《直线的参数方程(第1课时)》教学设计
直线的参数方程(第一课时)

教 案直线的参数方程(第一课时)教学设计一、教学目标1、初步能推导直线的参数方程,理解其几何意义2、了解何时选用直线的参数方程3、体会参数方程的消元作用,初步能用联系的观点理解参数的意义二、教学重点:直线参数方程的推导及简单应用三、教学难点:直线参数方程几何意义的应用四、教学过程1、引入:引例1. 直线的参数方程方案1. 已知直线上定点M 0(X 0、y 0)和倾斜角解决1. 如图1. 述M 0作X 轴、Y 轴垂线交于H在RT △MHM 0中易得cos sin x xo MMo x y yo MMo x=+⎧⎨=+⎩ 当点M 与Mo 重合时也适合⊗⎩⎨⎧=+=+==⎩⎨⎧-=-=为参数的参数方程可得直线合左行时也可得在同理,当t x ts yo y x t xo x mmosocx yo y x mmo xo x mo cos l , ter |t ||mmo |cos m 其中,参数t 为几何意义是|t |表示直线上任一点M 0到定点M 的距离,式称为直线参数方程的标准式。
解法2. 从直线普通方程化为参数方程)t (0cos 0x cos )(cosxsomx yo y )x -mx(t =y -y 的点斜式方程为L 直线0X 2)1(为参数即得记比值为时或π当⎩⎨⎧+=+=-=-⇒-==⇒≠≠tsomx y y x t x t x xo x somx yo y xo x x X ⊗为参数注意:也可写成的距离到定点表示直线上统一点的几何意义是其中参数为参数的参数方程为直线时也适合上式或当t o t M M |t |)(o Yo y cos t Xo X 02)2(⎩⎨⎧+=+=⎩⎨⎧+=+=∴==ttaonX Y Y Xo X o t t mXTs X l X X2.解法3,用向量方法推导直线的参数方程如图2的几何意义同上为参数的倾斜角则为直线,,可以取为参数,)(使得则存在平行即与非零向量若直线t t cos ,cos ),(,R 11),(a ),(⎩⎨⎧=+=+===⎩⎨⎧+=+=⇒==-=--xts go y x t xo x l x somx m x l ter t tmyo y tl xo x m l t yo y xo x T l MoM m l l Yo Y Xo X MoM ε你还有其他方案吗?程的非标准形式式为直线参数方的水平距离与定点终点的几何意义表示直线上其中参数时,符合)当(为参数,则记比值为时当的点斜式方程为直成和斜率⋯⋯⎩⎨⎧+=+==⎩⎨⎧+=+=-=≠=@o @x 2)(k yo -y 0k (1)xo)-k(x yo -y l K Yo )o,X o(M 上定点L 已知直线 2.方案m m t ktyo y t xo o k t ktyo y t xo x t xo x 练习2(1)o(1,2)32m,103203(t )cos 20l M x y x tsom o y t o χ+-==+⎧⎨=⎩设直线过点倾斜角为试写出它的一个参数方程。
直线的参数方程教学设计

直线的参数方程教学设计2.1直线的参数方程(第一课时)教学设计【附教学反思】九江市第三中学吴从新教学目标:通过探索直线参数方程的过程,学生可以理解参数t的含义,利用参数t的几何意义解决弦长问题,加深对参数方程的理解。
教学重点:线性参数方程的推导和对参数t几何意义的理解。
教学难点:理解并写出与直线正方向相同的单位向量,以及参数t几何意义的应用。
教学方法:问题教学,启发式教学。
教学用具:多媒体辅助教学。
教学环节:一:复习引入回顾曲线中的参数方程和上一节中的参数方程的概念,特别强调引入参数的意义。
回顾直线的一般方程形式,特别强调点斜形式。
【设计意图】:复习参数的意义为即将建立直线的参数方程中引入参数t做铺垫,复习点斜式为后面消参做准备。
二:直线的参数方程的推导采用两种方法推导直线的参数方程,加深对线性参数方程中参数t的几何意义的理解。
(一)利用直角三角形知识推导[问题设置]直线l的正方向是什么?定向分段的数量是多少?如何利用直角三角形的知识计算移动点m的坐标?【设计意图】直线的正方向和有向线段的数量是两个全新的概念,北师大版教材正是基于这两个概念才能给出直线参数方程中参数t的几何意义,对t的几何意义的理解是本节的难点,这里需做好铺垫,强化对有向线段的数量的正负取值的理解。
(二)利用平面向量共线定理推导[问题设置]直线的方向单位向量是多少?你能用向量共线定理来求m点的坐标吗?【设计意图】在利用直角三角形知识推导出参数方程后,学生对参数t的理解很可能会停留在两点的距离上,这里要引导学生理解参数t取负值的情况。
对于参数t的几何意义的阐释,人教版很好地利用了向量工具(共线定理),正因于此,所以本节又将人教版中的推导方法引入了进来,以加深学生对参数t的几何意义的理解。
事实上,当学生在课堂上设定自己的参数时,没有必要引导他们直接反思。
这将使参数t的引入变得自然。
此外,解释向量法的推导需要花费大量时间,这导致后面的时间非常紧张,牺牲了学生的演示时间,这比损失的时间稍微值得一点。
高二数学北师大版选修4-4《直线的参数方程(第一课时)》教案

k 则由两直线垂直的充要条件,得 2 1 , 2
k 1 。
1、课本 课堂检 测内容
第 32 页
练习 1
x 1 t 2、设直线 l1 的参数方程为 (t 为参数) ,直线 l2 的方程为 y=3x+4 则 l1 与 l2 的 y 1 3t
石泉中学课时教案
科目:高二数学 教师:张艳琴 单元(章节) 课题 本节课题 第二章 授课时间:第 13 周 星期 五 2016 年 5 月 20 日
参数方程
§2.2 直线的参数方程(第一课时) 知识与技能:了解直线参数方程的条件及参数的意义
,写出直线的参数方程及参数的意义 情感,态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
提炼的课题 教学重难点 教 学
直线的参数方程 重点: 会求直线的参数方程 难点: 直线的参数方程的应用 过 程
一、情境导入 问题的提出:一条直线 L 的倾斜角是 30 ,并且经过点 P(2,3) ,如何描述直线 L 上任意 点的位置呢? 如果已知直线 L 经过两个定点 Q(1,1) ,P(4,3) , 那么又如何描述直线 L 上任意点的位置呢? 二、新课讲解 教师引导学生推导直线的参数方程: (1)过定点 P( x0 , y0 ) 倾斜角为 的直线的参数方程
0 x 3 t sin 20 例 1.直线 ( t 为参数)的倾斜角是( 0 y t cos 20
) C,
1100
A,
200
B,
700
D,
1600
例 2.求直线 x y 1 0 的一个参数方程。
x 1 2t , x s, 例 3.(坐标系与参数方程选做题)若直线 l1 : ( s 为参 (t为参数) 与直线 l2 : y 2 kt. y 1 2s.
直线的参数方程

直线的参数方程(第一课时)教学目标:1、联想圆的参数方程探究如何选择参数,教师通过层层设问,引导学生形成直线的参数方程;在形成知识的过程中,直线的参数的几何意义亦水到渠成。
2、对比直线的参数方程与圆的参数方程,二者形式相同,但参数不同,曲线不同,体会标明谁是参数的必要性;3、在直线的参数方程应用过程中,进一步理解掌握直线的参数的几何意义。
4、在本节课的学习过程中,渗透类比、数形结合等数学思想方法,促进学生探究数学能力的发展。
教学重点:1、形成直线的参数方程;2、掌握直线的参数的几何意义。
教学难点:理解掌握直线的参数的几何意义教学过程:一、 形成直线的参数方程:问题1、已知直线l 过),(000y x M ,倾斜角为α(πα<≤0),如何选参数,建立直线l 的参数方程?设问:什么是参数?参数也叫参变数,是一个变数。
联想:在求圆的参数方程时,我们选什么作参数?点M 在圆周上运动,哪些量不变?哪些量在变? ①为参数)(θθθ⎩⎨⎧==sin cos r y r x ②为参数)(θθθ⎩⎨⎧+=+=sin cos r b y r a x点M 在直线上运动时,哪些量不变?哪些量在变?我们应该选什么为参数?选点M 到0M 的距离为参数,设t M M =0,但问题是t 的一个值会对应点M 的两个位置。
如果用向量的方法,可能可以很好地解决这个问题。
直线上的向量及与它平行的向量都称为直线的方向向量 向量M M 0是直线的方向向量,且直线的方向向量有无数多个,且它们之间都是平行的关系,我们找一个比较特殊的方向向量──单位方向向量。
直线l 上点M 运动就等价于向量0M M 变化,但无论向量怎样变化,都有0M M te = .因此t 决定了点M 的位置,从而可以选择t 作为参数来获取直线l 的参数方程.【设计意图】明确参数.问题2、如何确定直线l 的单位方向向量e ?教师启发学生:如果所有单位向量起点相同,那么终点的集合就是一个圆.为了研究问题方便,可以把起点放在原点,这样所有单位向量的终点的集合就是一个单位圆.因此在单位圆中来确定直线的单位方向向量.教师引导学生确定单位方向向量,在此基础上启发学生得出(cos ,sin )e αα= ,从而明确直线l 的方向向量可以由倾斜角α来确定. 当0απ<<时,sin 0α>,所以直线l 的单位方向向量e 的方向总是向上.【设计意图】综合运用所学知识,获取直线的方向向量,培养学生探索精神,体会数形结合思想. 问题3、如何沟通点M 的横坐标y x ,与t 的关系?直线的单位方向向量)sin ,(cos αα=e设),(y x M ,由t M =0)sin ,(cos ),(00ααt y y x x =--⇒ 为参数)(t t y y t x x ⎩⎨⎧+=+=⇒ααsin cos 00 教师提出如下问题让学生加强认识:①直线的参数方程中哪些是变量?哪些是常量?②参数t 的取值范围是什么?③参数t 的几何意义是什么?总结如下:①00,x y ,α是常量,,,x y t 是变量;②t R ∈;③由于||1e = ,且0M M te = ,得到0M M t = ,因此t 表示直线上的动点M 到定点0M 的距离.当0M M 的方向与数轴(直线)正方向相同时,0t >;当0M M 的方向与数轴(直线)正方向相反时,0t <;当0t =时,点M 与点0M 重合.【设计意图】把向量转化为坐标,获得了直线的参数方程,在此基础上分析直线参数方程的特点,体会参数的几何意义.问题4、直线的参数方程与圆的参数方程对比,你有什么发现?直线的参数方程:为参数)(t t y y t x x ⎩⎨⎧+=+=ααsin cos 00 圆的参数方程:为参数)(θθθ⎩⎨⎧+=+=sin cos r b y r a x 【设计意图】对比直线的参数方程与圆的参数方程,二者形式相同,但参数不同,曲线不同,体会标明谁是参数的必要性。
《直线的参数方程》教学设计

《直线的参数方程》教学设计一、教学目标知识与技能:通过分析质点在匀速直线运动中时间与位置的关系,了解直线参数方程,体会参数的意义;通过直线的点斜式方程及向量法推导直线参数方程的标准形式与一般形式,理解标准形式中参数t 的几何意义,会初步利用参数的几何意义解决问题,体会直线参数方程在解决问题中的作用。
过程与方法:通过直线参数方程的推导与应用,培养学生分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想。
情感态度与价值观:通过建立直线参数方程的过程,培养学生数学抽象、数学建模以及逻辑推理的能力。
二、教学重、难点教学重点:建立直线的参数方程。
教学难点:理解参数t 的几何意义及其应用。
三、学情分析学生前面已经学习过参数方程的概念,普通方程与参数方程的互化,体验了参数方程在解决问题中的一些应用。
但是,由于学生刚刚接触参数方程的概念,所以对于直线参数方程中参数的选定还是比较困难的,根据确定直线的几何条件联想到向量进而建立联系也是难点。
四、教学过程复习引入:问题:选取适当参数,把直线方程23y x =+化为参数方程.【师生活动】教师提问,学生回答【设计意图】本问题是教材上一节课2.1中的例题,通过学生的回忆,既节省了时间,又让学生体会到直线参数方程对于大家来说是不陌生的,让学生认识到直线参数方程的形式不是唯一的。
探究一:把直线看作质点的匀速运动曲线,建立直线的参数方程问题:设质点从点00(,)M x y 出发,沿着与x 轴成α角的方向作匀速直线运动,其速率为0v .(1)写出质点在x 轴、y 轴上的速度分量;(2)设(,)M x y 为t 时刻质点所在位置,试用t 表示,x y【师生活动】教师提问,学生思考并回答【设计意图】从物理的角度引出直线的参数方程,选取时间t 为参数,这样可以使学生更深刻且自然的理解参数的意义,若不顾及t 的物理意义,则可以在参数t 与质点位置(,)x y 之间建立一个一一对应的关系。
直线参数方程课时优秀教案

直线参数方程(第一课时)学案目标点击:1.掌握直线参数方程地标准形式和一般形式,理解参数地几何意义; 2.熟悉直线地参数方程与普通方程之间地互化;基础知识点击:1、直线参数方程地标准式(1)过点P 0(00,y x ),倾斜角为α地直线l 地参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 地几何意义:t 表示有向线段0p p u u u u r 地数量,P(y x ,) 为直线上任意一点.则0p p u u u u r=t ∣0p p u u u u r∣=∣t ∣(2)若P 1、P 2是直线上两点,所对应地参数分别为t 1、t 2,则1p p u u u r =t 2-t 1∣1p p u u u r∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上地点,所对应地参数分别为t 1、t 2、t 3则P 1P 2中点P 3地参数为t 3=221tt +,∣P 0P 3∣=221t t +(4)若P 0为P 1P 2地中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程地一般式过点P 0(00,y x ),斜率为abk =地直线地参数方程是 ⎩⎨⎧+=+=bty y atx x 00 (t 为参数) 一、直线地参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α地直线l设点P(y x ,)是直线l 上任意一点,直线L 地正方向)过点P 作y 轴地平行线,过P 0轴地平行线,两条直线相交于Q 点.1)当P P 0与直线l 同方向或P 0和P 重合时,P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数,又∵P 0Q =0x x -, 0x x -= Q P =0y y -∴0y y -=t sin α即⎩⎨⎧+=+=ααsin cos 00t y y t x x 求地直线l 地参数方程∵P 0P =t ,t 为参数,t 知点P 0(00,y x )到点 P(y x ,)P在点P 0地上方;2.当t =0时,点P 与点P 0重合;3.当t<0时,点P 在点P 0地下方;x l特别地,若直线l 地倾斜角α=0时,直线l⎧+=0tx x ① 当t>0时,点P 在点P 0地右侧; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0地左侧; 问题2:直线l 上地点与对应地参数t 是不是一对应关系?我们把直线l 看作是实数轴,以直线l 向上地方向为正方向,以定点P 0原坐标系地单位长为单位长,这样参数t 数轴上地点P 建立了 一一对应关系. 问题3:P 1、P 2为直线l 则P 1P 2=?∣P 1P 2∣=? P 1P 2=P 1P 0+P 0P 2=-t ∣问题4:若P 0为直线l 上两点P 1、P 2地中点,1、t 2 ,则t 1、t 2之间有何关系?根据直线l P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2∴|P 1P |=|P 2P | P 1P =-P 2P ,即t 1=-t 2, t 1t 2一般地,若P 1、P 2、P 3是直线l 别为t 1、t 2、t 3,P 3为P 1、P 2地中点则t 3=221t t +(∵P 1P 3=-P 2P 3, 根据直线l 参数方程t ∴P 1P 3= t 3-t 1,P 2P 3=t 3-t 2,∴t 3-t 1=-(t 3-t 2,) )基础知识点拨:1、参数方程与普通方程地互化例1:化直线1l 地普通方程13-+y x =0为参数方程,并说明参数地几何意 义,说明∣t ∣地几何意义.解:令y=0,得x =1,∴直线1l 过定点(1,0). k =-31=-33设倾斜角为α,tg α=-33,α=π65, cos α =-23, sin α=211l 地参数方程为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231 (t 为参数) t 是直线1l 上定点M 0(1,0)到t 对应地点M(y x ,)地有向线段M M 0地数量.由⎪⎪⎩⎪⎪⎨⎧=-=-(2) 21(1) 231t y t x (1)、(2)两式平方相加,得222)1(t y x =+-∣t ∣=22)1(y x +-∣t ∣是定点M 0(1,0)到t 对应地点M(y x ,)地有向线段MM 0地长.点拨:求直线地参数方程先确定定点,再求倾斜角,注意参数地几何意义.例2:化直线2l 地参数方程⎩⎨⎧+=+-= t313y tx (t 为参数)为普通方程,并求倾斜角,x x说明∣t ∣地几何意义.解:原方程组变形为⎩⎨⎧=-=+ (2) t31(1) 3y t x (1)代入(2)消去参数t , 得)3(31+=-x y (点斜式)可见k=3, tg α=3,倾斜角α=3π普通方程为 01333=++-y x(1)、(2)两式平方相加,得2224)1()3(t y x =-++∴∣t ∣=2)1()3(22-++y x∣t ∣是定点M 0(3,1)到t 对应地点M(y x ,)地有向线段M M 0地长地一半.点拨:注意在例1、例2中,参数t 地几何意义是不同地,直线1l 地参数方程 为⎪⎪⎩⎪⎪⎨⎧=-=ty t x 21231即⎪⎩⎪⎨⎧=+=ππ65sin 65cos 1t y t x 是直线方程地标准形式,(-23)2+(21)2=1, t 地几何意义是有向线段M M 0地数量.直线2l 地参数方程为⎩⎨⎧+=+-= t 313y tx 是非标准地形式,12+(3)2=4≠1,此时t 地几何意义是有向线段M M 0地数量地一半.你会区分直线参数方程地标准形式?例3:已知直线l 过点M 0(1,3),倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211(t 为参数)和方程⎩⎨⎧+=+= t 331y tx (t 为参数)是否为直线l 地参数方程?如果是直线l 地参数方程,指出方程中地参数t 是否具有标准形式中参数t 地几何意义.解:由于以上两个参数方程消去参数后,均可以得到直线l 地地普通方程 0333=+--y x ,所以,以上两个方程都是直线l 地参数方程,其中⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211 cos α =21, sin α=23,是标准形式,参数t 是有向线段M M 0地数量.,而方程⎩⎨⎧+=+= t331y t x 是非标准形式,参数t 不具有上述地几何意义.点拨:直线地参数方程不唯一,对于给定地参数方程能辨别其标准形式,会利用参数t 地几何意义解决有关问题.问题5:直线地参数方程⎩⎨⎧+=+= t 331y tx 能否化为标准形式?是可以地,只需作参数t 地代换.(构造勾股数,实现标准化)⎩⎨⎧+=+= t 331yt x ⇔⎪⎪⎩⎪⎪⎨⎧+++=+++=))3(1()3(13 3))3(1()3(11122222222t y t x 令t '=t 22)3(1+ 得到直线l参数方程地标准形式⎪⎪⎩⎪⎪⎨⎧'+='+=t 233211y t x t '地几何意义是有向线段M M 0地数量.2、直线非标准参数方程地标准化一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程地一般式为,.⎩⎨⎧+=+=bt y y atx x 00(t 为参数), 斜率为a b tg k ==α (1) 当22b a +=1时,则t 地几何意义是有向线段M M 0地数量. (2)当22b a +≠1时,则t 不具有上述地几何意义.⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 则可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a by y t b a a x x 220220 t '地几何意义是有向线段M M 0地数量. 例4:写出经过点M 0(-2,3),倾斜角为43π地直线l 地标准参数方程,并且 求出直线l 上与点M 0相距为2地点地坐标.解:直线l 地标准参数方程为⎪⎩⎪⎨⎧+=+-=ππ43sin 343cos 2t y t x 即⎪⎪⎩⎪⎪⎨⎧+=--=t y t x 223222(t 为参数)(1) 设直线l 上与已知点M 0相距为2地点为M 点,且M 点对应地参数为t,则|M 0M |=|t| =2, ∴t=±2 将t 地值代入(1)式当t=2时,M 点在 M 0点地上方,其坐标为(-2-2,3+2); 当t=-2时,M 点在 M 0点地下方,其坐标为(-2+2,3-2).点拨:若使用直线地普通方程利用两点间地距离公式求M 点地坐标较麻烦, 而使用直线地参数方程,充分利用参数t 地几何意义求M 点地坐标较容易.例5:直线⎩⎨⎧-=+=οο20cos 420sin 3t y t x (t 为参数)地倾斜角 . 解法1:消参数t,地34--x y =-ctg20°=tg110°解法2:化为标准形式:⎩⎨⎧-+=-+=οο110sin )(4110cos )(3t y t t x (-t 为参数)∴此直线地倾斜角为110°。
《直线的参数方程》教案

《直线的参数方程》教案(第1课时)一、【教学目标】1、知识与技能:能根据直线的几何条件,选择参数写出直线的参数方程;能比较深刻的理解直线参数方程中参数t的几何意义并初步应用;2、过程与方法:启发引导→讨论探究→归纳概括→简单应用3、情感态度价值观:在探求直线参数方程中注重锻炼学生的发散式思维,在探究活动中培养学生思考问题的严密性和概括能力.二、【教学重点、难点】重点:联系向量知识写出直线的参数方程,并理解参数的几何意义;难点:从直线的几何条件联想到向量;参数t的几何意义及简单应用的探究.三、【教学方法与手段】启发引导→讨论探究→归纳概括→简单应用四、【教学过程】(一)复习引入1、在平面直角坐标系中,确定一条直线的几何条件是什么?2、根据直线的几何条件,你认为用哪个几何条件来建立参数方程比较好?3、根据直线的这个几何条件,你认为应当怎样选择参数?(二) 任务一:探求直线的参数方程1.我们知道过定点000(,)M x y ,且倾斜角为α(2πα≠)的直线l 可以唯一确定,其普通方程是00tan ()y y x x α-=-.2.其参数方程如何建立呢?引导学生思考:倾斜角可以刻画直线的方向,那么能否换一个量来刻画直线的方向呢?从而引进直线l 的单位方向向量(c o s ,s i n ),[e αααπ=∈.又000(,)M M x x y y =--,0//M M e ,由向量共线定理的坐标表示易知存在实数t R ∈,使得00(,)(cos ,sin ),x x y y t αα--=化简得直线的参数方程为(三)梳理归纳(1)直线的参数方程中的变量和常量;(2)直线参数方程的形式;(3) 参数t 的取值范围是什么?(4) 参数t 的意义是什么? (问而不答,通过探究表让学生自己探究,见附页){00cos ,(t )sin ,x x t y y t αα=+=+为参数随堂检测:(四) 探究参数的几何意义及简单应用梳理归纳:参数t 的意义主要体现在2个方面:①t 的大小(即绝对值)等于0M M 的长度(即0M 与M 的距离); ②t 的正负决定了0M M 的方向.(五)、任务二:例题讲解通过例题数学生对直线参数方程以及参数t 的几何意义理解更清楚,如下例。
直线的参数方程课时教案(第一课时)

课时教案一、课题直线的参数方程(第一课时,共两课时)二、教学目的1.了解直线参数方程的条件以及参数的几何性质2.能根据直线的几何条件,写出直线的参数方程3.通过观察、探索、发现的过程,发展学生数学核心素养的“知识理解”、“知识迁移”、“知识创新”三级目标。
三、课型与教法新授课引导—发现模式四、教学重点直线参数方程的构建五、教学难点从动点M点的坐标变成直线l的参数方程的转化、t的几何意义、证明直线的参数方程、辨别是否是直线的标准参数方程六、教学过程探究一建立已知直线的参数方程1.复习引入(1)若点是直线l上的两相异点,则直线l的方向向量为,倾斜角为时,直线单位方向向量为;(2)已知两个向量),则共线的充要条件是;(3)如果直线l过定点,且倾斜角为,则直线l的方程为。
2. 讲授新课问题1 如图1,位于原点的机器人以单位速度沿单位方向向量行走时间t到达点M,求M点的坐标。
借助前面准备的知识由三角函数的定义不难得到,写成方程即。
问题2 如图2,如果初始位置不在原点,而在点,其他条件不变,求点M的坐标。
借助前面问题1和坐标的定义,不难得到,写成方程即。
问题3一般地,设直线l过点,且倾斜角为,点为其上任意一点,求M点的坐标。
可以提示学生引入参数t,则学生可类比得到(t为参数),此即为过点且倾斜角为的直线l的参数方程。
问题4 你能写出具体推导过程吗?指导学生利用向量法证明,同时指导学生借助点斜式方程进行证明。
探究二直线参数方程中t的几何意义问题5直线的参数方程(t为参数)中哪些是变量?哪些是常量?很容易由问题1,2,3得出是变量,是常量。
问题6 参数的几何意义是什么?为什么?结合参数方程的推导过程,可以引导学生从,且,得到,也可由。
由此可知|t|表示直线上的动点到定点的距离,即为参数的几何意义。
问题7参数t的取值范围是什么?t的正负与点的位置之间有什么关系?由中的正负可确定和的大小,从而确定的正负与点位置之间的关系,再利用图3可知:当时,点在点的上方;当时,点在点的下方;当时,点与点重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲参数方程2.3直线的参数方程(第一课时)(谷杨华)一、教学目标(一)核心素养通过这节课学习,了解直线参数方程的推导过程、掌握参数的几何意义,体会参数方程的优越性,在逻辑推理、数学抽象中感受参数方程的特点.(二)学习目标1.利用向量,推导直线的参数方程,体会直线的普通方程与参数方程的联系.2.掌握并理解直线参数方程中参数的几何意义.3.能初步利用直线参数方程解决一些几何问题,体会参数方程的优越性.(三)学习重点1.直线参数方程的推导.2.直线参数方程中参数的几何意义.3.直线参数方程中参数的几何意义的初步应用.(四)学习难点1.对直线参数方程的几何意义的理解.2.对直线参数方程中参数的几何意义的初步应用.二、教学设计 (一)课前设计 1.预习任务读一读:阅读教材第35页至第36页,填空:过定点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为)(sin cos 00为参数t t y y t x x ⎩⎨⎧+=+=αα,这种形式称为直线参数方程的标准形式.其中参数t 的几何意义是:直线上的动点M 到定点M 0的距离等于参数t 绝对值,即|M 0M |=|t |.若_0>t ,则0M M 的方向向上; 若_0<t _____,则0M M 的方向向下; 若___0=t ___,则M 与M 0重合.2.预习自测 (1)直线)(60sin 360cos 2为参数t t y t x ⎩⎨⎧+=+-=的倾斜角α等于( ) A .30° B .60° C .-45°D .135°【知识点】直线的参数方程【数学思想】【解题思路】根据直线标准的参数方程可知直线的倾斜角【思路点拨】熟记直线的标准参数方程【答案】B .(2)直线)0,(sin 2cos 1πααα<≤⎩⎨⎧+-=+=为参数t t y t x 必过点( ) A .(1,-2) B .(-1,2) C .(-2,1)D .(2,-1)【知识点】直线的参数方程 【数学思想】【解题过程】消去参数得到直线的普通方程为)1(tan 2-=+x y α,所以恒过定点 (1,-2).【思路点拨】消去参数化为普通方程 【答案】A .(3).下列可以作为直线2x -y +1=0的标准参数方程的是( )A.)(223221为参数t ty t x ⎪⎪⎩⎪⎪⎨⎧+=+= B.)(5525551为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧-=-= C.)(552155为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+== D.⎩⎪⎨⎪⎧x =2+255t ,y =5+55t (t 为参数)【知识点】直线的参数方程 【数学思想】【解题过程】由直线的标准参数方程形式易得选C 【思路点拨】熟记直线的标准的参数方程形式 【答案】C .(4)已知直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t x 23212(t 为参数)与曲线C :y 2=8x . 交于A ,B 两点,求弦长|AB |.【知识点】直线的标准参数方程、直线与抛物线的位置关系 【数学思想】【解题过程】将直线l 的参数方程⎩⎪⎨⎪⎧x =2+12t ,y =32t .代入y 2=8x ,并整理得3t 2-16t -64=0,t 1+t 2=163,t 1t 2=-643.所以|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2=323.【思路点拨】充分理解直线标准参数方程中参数的几何意义 【答案】323.(二)课堂设计 1.问题探究探究一 结合实例,认识直线参数方程★ ●活动① 温故知新在必修2我们学习了直线及其方程,在平面直角坐标系中,两点或一点和直线的倾斜角确定一条直线,直线的方程形式主要有:1.点斜式: )(tan 00x x y y -=-α ,其中α为直线的倾斜角,定点),(00y x M ;2.斜截式:b kx y += , 其中k 为直线的斜率,b 为直线在y 轴上的截距 ;3.两点式:010010x x x x y y y y --=-- ,其中直线经过两点的坐标为),(),,(112001y x P y x P4.截距式:1=+bya x , 其中b a ,分别为直线在x 轴、y 轴上的截距 5.一般式:0=++C By Ax ,其中B A ,不同时为0【设计意图】简要回顾直线的有关内容,为得到直线的参数方程作铺垫. ●活动② 利用旧知、推导新概念 已知直线l 的倾斜角)2(παα≠和定点),(000y x M ,如何建立直线l 的参数方程?在直线l 上任取一点),(y x M ,则M M 0),(),(),(0000y y x x y x y x --=-=取直线l 的一个单位向量[)),0(),sin ,(cos πααα∈=e由e∥M M 0,根据向量共线基本定理,存在实数R t ∈,Oyx0MMeα使e t M M =0,即)sin ,(cos ),(00ααt y y x x =-- 于是 ,cos 0αt x x =- αsin 0t y y =- 整理得 ,cos 0αt x x += αsin 0t y y +=当倾斜角2πα=时,即直线l 的方程:0x x =时,也满足上式.因此,经过点),(000y x M ,倾斜角为)2(παα≠的直线l 直线的标准参数方程为)(sin cos 00为参数t t y y t x x ⎩⎨⎧+=+=αα【设计意图】利用向量的知识,推导得出直线的参数方程,培养学生严谨的思维和逻辑推理能力. 探究二 探究直线标准参数方程中参数的几何意义★▲ ●活动① 巩固理解,加深认识在上述直线的标准参数方程中,参数t 是否和圆中参数类似,具有一定的几何意义呢?因为)sin ,(cos αα=e 1,而e t M M =0t 的几何意义为:t 等于直线上动点M 到定点0M 【设计意图】通过对推导过程分析,得出参数t 几何意义,培养学生解析问题的能力.●活动② 升华认识、理解提升当πα<<0时,0sin >α,所以直线l 的单位向量e 的方向是向上的,于是的可得: 若0>t ,则0M M 的方向向上;若0<t ,则0M M 的方向向下; 若0=t ,则M 与M 0重合.【设计意图 加深对参数t 的认识,对直线参数方程进一步的了解.探究三 理论实践,探究直线参数方程的简单应用★▲活动① 巩固基础,检查反馈例1 在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t(t 为参数)的普通方程为________.【知识点】直线的参数方程. 【数学思想】 【解题过程】由x =2+22t ,且y =1+22t ,消去t ,得x -y =1,即x -y -1=0. 【思路点拨】通过参数方程与普通方程互化求解. 【答案】x -y -1=0.同类训练 求直线2x -y +1=0的参数方程的标准形式, 【知识点】直线普通方程化为参数方程.【数学思想】【解题过程】根据直线的普通方程可知斜率是2,设直线的倾斜角为α,则tan α=2,sin α=255,cos α=55,所以直线的参数方程是⎩⎪⎨⎪⎧x =1+55t ,y =3+255t (t 为参数)..【思路点拨】通过直线确定斜率和定点,从而得到直线倾斜角α的ααcos ,sin 的值.【答案】⎩⎪⎨⎪⎧x =1+55t ,y =3+255t (t 为参数).【设计意图】巩固检查直线参数方程与普通方程互化,熟悉直线的参数方程. 例2 已知直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t ,(t 为参数).(1)求直线l 的倾斜角;(2)若点M (-33,0)在直线l 上,求t ,并说明t 的几何意义.【知识点】直线的参数方程. 【数学思想】【解题过程】(1)由于直线l : ⎩⎪⎨⎪⎧x =-3+t cos π6,y =2+t sin π6(t 为参数)表示过点M 0(-3,2)且斜率为tan π6的直线,故直线l 的倾斜角α=π6.(2)由(1)知,直线l 的单位方向向量e =⎝ ⎛⎭⎪⎫cos π6,sin π6=⎝ ⎛⎭⎪⎫32,12.∵M 0(-3,2),M (-33,0),∴M 0M →=(-23,-2)=-4⎝ ⎛⎭⎪⎫32,12=-4e ,∴点M 对应的参数t =-4,几何意义为|M 0M →|=4,且M 0M →与e 方向相反(即点M 在直线l 上点M 0的左下方).【思路点拨】 将直线l 的参数方程化为标准形式,求得倾斜角,利用参数的几何意义求得t . 【答案】(1)α=π6;(2)|M 0M →|=4,且M 0M →与e 方向相反(即点M 在直线l 上点M 0的左下方)同类训练 已知直线l 的参数方程⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 231213(t 为参数) (1)求直线l 的普通方程,并求倾斜角; (2)若点)33,33(-M 在直线l 上,求t ,并说明t 的几何意义.【知识点】直线的参数方程. 【数学思想】【解题过程】 (1)由⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 231213消去参数t ,得 直线l 的普通方程为3x -y +33+1=0.故k =3=tan α,即α=π3,因此直线l 的倾斜角为π3. (2)令33231=+t ,解得3326-=t ,所以M 对应的参数03326>-=t几何意义为|M 0M →|=3326-,且M 0M →与e 方向相同(即点M 在直线l 上点M 0的右上方).【思路点拨】将直线l 的参数方程化为标准形式,求得倾斜角,利用参数的几何意义求得t .【答案】(1)倾斜角为π3;(2)几何意义为|M 0M →|=3326-,且M 0M →与e 方向相同(即点M在直线l 上点M 0的右上方). 【设计意图】巩固检查直线参数方程与普通方程互化、参数的几何意义的理解.●活动② 强化提升、灵活应用例3 已知直线l :01=-+y x 与抛物线2x y =交于B A ,两点,求线段AB 的长和点)2,1(-M 到两点B A ,的距离之积. 【知识点】直线参数方程的应用.【数学思想】【解题过程】因为直线l 定点M ,且l 的倾斜角为43π,所以参数方程为 ⎪⎪⎩⎪⎪⎨⎧+=--=)(222221为参数t t y tx 代入抛物线的方程,得0222=-+t t设B A ,两点对应的参数分别为21,t t ,由根与系数的关系得⎩⎨⎧-=•-=+122121t t t t . 所以,由t 的几何意义得 104)(2122121=-+=-=t t t t t t AB 22121==•=•t t t t MB MA 【思路点拨】求出直线的标准参数方程,再利用参数的几何意义. 【答案】(1)10=AB ;(2)2=•MB MA .同类训练 直线l 1过点P (4,3)且倾斜角的正切值为23, (1)求l 1的参数方程;(2)若l 1和直线l 2:x +y -2=0交于点Q ,求|PQ |.【知识点】直线参数方程的应用. 【数学思想】【解题过程】(1)l 1的倾斜角为α,满足tan α=23.∴sin α=213,cos α=313. ∴l 1的参数方程为⎩⎪⎨⎪⎧x =4+313 t ,y =3+213t (t 为参数).(2)将上式代入x +y -2=0,得4+313 t +3+213t -2=0, ∴t =-13. ∴|PQ |=|t |=13.【思路点拨】求出直线的标准参数方程,再利用参数的几何意义.【答案】(1)⎩⎪⎨⎪⎧x =4+313 t ,y =3+213t (t 为参数);(2)|PQ |=13.【设计意图】巩固检查直线的参数方程中参数几何意义的应用.2. 课堂总结知识梳理(1)过定点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为)(sin cos 00为参数t t y y t x x ⎩⎨⎧+=+=αα,这种形式称为直线参数方程的标准形式.(2)参数t 的几何意义是:直线上的动点M 到定点M 0的距离等于参数t 绝对值,即|M 0M |=|t |.若0>t ,则0M M 的方向向上; 若0<t ,则0M M 的方向向下; 若0=t ,则M 与M 0重合. 重难点归纳(1)在直线的参数方程中,00,,y x α都是常数,其中α为直线的倾斜角,00,y x 是直线上一定点0M 的坐标),(00y x ,t 为参数.(2)利用直线参数方程中参数的几何意义解决问题时,必须先将直线化为标准的参数方程形式.(三)课后作业 基础型 自主突破1.直线)6(sin 2cos 3πααα=⎩⎨⎧+=+-=为参数,t t y t x 不经过( ) A.第一象限 B.第二象限 C.第三象限D.第四象限【知识点】直线的参数方程.【数学思想】【解题过程】直线⎩⎨⎧+=+-=ααsin 2tan 3t y t x 经过点(-3,2),倾斜角α=6π,所以不经过第四象限.【思路点拨】转化为普通方程求解.【答案】D .2.直线的参数方程为⎩⎪⎨⎪⎧x =-1+t2,y =2-32t (t 为参数),M 0(-1,2)和M (x ,y )是该直线上的定点和动点,则|t |的几何意义是( )A .M 0M →B .MM 0→C .||M 0M →D .以上都不是【知识点】直线的参数方程中参数的几何意义.【数学思想】【解题过程】由参数t 的几何意义及向量模的定义知选C .【思路点拨】理解参数t 的几何意义.【答案】C .3.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22ty =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22【知识点】直线的参数方程. 【数学思想】【解题过程】消去参数t ,得方程x +y -1=0,∴直线l 的斜率k =-1.【思路点拨】转化为直线的普通方程求解.【答案】B .4.一条直线的参数方程是⎩⎪⎨⎪⎧x =1+12t ,y =-5+32t(t 为参数),另一条直线的方程是x -y -23=0,则两条直线的交点与点(1,-5)之间的距离是( )A .2 3B .32C .4 3D .34【知识点】直线的参数方程. 【数学思想】【解题过程】由题意可知,点(1,-5)在直线⎩⎪⎨⎪⎧x =1+12t ,y =-5+32t(t 为参数)上.将参数方程代入x -y -23=0,得6+)2321(-t =23,所以t =23-612-32=43,根据t 的几何意义,得两直线的交点与点(1,-5)之间的距离是43. 【思路点拨】直线参数方程中参数几何意义的应用. 【答案】C .5.经过点M 0(1,5),倾斜角是π3的直线l 的参数方程为_______________. 【知识点】直线的参数方程.【解题过程】代入直线的参数方程中可得.【数学思想】【思路点拨】熟记直线的参数方程.【答案】⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)6.过点P ()-3,0且倾斜角为30°的直线和曲线⎩⎪⎨⎪⎧x =t +1t ,y =t -1t (t 为参数)相交于A ,B 两点,则线段AB 长为________.【知识点】参数方程中参数的几何意义. 【数学思想】【解题过程】直线的参数方程为⎩⎪⎨⎪⎧x =-3+32s ,y =12s (s 为参数),曲线⎩⎪⎨⎪⎧x =t +1t ,y =t -1t(t 为参数)可以化为x 2-y 2=4.将直线的参数方程代入上式,得s 2-63s +10=0,设A ,B 对应的参数分别为s 1,s 2, ∴s 1+s 2=63,s 1s 2=10,|AB |=|s 1-s 2|=212214)(s s s s -+=217. 【思路点拨】利用直线的参数方程中参数的几何意义求解. 【答案】217.能力型 师生共研7.若直线⎩⎨⎧ x =t cos α,y =t sin α(t 为参数)与圆⎩⎨⎧x =4+2cos φ,y =2sin φ(φ为参数)相切,那么直线的倾斜角α为( )A.π6 B.π4 C.π3 D.π6或5π6【知识点】参数方程、直线与圆的关系. 【数学思想】【解题过程】直线化为yx =tan α,即y =tan α·x , 圆方程化为(x -4)2+y 2=4,∴由|4tan α|tan 2α+1=2⇒tan 2α=13,∴tan α=±33,又α∈[0,π),∴α=π6或5π6. 【思路点拨】将直线和圆化为普通方程后求解. 【答案】D .8.已知直线l 过点A(-2,3),倾斜角为135°,求直线l 的参数方程,并且求直线上与点A 距离为32的点的坐标. 【知识点】直线的参数方程. 【数学思想】分类讨论的思想【解题过程】直线l 1的参数方程为⎩⎨⎧+=+-=135sin 3135cos 2t y t x (t 为参数) 即 ⎪⎪⎩⎪⎪⎨⎧+=--=t y tx 223222(t 为参数) ① 设直线上与点A 距离为32的点为B,且点B 对应的参数为t,则|AB|=|t|=32. 所以t=±32.把t=±32代入①,得当t=32时,点B 在点A 的上方,点B 的坐标为(-5,6); 当t=-32时,点B 在点A 的下方,点B 的坐标为(1,0).【思路点拨】直接根据直线的参数方程公式求解.【答案】 直线的参数方程为⎪⎪⎩⎪⎪⎨⎧+=--=t y tx 223222(t 为参数);B 点的坐标(-5,6)或(1,0).探究型 多维突破9.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|P A |+|PB |.【知识点】直线的参数方程、圆的极坐标方程. 【数学思想】【解题过程】 (1)由ρ=25sin θ,得x 2+y 2-25y =0, 即x 2+(y -5)2=5.(2)将l 的参数方程代入圆C 的直角坐标方程, 得22)22()223(+-t =5,即t 2-32t +4=0. 由于Δ=(32)2-4×4=2>0, 故可设t 1,t 2是上述方程的两实根, 所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得|P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.【思路点拨】运用直线参数方程中参数t 的几何意义,简化了计算. 【答案】(1)x 2+(y -5)2=5;(2)3 2.10.在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin )4(πθ-= 2.(1)求C 的普通方程和l 的倾斜角; (2)设点P (0,2),l 和C 交于A ,B 两点,求PBPA 11+.【知识点】参数方程、直线与椭圆的位置关系. 【数学思想】【解题过程】(1)由⎩⎨⎧x =3cos α,y =sin α消去参数α,得x 29+y 2=1,即C 的普通方程为x 29+y 2=1.由ρsin )4(πθ-=2,得ρsin θ-ρcos θ=2,(*)将⎩⎨⎧x =ρcos θ,y =ρsin θ代入(*),化简得y =x +2, 所以直线l 的倾斜角为π4.(2)由(1)知,点P (0,2)在直线l 上,可设直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos π4,y =2+t sin π4(t 为参数),即⎩⎪⎨⎪⎧x =22t ,y =2+22t (t 为参数),代入x 29+y 2=1并化简,得5t 2+182t +27=0, Δ=(182)2-4×5×27=108>0, 设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=-1825<0,t 1t 2=275>0,所以t 1<0,t 2<0, 所以21212121211111t t t t t t t t t t PB PA +=+=+=+=322. 【思路点拨】把握直线参数方程中参数的几何意义.【答案】(1)C 的普通方程为x 29+y 2=1,l 的倾斜角为π4;(2)PB PA 11+=322. 自助餐1.直线)(222221:为参数t t y tx l ⎪⎪⎩⎪⎪⎨⎧+=+=与圆)(sin 21cos 22为参数θθθ⎩⎨⎧+=+=y x C 的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心【知识点】参数方程、直线与圆的位置关系.【数学思想】【解题过程】直线l 化为普通方程为01=+-y x ,圆C 化为普通方程为4)1()2(22=-+-y x ,圆心为)1,2(,半径为2,圆心到直线的距离r d <=+-=22112,但圆心不在直线上,故选D【思路点拨】转化为普通方程求解.【答案】D .2.若直线的参数方程为)(131332131321为参数t ty t x ⎪⎪⎩⎪⎪⎨⎧+=-=,则直线的斜率为( )A .32B .32-C .23-D .23 【知识点】直线的参数方程.【数学思想】【解题过程】将直线消去参数化为普通方程为0723=-+y x ,所以斜率为23-.【思路点拨】直线消去参数化为普通方程求解.【答案】C .3.直线的参数方程为⎩⎪⎨⎪⎧x =2+12t ,y =3+32t(t 为参数),则它的斜截式方程为______________.【知识点】直线的参数方程与普通方程互化.【数学思想】【解题过程】将t x 212+=整理得42-=x t 代入t y 233+=中消去t ,整理可得.【思路点拨】将直线的参数方程中参数t 消去. 【答案】y =3x +3-23.4.在直角坐标系xOy 中,直线l(t 为参数).在极坐标系 (与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的极坐标方程为2cos ρθ=,若直线l 平分圆C 的周长,则a = . 【知识点】直线的参数方程、圆的极坐标方程.【数学思想】【解题过程】直线的普通方程为043=++a y x ,圆的方程为1)1(22=+-y x ,依题意,直线经过圆心)0,1(代入直线得3-=a . 【思路点拨】转化为普通方程求解.【答案】-3.5.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),椭圆C 的参数方程为⎩⎨⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.【知识点】参数方程、弦长公式. 【数学思想】【解题过程】椭圆C 的普通方程为x 2+y 24=1.将直线l 的参数方程⎩⎪⎨⎪⎧x =1+12t ,y =32t代入x 2+y 24=1,得14)23()211(22=++t t ,即7t 2+16t =0,解得t 1=0,t 2=-167,所以AB =|t 1-t 2|=167 【思路点拨】利用直线的参数方程中参数的几何意义求解.【答案】AB =167.6.过点)0,1(-P 作倾斜角为α的直线与曲线12322=+y x 相交于M,N 两点.(1)写出直线MN 的参数方程. (2)求PN PM •的最小值. 【知识点】直线的参数方程. 【数学思想】【解题过程】(1)因为直线MN 过点P(-1,0)且倾斜角为α,所以直线MN 的参数方程为:⎩⎨⎧=+-=ααsin cos 1t y t x (t 为参数). (2)将直线MN 的参数方程代入曲线12322=+y x ,得2(-1+tcosα)2+3(tsinα)2=6, 整理得(3-cos 2α)·t 2-4cosα·t -4=0, 设M,N 对应的参数分别为t 1,t 2, 则|PM|·|PN|=|t 1·t 2|=α2cos 34-,当cosα=0时,|PM|·|PN|取得最小值为34. 【思路点拨】利用直线的参数方程中参数的几何意义求解.【答案】(1)⎩⎨⎧=+-=ααsin cos 1t y t x (t 为参数);(2)34.。