多变量解耦控制系统
过程控制系统-多变量解耦控制系统!!

Y2
解耦器N(S)
二输入二输出解耦系统 Y (s) G p (s)U (s) U ( s) N ( s)Uc ( s)
Y ( s) G p ( s) N ( s)Uc ( s)
1/4/2016
若是对角阵,则 可实现完全解耦
15
解耦控制设计的主要任务是解除控制回路或系统 变量之间的耦合。 解耦设计可分为完全解耦和部分解耦。
1/4/2016
22
U1 (s)
G11 ( s )
G21 (s)
Y1 ( s)
G12 (s)
U 2 (s)
G22 ( s)
Y2 ( s )
G11 ( s) G12 ( s) 开环系统的传递函数为 Go ( s) G ( s ) G ( s ) 22 21 1/4/2016
8
闭环控制系统
R1 ( s )
Y1 ( s) G p11 ( s) Y ( s) 0 2
1/4/2016
U c1 ( s) U ( s ) G p 22 ( s) c2 0
20
R1
R2
Gc1 ( s ) Gc 2 ( s )
U c1
Uc2
Gp11(s) Gp22(s)
Y 1 Y2
13
1/4/2016
第四节 解耦控制系统设计
在耦合非常严重的情况下,最有效的方法是采用 多变量系统的解耦设计。
1/4/2016
14
R1
Gc ( s ) Gc1 ( s )
U c1
N ( s)
N 11 N 21 N12
U1
G p (s)
Y1
R2
过程控制系统多变量解耦控制系统

过程控制系统多变量解耦控制系统过程控制系统多变量解耦控制系统(Multivariable Decoupling Control System)是一种能够同时控制多个相关变量的控制系统。
在传统的控制系统中,通常只有一个控制回路,而多变量解耦控制系统则可以通过多个回路同时对多个变量进行控制,从而实现变量之间的解耦。
在实际的工程应用中,往往需要控制多个相关的变量。
这些变量之间可能存在交互作用,控制其中一个变量可能会对其他变量产生影响。
传统的单变量控制系统无法有效地解决这个问题,因为它们无法考虑到变量之间的相互关系。
多变量解耦控制系统通过建立多个独立的控制回路,每个回路分别控制一个相关变量,从而实现变量之间的解耦。
解耦的目标是使每个回路的输出变量不再受到其他变量的影响,即通过调整每个回路的控制器参数,使得系统变得稳定并能够达到预期的控制效果。
多变量解耦控制系统的设计一般包括两个主要步骤:解耦器设计和控制器设计。
解耦器的作用是抑制变量之间的相互干扰,从而实现变量的解耦。
解耦器通常根据系统的数学模型来设计,通过调整解耦器的参数,可以实现变量之间的解耦效果。
在解耦器设计的基础上,需要设计每个回路的控制器。
控制器的设计一般采用传统的控制方法,如PID控制器或者先进的控制算法。
控制器的目标是为每个回路选择合适的控制参数,使得系统的稳定性和控制精度得到保证。
多变量解耦控制系统在实际应用中具有广泛的应用。
例如,在化工过程中,需要控制多个过程变量,如温度、压力和流量等。
传统的单变量控制方法无法满足工艺的需求,而多变量解耦控制系统可以通过解耦变量之间的相互作用,实现高效的过程控制。
总之,多变量解耦控制系统是一种用于控制多个相关变量的控制系统。
它通过建立多个独立的控制回路,实现变量之间的解耦,并通过调整控制器参数,使得系统达到稳定和预期的控制效果。
在工程应用中,多变量解耦控制系统具有广泛的应用前景,可以提高工艺的控制精度和稳定性,从而实现更高效的过程控制。
解耦控制系统

G p11 ( s)
0
0 Gp22 (s)
Gp11 (s)Gp22 (s)
G
p11
(
s)G
p
22
(s)
G
p12
(
s)G
p
21
(s
)
Gp11 (s)Gp21 (s)
G
p11
(
s)G
p
22
(s)
G
p12
(
s)G
p
21
(s
)
Gp22 (s)Gp12 (s)
G p11
(s)G
p 22
(s)
G p12
9
相对增益系数的计算方法1
u1(s) u2(s)
y1(s) y2(s)
输入输出稳态方程
y1 K11u1 K12u2 y2 K21u1 K22u2
p11
y1 u1
u2
K11
y1 K11u1 K12
y2 K 21u1 K 22
q11
y1 u1
y2
K11
K12 K 21 K 22
11
Y1 (s) Y2 (s)
1 0
0 1
U c1 (s) Uc2 (s)
于是得解耦器的数学模型为
N11(s)
N
21
(
s)
N12 (s) N22 (s)
G p11 ( s) G p 21 ( s)
Gp12 (s) 1 Gp22 (s)
31
3. 解耦控制系统设计
Gp11(s)Gp22 (s)
1 Gp12 (s)Gp21(s)
解耦控制
学习内容
1 耦合过程及其要解决的问题 2 相对增益与相对增益矩阵 3 解耦控制系统的设计
多变量解耦控制

W1和W2所代表的调节器的参数分别 与两个通道都有关系,因此是相互关联的,不 能如单回路控制那样有简单的整定方法。为了 解决这个问题,可分成三种情况: 1)W12(s)=W21(s)=0,表示过程无耦 合,可按单回路控制方法独立整定调节器参数 。对有耦合过程可采取解耦措施来满足这一条
2)在耦合过程中,如果某个输出(比 如y2)的响应速度很快,即很快达到稳态,此时 可 忽 略 (u2 y2) 通 道 对 别 的 通 道 的 耦 合 , 即 W12(s)=0,这样通道(u1 y1)就成为无耦合过程 ,可单独整定参数,而耦合通道调节器参数的整 定也大大简化。 3)对不能简化而又未解耦的耦合过程 ,只能在简化设计的初步设定参数的基础上,通 过凑试法来调整并最终确定调节器参数。
• 例4—4 三种流体的混合过程。阀门V1控制100℃ 的原料1的流量,开度为u1 。阀门V2控制200℃的 原料2的流量,开度为u2 ,阀门V3控制100℃的原 料3的流量,开度为u3,设三个通道配置相同,阀 门为线性阀,三种原料热容C也相同,即有KV1 = KV2 =KV3=1,C1 =C2 =C3=1。被控参数是混合后流 体的温度(热量)和总流量。试选择合理的控制通 道。
表示在其它输入ur(r≠j)不变(即其它回 路开环)时,某一输出yi 对某一输入uj 的传递关系或 静态放大系数,称为第一放大系数。
• 又令
yi qij = |yr (r ≠ i) uj
表示在其它输出yr(r≠i)不变(其它回路闭 环)时,某一输出yi 对某一输入uj 的传递关系或静态 放大系数,称为通道uj到通道yi的第二放大系数。
Y(s)=Wo(s)U(s)
U(s) Wo(s)
Y(s)
Y——输出向量(n×1); U——输入向量(n×1);
多变量信号解耦控制系统设计研究_吴鹏松

解耦问题就是在耦合对象前串联一个与耦合网 络作用相反的解耦网络来实现系统的解耦 , 从系统 结构上看就是用一个耦合网络去抵消对象网络中的 [5 ] 耦合 。既然串联解耦网络可以抵消网络中的耦 合, 从信号角度看, 在对象操纵信号上叠加一个与耦 合信号相位相反的解耦信号同样也可以抵消对象输 [6 ] 出信号中 的 耦 合 作 用 , 这就把串联解耦网络的 “网络解耦 ” 问题转化为叠加解耦信号的“信号解 [7 ] 耦” 问题, 图 1 为信号解耦原理图 。
摘要: 目的
Research on the design method of the multivariable signal decoupling control system
2 WU Pengsong1 , ,WU Chaoye 2 ,ZHOU Donghua3
( 1. The School of Information and Electric Engineering,Panzhihua University,Panzhihua 617000 ,China; 2. Department of Physics,Tsinghua University,Beijing 100084 ,China; 3. Department of Automation,Tsinghua University,Beijing 100084 ,China)
n ×n
n ×1
D C ( s) 自耦合补 其中: D L ( s) 信号解耦器的连接阵, x( s) 控制变量复向量。 偿阵, 则解耦开环系统为 Y( s) = G ( s) D L ( s) D C ( s) x ( s) = diag( G11 , G22 , …, G nn ) x( s) 。 ( 3)
多变量解耦控制方法

多变量解耦控制方法多变量解耦控制(Multivariable Decoupling Control)是一种用于多变量控制系统的控制方法,旨在解决多变量系统中变量之间相互影响的问题,以实现对个别变量的独立控制。
本文将重点介绍多变量解耦控制的基本原理、应用领域以及实现方法。
多变量解耦控制的基本原理是将多变量控制系统转化为一组耦合度相对较小的单变量子系统,从而能够实现对这些单变量子系统的相对独立控制。
在多变量控制系统中,由于变量之间存在相互耦合的影响,当控制一些变量时,其他变量的变化也会受到影响,导致控制效果不理想。
多变量解耦控制通过重新设计系统的控制结构,使得系统中的耦合影响尽可能减小,从而实现对每个变量的独立控制。
多变量解耦控制在许多工业领域中得到广泛应用,如化工过程控制、能源系统控制、飞行器控制等。
这些系统通常由多个变量组成,变量之间存在耦合关系。
例如,在化工过程控制中,系统的温度、压力、流量等变量相互影响,为了实现对每个变量的独立控制,需要采用多变量解耦控制方法。
多变量解耦控制的实现方法有多种,其中最常用的方法是基于传递函数模型的解耦控制设计。
这种方法通常包括两个步骤:模型建立和解耦控制器设计。
首先,通过系统辨识方法获得多变量系统的传递函数模型,然后根据系统的传递函数模型设计解耦控制器。
在解耦控制器设计中,通常采用频域设计方法,通过对系统的传递函数进行频域分析,确定解耦控制器的参数。
除了基于传递函数模型的解耦控制方法,还有一些其他的多变量解耦控制方法,如基于状态空间模型的解耦控制、模型预测控制、自适应控制等。
这些方法基于不同的控制原理和数学模型来实现多变量系统的解耦控制,可以根据实际需要选择适当的方法。
总结起来,多变量解耦控制是一种用于多变量控制系统的控制方法,通过重新设计系统的控制结构,实现对每个变量的独立控制。
它在工业领域中得到广泛应用,可以通过基于传递函数模型、状态空间模型、模型预测控制、自适应控制等方法来实现。
单神经元PID多变量解耦控制研究18

单神经元PID多变量解耦控制研究摘要对于具有非线性、大迟滞、强耦合特点的多变量系统,研究人员很难找到理想方法解决控制中的诸多问题。
对于多变量系统之间的耦合,有些可以采取被调量和调节量之间的适当匹配,和重新整定调节器的方法加以克服。
PID控制方法是经典控制算法中的典型代表,并在多种控制场合取得了很好的效果,但随着生产工艺的日益复杂和人们对工业过程总体性能要求的不断提高,传统的PID控制方法往往难以满足闭环优化控制的要求。
基于知识且不依赖于模型的智能控制为解决这类问题提供了新的思路,成为目前提高过程控制质量的重要途经。
而神经网络作为现代信息处理技术的一种,正在很多应用中显示它的优越性,它在自动控制领域的应用成果---神经网络控制也成为令人瞩目的发展方向。
单神经元作为构成神经网络的基本单位,具有很强的信息综合、学习记忆和自学习、自适应能力,可以处理那些难以用模型和规则描述的过程,而且结构简单易于计算。
若将这两者结合,则可以在一定程度上解决传统PID调节器不易在线实时整定参数、难于对一些复杂过程和参数慢时变系统进行有效控制的不足。
正是利用它们的优点做成单神经元自适应PID控制器对多变量系统进行解耦控制会起到一个很好的控制效果。
关键字:解耦控制系统;多变量解耦;单神经元自适应PIDThe Research Of Single Neuron PID Multivariable Decoupling ControlAbstractFor the nonlinear, heavy delay, the strong coupling characteristics of multivariable systems, Research ers are difficult to find an effective control strategy. For multivariable systems, the coupling, and some can be taken to adjust capacity and transfer the appropriate amount of matching, and re-tuning regulator approaches to overcome. PID control method is one of the traditional control methods and gets good effects under many application situations. But with the increase in complexity of manufacture technology and demands of industrial process performance, the conventional PID control can not meet the requirement of closed loop optimized control, Intelligent control independent of model of a plant and based on knowledge offers a new idea for improving the process control quality, of which neural network as one of modern information process technologies, has some advantages in man y applications. Neural network control became a regarded research direction. Single neuron as a neural network the basic unit, has the very strong ability in information synthesis, study memory, self-study, and adaptation, so, it can deal with some processes that are difficult to describe with the model or rule, structure is simple and calculation is very easy. *If they combination, they can to some extent solve the traditional PID controller difficult online real-time setting parameters, some difficult to deal with complex process and parameters slow time-varying systems for effective control inadequate. It is use the single neuron adaptive PID controller's advantages for multivariable control systems decoupling will play a very good control effect. Keywords:Decoupling Control System; Multivariable Decoupling;Single Neuron Adaptive PID目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题研究背景 (1)1.1.1 工业控制中常见的耦合现象 (1)1.1.2 研究解耦控制系统目的及意义 (2)1.2 解耦控制的国内外研究现状 (3)1.2.1 解耦控制研究现状和成果 (3)1.2.2 解耦控制的研究方法和内容 (3)第2章数字PID控制简介 (4)2.1 PID控制的基本原理 (4)2.2 数字PID控制算法 (4)2.2.1 位置式PID控制算法 (5)2.2.2 增量式PID控制算法 (5)第3章单神经元PID控制系统 (7)3.1 单神经元简介 (7)3.1.1 单神经元模型 (7)3.1.2 单神经元学习规则 (7)3.2 基于单神经元的PID控制 (8)3.2.1 基于单神经元的自适应PID控制器 (8)第4章多变量解耦控制 (12)4.1 多变量过程控制系统解耦控制 (12)4.1.1 多变量过程控制系统解耦原理与方法 (12)4.1.2 多变量过程控制系统智能解耦技术 (17)4.2 单神经元自适应PID多变量解耦控制 (18)结论 (20)致谢 (21)参考文献 (22)第1章绪论多输入多输出(MIMO)系统内部结构复杂,往往存在有一定程度的耦合作用,一个输入信号的变化可能会使多个输出量发生变化,每个输出量也不只受一个输入信号的影响。
多变量解耦控制方法

多变量解耦控制方法随着被控系统越来越复杂,如不确定性、多干扰、非线性、滞后、非最小相位等,需要控制的变量往往不只一个,且多个变量之间相互关联,即耦合,传统的单变量控制系统设计方法显然无法满足要求,工程中常常引入多变量的解耦设计........。
其思想早在控制科学发展初期就已形成,其实质是通过对一个具有耦合的多输入多输出控制系统,配以适当的补偿器,将耦合程度限制在一定程度或解耦为多个独立的单输入单输出系统。
其发展主要以Morgan于1964年提出的基于精确对消的全解耦状态空间法........及Rosenbrock于20世纪60年代提出的基于对角优势化的现代频率法.....为代表,但这两种方法都要求被控该方法是将补偿器逐个串入回路构成反馈,易于编程实现。
从解耦的角度看,类似三角解耦,但其补偿器的确定方法并不明确,不能实现完全解耦。
4)奇异值分解法包括奇异值带域法和逆结构正则化法。
主要是先绘制开环传递函数的奇异值图,采用主增益、主相位分析法,或者广义奈氏定理来确定主带域与临界点的关系,从而判别系统的鲁棒稳定性,特别适于无法特征分解或并矢分解的系统。
它是近年来普遍使用的方法之一。
此外,还有一些比较成功的频率方法,包括相对增益法、逆曲线法、特征曲线分析法。
以上解耦方法中,补偿器严重依赖被控对象的精确建模,在现代的工业生产中不具有适应性,难以保证控制过程品质,甚至导致系统不稳定。
即使采用这些方法进行部分解耦或者单向解耦,也不能实现完全解耦,而且辅助设计的工作量很大,不易实现动态解耦。
1.2自适应解耦控制的解耦、控制和辨识结合起来,以此实现参数未知或时变系统的在线精确解耦控制。
它的实质是.....将耦合项视为可测干扰,采用自校正前馈控制的方法,对耦合进行动、静态补偿,对补偿器的参数进行寻优。
它是智能解耦理论的基础,适于时变对象。
对于最小相位系统,自适应解耦控制采用最小方差....控.制律..可以抑制交联,对于非最小相位系统,它可采用广义最小方差控制律,只要性能指标函数中含有耦合项,就可达到消除耦合的目的,但需求解Diophantine方法,得到的解往往是最小二乘解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动化仪表与过程控制
Y SH X
8.1 多变量解耦控制系统
式中:n表示输出变量数;
m表示输入变量数;
函数。
Gij(s)表示第j个输入与第i个输出间的传递
讨论多个控制变量和被控变量之间存在耦合
关系的多变量控制系统,为了设计这类控制系统,首
先需要解决的问题是:如何界定变量之间的耦合强度
?这里需要引入一个相对增益的概念。
K 'ij
yi uj
(uk , k
1, 2, , n, k
i)
(8-2)
相对增益就定义为第一放大系数与第二放大系数 之比,即
自动化仪表与过程控制
Y SH X
8.1 多变量解耦控制系统
ij
K ij K 'ij
(8-2)
相对增益反映了控制变量与被控变量之间的作用 强弱,将控制变量与被控变量之间的耦合关系用一个
自动化仪表与过程控制
Y SH X
8.1 多变量解耦控制系统
如图8-3所示耦合控制系统
u1
K11
K 21
系统输入输出关系
y1
y1 y2
K11u1 K 21u1
K12u2 K 22 u2
(8-4)
K12
u2
K22
图 8-1 2×2耦合过程框图
式中
y2
K ij
yi u j
(8-5)
它表示第i个被控量相对于第j个被控量的静态增益。
11
K11 K11
K11 K 22 K11 K 22 K12 K 21
12
K12 K21 K11 K 22 K12 K 21
21
K12 K21 K11 K 22 K12 K 21
22
K11 K 22 K11 K 22 K12 K 21
(8-7)
以上是相对增益的一种解析求取方法。对于式8-4 所示系统,还可以将控制变量表示成被控变量的函数:
前面所介绍的各种控制系统均属单输入单输出制 系统,在实际工业生产过程中,绝大多数过程都是多 输入、多输出的。
多输入多输出控制系统的传递函数可表示为:
G11(s)
G(s)
Y(s)
G21
(
s
)
U(s)
Gm1 ( s )
G12 (s) G22 (s)
Gm2 (s)
G1n (s)
G2
n
(
s)
Gmn (s)
(1)实验法
先保持其它输入不变的情况下,求Δuj作用下输出yi的变 化Δyi,由此可得Kij;依次变化 uj (j=1,2,…,n,j≠I ),即可 求出全部的值,得到
自动化仪表与过程控制
Y SH X
8.1 多变量解耦控制系统
K11 K12
K
( Kij )nm
K
21
K 22
K
n1
Kn2
K1n
Y SH X
8.1 多变量解耦控制系统
第8章 复杂过程控制系统
有资料显示,在工业过程控制中有85%~95%的 控制回路采用PID进行控制并可以达到预期的控制效 果,其它的控制回路也可采用常规PID进行控制,只 是控制效果不够理想。影响常规PID控制效果的好坏 最主要的原因是因为工业过程自身特点而导致的。
ห้องสมุดไป่ตู้
K
2
n
K
nn
在Δuj作用使其它被控量不变,只改变Δyi,所得到的Δyi 和uj的变化量之比K’ij;依次变化 uj (j=1,2,…,n,j≠I ),再 逐个得到Δyi 值,得到
K '11
K'
(
K
' ij
)nm
K
'21
K
'n1
K '12 K '22
K 'n2
K '1n
K
'2n
K
'nn
8.1 多变量解耦控制系统
PID控制器之所以能够得到如此广泛的应用,一 个重要的原因是它便于设计和调试。许多现代控制理
论方法给出的控制器参数就比较多,不直观,调整起
来也比较困难。多变量控制系统就是一个例子。
自动化仪表与过程控制
Y SH X
8.1 多变量解耦控制系统
8.1.1 多变量过程的基本描述
自动化仪表与过程控制
Y SH X
8.1 多变量解耦控制系统
由式(8-4)可得
由此可得
y1
K11u1 K12
y2 K21u1 K 22
(8-5)
y1 u1
y2 const
y1 u1
y2 const
K11
K12 K21 K 22
K11
(8-6)
同理可得以下公式
自动化仪表与过程控制
Y SH X
8.1 多变量解耦控制系统
自动化仪表与过程控制
自动化仪表与过程控制
iu j
Y SH X
8.1 多变量解耦控制系统
8.1.2 相对增益与相对增益矩阵
1.相对增益的定义
在多变量耦合控制系统中,选择其中的第i个被 控变量,当只有uj作用时,即只改变uj,使其他各控 制变量uk(k=1,2,…,n,k≠j)保持不变,当uj变化 Δuj 时,所得到的被控变量yj的变化量与uj的变化量之 比,称为uj到yi通道的第一放大系数,表示为
量化的形式进行表示。利用相对增益来确定变量间的
配对选择和判断该系统是否需要解耦,现在已成为多 变量耦合系统选择变量配对的常用方法。
自动化仪表与过程控制
Y SH X
8.1 多变量解耦控制系统
1.相对增益的求取
从以上内容可以知道,为了得到相对增益,需要 先求出两个放大系数Kij和K’ij,这两个放大系数可以 通过两种方法求出:实验法和解析法。为了讨论方便, 这里假设系统输入与输出数量相等,均为n。
工业过程基本都是非线性的,具有时变性 ,变 量之间存在相互耦合作用,部分参数无法在线测量。
自动化仪表与过程控制
Y SH X
8.1 多变量解耦控制系统
针对工业过程本身的特点和过程控制中存在的问 题,研究人员一直在努力寻找更为先进、有效的控制
系统,这就是所谓复杂过程控制系统。本章主要对多
变量解耦控制、预测控制、推理控制等方法作介绍。
K ij
yi u j
(uk , k
1, 2, , n, k
j)
(8-1)
自动化仪表与过程控制
Y SH X
8.1 多变量解耦控制系统
在接着,继续选择第i个被控变量,在其它被控 变量都保持不变,只改变被控变量yi,所得到的yi的变 化量与uj的变化量之比,称为uj到yi通道的第二放大系 数,表示为
自动化仪表与过程控制
Y SH X
8.1 多变量解耦控制系统
用这种方法求相对增益,只要实验条件满足定义 的要求,能够得到接近实际的结果。但从实验方法而 言,求第一放大系数还比较简单易行,而求第二放大 系数的实验条件相当难以满足,特别在输入输出对数 较多的情况下,因此实验法求相对增益有一定困难。
(2)解析法 相对增益还可以根据过程的数学表达式进行解, 下面以两输入两输出耦合过程为例说明解析法求取相 对增益的过程。