗输入
2)排队规则
损失制、等待制、混合制
3)服务方式
定长服务、负指数分布、爱尔朗分布
4.3 排队论模型
4.3.1 基本概念
3. 排队系统的数量指标
4.2 概率统计模型
4.2.2 连续型分布
车头时距、车头间距、速度等量具有随机性,且其取 值是连续的 描述对象:
车头时距; 车头间距; 穿越空档; 速度;等
4.2 概率统计模型
4.2.2 连续型分布
1. 负指数分布
适用条件:存在充分超车机会的单列交通流与密度不大的多列 车流的车头时距分布可采用负指数分布(车辆的到达服从泊松 分布)。 基本模型:根据泊松分布的公式,车流平均到达率为λ(辆/秒) 时在时间间隔t内没有车辆到达的概率为:
4.2 概率统计模型
4.2.2 连续型分布
2. 移位负指数分布
适用条件:不能超车的单列交通流和车流量低的车头时距分布 (车辆的到达服从泊松分布)。 基本模型:车流平均到达率为λ(辆/秒),最 小车头时距为τ 时,到达的车头时距 h 大于 t 秒的概率为
P(h t ) e
பைடு நூலகம்
4-1交通流特性
4-2概率统计模型 4-3排队轮理论 4-4跟驰模型 4-5流体模拟理论
4.1交通流特性
4.1.1 交通设施种类
连续流设施 间断流设施
无外部因素导致周期性中断高 速公路、限制出入的一般公路 路段
由于外部设备导致交通流周期性中断一 般道路交叉口
4.1交通流特性
4.1.2 连续流特征
4.2 概率统计模型
4.2.1 离散型分布
车辆的到达具有随机性
描述对象:
在一定的时间间隔内到达的车辆数, 在一定长度的路段上分布的车辆数
4.2 概率统计模型
4.2.1 离散型分布
1. 泊松分布:
适用条件:车辆(或人)的到达是随机的,相互间的影响微弱 也不受外界因素干扰,具体表现在交通流密度不大 基本模型:计数间隔t内到达k辆车的概率
4.1.2连续流特征
3. 连续流的拥挤分析
1)拥挤类型 周期性拥挤(常发性拥挤) 非周期性拥挤(偶发性拥挤) 2)瓶颈(Bottleneck)
4.1交通流特性
4.1.2连续流特征
3. 连续流的拥挤分析
2)瓶颈(Bottleneck)
4.1交通流特性
4.1.2连续流特征
P(0) e
t
即:到达的车头时距 h 大于 t 秒的概率为
Ph t e
t
4.2 概率统计模型
4.2.2 连续型分布
1. 负指数分布
均值和方差
M
1

D
1

2
概率密度:
dP h t t P(t ) e dt
车头时距越小出现的概率越大?
4.1交通流特性
4.1.2 连续流特征
2. 数学描述
K 1 2)流量与密度的关系 Q KV f K j
4.1交通流特性
4.1.2连续流特征
2. 数学描述
V 3)流量与速度的关系 K K 1 j Vf

4.1交通流特性
3. 连续流的拥挤分析
3)交通密度分析
4)非周期性拥挤
4.1交通流特性
4.1.3间断流特征
1. 信号间断处交通流特征
4.1交通流特性
4.1.3 间断流特征
2. 关键变量及其定义
饱和车头间距 饱和交通量比率(饱和流率) 启动损失时间:Σ超时 净损失时间:最后一辆车越过停车线至下一次 绿灯启亮之间的时间。
xn t xn1 t

xn t xn1t
4.4 跟驰模型
4.4.5 跟驰模型的一般形式
1961,Gazis,跟驰一般模型
xn1 t T xn t xn1t xn1 t T l xn t xn1t
交通流理论概述
交通流理论是交通工程学的理论基础; 它是运用物理学和数学的方法来描述交通特性的理论, 它用分析的方法 阐述交通现象及其机理,使我们能更好地 理解交通现象及本质; 研究交通流理论的意义——把握交通流运动机理与规律 ,科学地分析交通设施设计效果与运营管理系统
第四章
道路交通流理论
4.1交通流特性
4.1.3 间断流特征
3. 停车和让路标志处的车流
无信号交叉口的交通控制方式 空挡
4. 有效性指标——延误
经常用于表征间断流服务水平的一个指标。 停车延误 运行延误
4.2 概率统计模型
4.2 概率统计模型
基本概念
1) 交通流分布:交通流的到达特性或在物理空间上的存在特性; 2) 离散型分布(也称计数分布):在一段固定长度的时间内到 达某场所的交通数量的波动性; 3) 连续型分布(时间间隔分布、速度分布等):在一段固定长 度的时间内到达某场所交通的间隔时间的统计分布; 4) 研究交通分布的意义:预测交通流的到达规律(到达数及到 达时间间隔),为确定设施规模、信号配时、安全对策提供依 据;
4.2.1 离散型分布
3. 负二项分布:
适用条件:到达的车流波动性很大时适用。 典型:信号交叉口下游的车流到达。
4. 离散型分布拟合优度检验——χ2检验
用于根据现场实测数据来判断交通流服从何种分布 原理和方法:
1) 建立原假设:随机变量X服从某给定的分布 2) 选择合适的统计量 3) 确定统计量的临界值 4) 判断检验结果
m Pk 1 Pk k 1
分布的均值M与方差D皆等于λt,这是判断交通流到达规律是否 服从泊松分布的依据。 运用模型时的留意点:关于参数m=λt可理解为时间间隔 t 内的 平均到达车辆数。
4.2 概率统计模型
4.2.1 离散型分布
2. 二项分布:
适用条件:车辆比较拥挤、自由行驶机会不多的车流 基本模型:计数间隔t内到达k辆车的概率
4.1交通流特性
4.1.2 连续流特征
1. 总体特征
交通流三参数基本关系
几个特征变量 (1)极大流量Qm (2)临界速度Vm (3)最佳密度Km (4)阻塞密度Kj (5)畅行速度Vf
4.1交通流特性
4.1.2 连续流特征
K V Vt 1 K 2. 数学描述 j 1)速度与密度的关系 1963,格林希尔茨(Greenshields)
(t )
分布的均值与方差 M=1/ λ+ τ≈m(样本均值); D=1/ λ2 ≈ s 2 (样本方差)
4.2 概率统计模型
4.2.2 连续型分布
2. 移位负指数分布
P(t)
4.3 排队论模型
4.3 排队论模型 简述
1905,哥本哈根,爱尔朗,电话自动交换机 排队论也称“随机服务系统理论”,是研究广义“需求”与 “供给”关系的一种数学理论; 应用于交通延误、通行能力、交通信号配时、停车场、收费站、 加油站等交通设施的设计与管理分析,方案制定等。 举例:高速公路排队、电话接线排队、网络数据包传输排队等
相关文档
最新文档