概率论第一章

合集下载

(完整版)概率论第一章随机事件与概率

(完整版)概率论第一章随机事件与概率
P(A) = A中样本点的个数 / 样本点总数
解题思路
1、将事件定义为某个参数,如A,B,C; 2、确定总样本空间样本数与事件对应的样本数 技巧:可以采用概率的性质和事件的运算关系灵 活变换。
2. 样本点 ω—— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
1.1.3 随机事件
1. 随机事件 —— 某些样本点组成的集合, Ω的子集,常用A、B、C…表示.
• 重复排列:nr

选排列: Pnr
n! n(n 1)......(n r 1) (n r)!
组合

组合:
Cnr
n r
n! r!(n r)!
Pnr r!
注意
求排列、组合时,要掌握和注意: 加法原则、乘法原则.
加法原理
完成某件事情有 n 类途径, 在第一类途径中有m1种方 法,在第二类途径中有m2种方法,依次类推,在第 n 类 途径中有mn种方法,则完成这件事共有 m1+m2+…+mn种 不同的方法.
§1.1 随机事件及其运算 §1.2 概率的定义及其确定方法 §1.3 概率的性质 §1.4 条件概率 §1.5 独立性
§1.1 随机事件及其运算
1.1.1 随机现象:自然界中的有两类现象 1. 必然现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
乘法原理

概率第一章 概 率 论

概率第一章 概 率 论

第三节 概率的加法与乘法公式
由条件概率计算公式,可直接推得概率的乘法公式: 例6 讨论抓阄的公平性.设有10个阄中只有一个物阄,10个人不论 先后顺序抓阄,每人只能抓一次、一个阄,试讨论其结果与顺序 无关.
解 设Ai表示第i(i=1,2,…,10)个人抓到物阄,则第
6)是随机试验的6个基本事件,由于骰子的对称性,出现各个 基本事件的可能性相同,都为1/6,这个结果是可信的,没有人 会怀疑的.这种计算方法就叫做概率的古典概型方法. (1)有限性——样本空间的元素(基本事件)只有有限个,即Ω={ω 1,ω2,ω3,…,ωn}; (2)等可能性——每一个基本事件发生的可能性都相同,即 例2 先后抛掷两枚均匀的硬币,求出现一个正面一个背面的概率.
表格
例1 为实验炮弹在正常条件下的合格率,
第二节 随机事件的概率
对100000发炮弹中的100发炮弹进行发射试验,结果有90发炮弹正 常,合格的频率为90/100=0.9,因此,可以认为该批炮弹的 合格率基本在0.9左右,即任意从中抽取一发炮弹,能正常发射的 可能性为0.9. (1)0≤P(A)≤1; (2)P(Ω)=1; (3)P(⌀)=0; (4)若A⊂B,则P(A)≤P(B); (5)P(A)=1-P(). 二、概率的古典定义
事件组合而成的事件称为复合事件. 二、事件的关系与运算
在随机试验中有许多事件发生,而这些事件之间往往又有联 系.研究事件之间的各种关系与运算,可以帮助我们更深刻地认 识随机事件. 1.事件的包含与相等
第一节 随 机 事 件
2.事件的和(或并)
图 1-1
第一节 随 机 事 件
事件A与事件B至少有一个发生的事件,称为事件A与事件 B的和(或并)事件,记为A∪B(或A+B)(图1⁃2中的阴影 部分).因此,事件的和可以描述为:当且仅当事件A,B中至 少有一个发生时,事件A∪B发生.即A∪B={A,B至少有一 个发生}.

概率第一章

概率第一章
1.2.1 基本事件空间与事件
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行。
1-4
概率论与数理统计
E
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行用 符号 E 表示。 随机事件 :在条件下事件可能发生也 可能不发生的事件用大写字母 A , B , C ,表
指出
件,并表示事件 1-9
事件中哪些是基本事 B, C, D
。 概率论与数理统计
E
1.2.2 事件间的关系与运算
1.事件的包含与相等 若事件 A 中的每个基本事件都包含在 B
A
事件 B 之中,即 A 的发生必然导致 B 的发
生,则称事件 A 包含于事件 B ,或事件 B
包含事件 A ,也称是的特款 ,记为 A B 。
1-19
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.2.4 化简下列各事件:
(1) ( A B)( A B) ; (2) AB AB BC; (3) ( A B)( A B)(B C ).
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.3.1 设事件A, B 的概率分别为 和
,试求下列三种情况下的值: (1) B 互不相容; A, (2) A B ; (3) ( AB ) 1 . P
8
1 3
1 2
1-27
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;

概率论第一章 概率论的基本概念

概率论第一章  概率论的基本概念

P( A1 A2 An ) = P( A1) P( A2) P( An ).
概率的有限可加性
证明 令 An1 = An2 = = , Ai Aj = , i j, i, j = 1,2,.
由概率的可列可加性得
P(A1
A2
An )
=
P(
Ak
)
=
P( Ak ) =
n
P( Ak ) 0
概率论
第一章 概率论的基本概念
第一节 随机试验 第二节 样本空间、随机事件 第三节 频率与概率 第四节 等可能概型(古典概型) 第五节 条件概率 第六节 独立性
概率论
第一节 随机试验
几个具体试验 随机试验 小结
概率论
上一讲中,我们了解到,随机现象有其偶 然性的一面,也有其必然性的一面,这种必然 性表现在大量重复试验或观察中呈现出的固有 规律性,称为随机现象的统计规律性.而概率 论正是研究随机现象统计规律性的一门学科.
nH
f
22 0.44
n = 500 nH f
251 0.502
15124
123 4 5 6 7
随3 n的增0.6大, 频率25 f 呈现0.5出0 稳定24性9 0.498
0.2 21 0.42 256 0.512
1.0
25 0.50 247 0.494
ห้องสมุดไป่ตู้
0.2
24 0.48 251 0.502
0.4
(3) 若 A1, A2, , Ak 是两两互不相容的事件,则 f ( A1 A2 Ak ) = fn( A1) fn( A2 ) fn( Ak ).
实例 将一枚硬币抛掷 5 次、50 次、500 次, 各做
7 遍, 观察正面出现的次数及频率.

概率论讲义_带作业

概率论讲义_带作业

例 已知某类产品的次品率为0. 2 ,现从一大批这类产品中随机抽查2 0 件. 问恰好 有 件次品的概率是多少?
3) 泊松分布
概率论的基本概念 样本空间
样本点
事件
事件的概率
练习 1. 抛一枚骰子,观察向上一面的点数;事件表示“出现偶数点”
2. 对目标进行射击,击中后便停止射击,观察射击的次数;事件表示“射击次数不超 过5 次”
事件之间的关系与运算
事件语言
集合语言
样本空间
事件
的对立事件
事件 或者
分布律:如果记离散型随机变量 所有可能的取值为
值的概率,即事件
的概率为
, 取各个可能
上式称为离散型随机变量 的分布律. 分布律也可以直观的表示成下列表格:
根据概率的性质,分布律中的 应该满足下列条件: 1. 2. 例 某系统有两台机器独立运转. 设第一台与第二台机器发生故障的概率分别是 0. 1 ,0. 2. 以 表示系统中发生故障的机器数,求 的分布律.
随机变量的例子
掷一枚色子,用 记点数;
掷三枚色子,用 记点数之和;
掷一枚硬币,记
为“出现正面”,
为“出现反面”;
变量的取值是随机的,依赖于随机试验的结果
用随机变量来表示事件
设 为一个实数集合,则用
表示一个事件 ,即
例如,某射手射击某个目标,击中计1 分,未中计0 分,则计分 表示一个随机
变量,且“击中”这个事件可以表示为
第二章 随机变量及其分布
Hale Waihona Puke 第六讲 随机变量 离散随机变量
概率论的另一个重要概念是随机变量. 随机变量的引入, 使概率论的研究由个别的 随机事件扩大为随机变量所表征的随机现象的研究.

概率论第一章

概率论第一章
例如:在检查某些圆柱形产品时, 例如:在检查某些圆柱形产品时,如果规定只有它的长度及直径 都合格时才算产品合格,那么“产品合格” 直径合格” 都合格时才算产品合格,那么“产品合格”与“直径合格”、 长度合格”等事件有着密切联系。 “长度合格”等事件有着密切联系。
下面我们讨论事件之间的关系与运算
1、包含关系
⑶ 两个特殊事件
必然事件U ★ 必然事件U ★ 不可能事φ 不可能事φ
3、随机试验
如果一个试验可能的结果不止一个, 如果一个试验可能的结果不止一个,且事先不能肯定 会出现哪一个结果,这样的试验称为随机试验。 会出现哪一个结果,这样的试验称为随机试验。
例如, 掷硬币试验 例如, 寿命试验 测试在同一工艺条件下生产 掷骰子试验 掷一枚硬币,观察出正还是反. 掷一枚硬币,观察出正还是反 出的灯泡的寿命. 出的灯泡的寿命 掷一颗骰子, 掷一颗骰子,观察出现的点数
第一章 随机事件及其概率
随机事件及样本空间 频率与概率 条件概率及贝努利概型
§1 随机事件及样本空间
一、随机事件及其有关概念
1、随机事件的定义
试验中可能出现或可能不出现的情况叫“随机事件” 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件” 记作A 简称“事件”。记作A、B、C等任何事件均可表示为样本空 间的某个子集。称事件A发生当且仅当试验的结果是子集A 间的某个子集。称事件A发生当且仅当试验的结果是子集A中 的元素。 的元素。
例如,一个袋子中装有10个大小、形状完全相同的球。 例如,一个袋子中装有10个大小、形状完全相同的球。 10个大小 将球编号为1 10。把球搅匀,蒙上眼睛,从中任取一球。 将球编号为1-10。把球搅匀,蒙上眼睛,从中任取一球。
因为抽取时这些球是完全平等的, 因为抽取时这些球是完全平等的, 我们没有理由认为10个球中的某一个会 我们没有理由认为10个球中的某一个会 10 比另一个更容易取得。也就是说,10个 比另一个更容易取得。也就是说,10个 球中的任一个被取出的机会是相等的, 球中的任一个被取出的机会是相等的, 均为1/10 1/10。 均为1/10。

《概率论与数理统计电子教案第一章

《概率论与数理统计电子教案第一章

随机变量的定义
根据随机变量可能取值的性质,可以分为离散型随 机变量和连续型随机变量。
随机变量的分类
离散型随机变量分布律
分布律的定义 二项分布、泊松分布等。
常见离散型随机变量的分布 律
对于一个离散型随机变量X,其所有可能取 的值xi(i=1,2,...)与取这些值的概率 P{X=xi}(i=1,2,...)构成的表格或公式称为 离散型随机变量X的分布律。
叁 多维随机变量函数的概率密度求法
对于多维随机变量的函数,其概率密度可以通过换元法和雅可比行 列式求得。
随机变量数字特征
数学期望与方差概念
数学期望(期望值)
01
描述了随机变量取值的"平均"水平,是概率加权的平均
值。
方差
02
描述了随机变量取值的离散程度,即取值与期望值的偏
离程度。方差越大,说明随机变量的取值越分散。
大数定律应用
大数定律概念
中心极限定理内容及意义
中心极限定理内容
中心极限定理指出,大量相互独立、同分布 的随机变量之和的分布,当变量个数足够大 时,将趋于正态分布。
中心极限定理意义
中心极限定理是概率论和数理统计中的基本 定理之一,为许多统计方法的推导和应用提 供了理论基础,如置信区间、假设检验等。
棣莫弗-拉普拉斯定理
事件的独立性
计算多个事件同时发生的概率。
两个或多个事件的发生互不影响。
条件概率
在给定条件下,某事件发生的概 率。
独立试验
每次试验的结果与其他次试验的 结果无关。
随机变量及其分布
随机变量概念及分类
设随机试验的样本空间为 S={e}, X=X{e}是定义在 样本空间S上的实值单值 函数。称X=X{e}为随机变 量。

第一章概率论的基本概念

第一章概率论的基本概念

例1.6.1 在10个产品中有7个正品,3个次品, 按不放回抽样,每次一个,抽取两次,求 ①两次都取到次品的概率; ②第二次才取到次 品的概率; ③已知第一次取到次品,第二次又 取到次品的概率。
解:设A={第一次取到次品},B={第二次取到次品},
(1)P(AB)=(3×2)/(10×9) =1/15 (2)P( A B )=(7×3)/(10 × 9)=7/30 (3)P(B|A)=2/9=P(AB)/P(A)= (1/15)/(3/10)
第1.6节 条件概率、全概率公式及贝叶斯公式
一、条件概率 1、定义 对于两个事件A、B,若P(A)>0, 则称P(B|A)=P(AB)/P(A)为事件A出现 的条件下,事件B出现的条件概率。 注意:区别P(B|A)与P(AB). 例 有10个人,其中色盲者3人,从这10人中每次任取 一人,共取两次。 设A={第一次取出色盲} B= {第二次取出色盲} 则 P(B|A)=2/9 P(AB)=1/15 P(A)=3/10
1.5.2. 设事件A发生的概率是0.6,A与B都发生的概率是0.1,A
与B 都 不发生 的概率为 0.15 ,求 A发生B不发生的概率;B 发生 A不发生的概率及P(A+B). 解:由已知得,P(A)=0.6,P(AB)=0.1,P( B )=0.15, A
则 P(A-B)=P(A-AB)=P(A)-P(AB)=0.5 P(B-A)=P(B)-P(AB)
解:设A = { 取 到 的 两 个 都 是 次 品},B={取到的两个中正、 次品各一个}, C={取到的两个中至少有一个正品}. (1)基本事件总数为62,有利于事件A的基本事件数为22, 所以P(A)=4/36=1/9 (2)有利于事件B的基本事件数为4×2+2×4=16, 所以P(B)=16/36=4/9 (3)有利于事件C的基本事件数为62-2×2=32, P(C)=32/36=8/9 注意①若改为无放回地抽取两次呢? ②若改为一次抽取两个呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在相同的条件下,多次抛一枚均匀的硬币,设事件 A =“正面朝上” , 观察 n 次试验中 A 发生的次数.
试验者 德.摩根 蒲丰 费勒 K.皮尔逊 K.皮尔逊
n
2048 4040 10000 12000 24000
nA
1061 2048 4979 6019 12012
f n ( A)
0.5181 0.5069 0.4979 0.5016 0.5005
第五章 大数定律和中心极限定理
第六章 数理统计的基本概念 第七章 参数估计 第八章 假设检验
第一章 概率论的基本概念
§1.1 随机事件及其运算
§1.2
§1.3 §1.4 §1.5
概率的定义及其性质
古典概型与几何概型 条件概率 独立性
§1.1 随机事件及其运算
1.1.1 随机现象
自然界的现象按照发生的可能性(或者必然 性)分为两类: 一类是确定性现象,特点是条件完全决定结果 一类是随机现象,特点是条件不能完全决定结 果 在一定条件下,可能出现这样的结果,也可 能出现那样的结果,我们预先无法断言,这类现 象成为随机现象。 如何研究随机现象呢?
1.1.2 随机试验
例1-1: E1: 抛一枚硬币,观察正面H、反面T出现的情况;
E2: 掷一颗骰子,观察出现的点数;
E3: 记录110报警台一天接到的报警次数; E4: 在一批灯泡中任意抽取一个,测试它的寿命; E5: 记录某物理量的测量误差; E6: 在区间 0, 1 上任取一点,记录它的坐标。
例1-5 设A,B为两个随机事件, P(A)=0.5, P(AB)=0.8, P(AB)=0.3, 求P(B). 解 由P(AB)=P(A)+P(B)-P(AB),得 P(B)=P(AB)-P(A)+P(AB)=0.8-0.5+0.3=0.6.
例1-6 设A,B两个随机事件, P(A)=0.8, P(AB)=0.5, 求P(AB). 解 由性质6可知,
(3)若A与B互不相容,有 f( ) f( ) f( ) . n A B n A n B 同理可有:f( f( . n Ak) n Ak)
k 1 k 1 n n
频率是概率的近似值,概率P(A)也应有类似特征:
(1) 0 P (A) 1; (2)P () 0,P () 1; (3)若A与B互不相容,有 P (A B) P (A) P (B) .
上述试验具有如下特点: 1.试验的可重复性——在相同条件下可重复进行;
2.一次试验结果的随机性——一次试验的可能结果不
止一个,且试验之前无法确定具体是哪种结果出现;
3.全部试验结果的可知性——所有可能的结果是预先
可知 的,且每次试验有且仅有一个结果出现。 在概率论中,将具有上述三个特点的试验成为随机试 验,简称试验。随机试验常用E表示。
1.1.3 随机事件与样本空间
样本空间: 试验的所有可能结果所组成的集合称为
试验E的样本空间, 记为Ω. 样本点: 试验的每一个可能出现的结果(样本
空间中的元素)称为试验E的一个样本点, 记为ω.
例1-2:
分别写出例1-1各试验 E k 所对应的样本空间
1 {H,T};
2 {1, 2, 3, 4, 5,; 6}
P(AB)=P(A)-P(AB)=0.8-0.5=0.3
例1-7 设A与B互不相容, P(A)=0.5, P(B)=0.3, 求P(AB).
解 P(AB)=P( A B )=1-P(AB)=1-[P(A)+P(B)] =1-(0.5+0.3)=0.2
k 例 1-8 某地一年内发生 k 起交通事故的概率为
2. 和(并)事件: “事件A与事件B至少有一个 发生”,记作AB或A+B。
推广:n个事件A1, A2,…, An至少有一个发生, 记作 Ai 或 Ai
i 1
i 1
n
n
3. 积(交)事件 : 事件A与事件B同时发生,记
作 AB 或AB。
推广:n个事件A1, A2,…, An同时发生,记作

B0 A1 A2 A3;
B1 A1 A2 A3 A1 A2 A3 A1 A2 A3;
B2 A1 A2 A3 A1 A2 A3 A1 A2 A3;
B3 A1 A2 A3 .
例1-4:甲、乙、丙三人各向目标射击一发子弹,以A、B、C 分别表示甲、乙、丙命中目标,试用A、B、C的运算关系表示 下列事件:
概率的性质
性质 1
0 P( A) 1, P( ) 0.
性质 2(有限可加性) 设A1,A2,…, An是一列两两互不相容的事件,即
AiAj=,(ij), i , j=1, 2, …, n, 有
P( A1 A2 …An )= P(A1) +P(A2)+….+P(An)
性质 3 (互补性) P( A)=1 P . ( A) 性质4 P(A-B)=P(A)-P(AB).
3 {0, 1, 2, 3, }; 4 {t | t 0};
5 t | t , ;
6 t | t 0, 1.
随机事件:样本空间的任意一个子集称为随机事 件, 简称“事件”, 记作A、B、C等。
例如在试验E2中,令A表示“出现奇数点”,A就是一个 随机事件。A还可以用样本点的集合形式表示,即A={1, 3,5}.它是样本空间Ω的一个子集。 基本事件:随机事件仅包含一个样本点ω,单点子集{ω}。 复合事件:包含两个或两个以上样本点的事件。 事件发生:例如,在试验E2中,无论掷得1点、3点还是5点, 都称这一次试验中事件A发生了。 如,在试验E1中{H}表示“正面朝上”,就是个基本事件。
i 1 n
6. 对立(逆)事件 AB= , 且AB=
记作B A ,称为A的对立事件
思考:事件A和事件B互不相容与事件A和事件B互
为对立事件的区别.
对立事件一定是互不相容事件,互不相 容事件不一定是对立事件
7.事件的运算性质
交换律:AB=BA,AB=BA。 结合律:(AB)C=A(BC), (AB)C=A(BC)。 分配律:(AB)C=(AC)(BC), (AB)C=(AC)(BC)。 对偶(De Morgan)律:
一口袋中有6个乒乓球,其中4个白的,2个红的.有 放回地进行重复抽球,观察抽出红色球的次数。
n
200 400 600
nA
f n ( A)
139 201 401
0.695 0.653 0.668
频率的性质: (1) 0 f( ) 1; n A (2)f( 0,f( 1; n ) n )
性质 5(加法公式)对于任意事件A,B,有 P(A+B)=P(A)+P(B)-P(AB).
推广:
1) P ( A B C ) P ( A) P( B) P(C ) P( AB) P( AC ) P( BC ) P( ABC )
2) 设A1,A2,…,An 是 n 个随机事件, 则
A1A2…An或
或 A i Ai
i 1
i 1
n
n
4. 差事件: A-B称为A与B的差事件, 表示事件 A发生而事件B不发生
5. 互不相容事件(也称互斥的事件): 即事件 A与事件B不能同时发生。AB= 。
AB= B A
Ω
推广:n个事件A1, A2,…, An任意两个都互不相
容,则称n个事件两两互不相容。 若n个事件A1, A2,…, An 两两互不相容,且 Ai 则称n个事件A1, A2,…, An 构成一个完备事件组。
1.2.2 概率的公理化定义
定义3:若对随机试验E所对应的样本空间中的每一事件 A,均赋予一实数P(A),集合函数P(A)满足条件: (1) 非负性公理:P(A) ≥0; (2) 规范性公理:P()=1 ,P()=0 ; (3) 可列可加性公理:设A1,A2,…, 是一列两两互不相容 的事件,即AiAj=,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。
m m 同理可有:P Ak P (Ak) . k 1 k 1
定义2:在相同的条件下进行n次重复试验,当n趋于无
) 穷大时,事件A发生的频率 f( 稳定于某个确定的常 n A
数p,称此常数p为事件A发生的概率,记作 P ( A)=p .
注1:概率的统计定义不仅提供了一种定义概率的方法,更重要 的是给了一种估算概率的方法.在实际问题中,事件发生的概率往 往是未知的,由于频率具有稳定性,我们就用大量试验中得到的频 率值作为概率的近似值. 注2:但上述定义存在着明显的不足,首先,人们无法把一个试 验无限次的重复下去,因此要精确获得频率的稳定值是困难的.其 次,定义中对频率与概率关系的描述是定性的、非数学化的,从而 容易造成误解. 注3:定义2中的叙述易使人想到概率是频率的极限,概率是否为 频率的极限,以什么方式趋于概率呢?
k 1

e 1 e . 不相容,所以有 P( A) P Ak k!
P( Ai ) P( Ai )
i 1 i 1
n
n
1i j n

n
p( Ai Aj )
1i j k n
P( A A A )
i j k
n
(1)n1 P( A1 A2 An ).
性质 6 (可分性) 对任意两事件A、B,有 P(A)=P(AB)+P(AB ) , P(B)=P(AB)+P(AB )
A B A B,
k k
AB A B
可推广 Ak Ak ,
A A .
相关文档
最新文档