江苏省苏北三市2017届高三第三次调研考试数学试题含答案
【江苏省南通市、扬州市、泰州市】2017年高考三模数学试卷-答案

江苏省南通市、扬州市、泰州市2017年高考三模数学试卷答 案1.12-2.2|}0{x x <<3.564.3 5.75006.110789.10.111.812.[46]-,13.214.3(,2)2- 15.解:(1)由条件,周期2πT =,即2π2πω=,所以1ω=,即πsin 3f x A x =+()().因为f x ()的图象经过点π()32,所以2πsin 32A =. ∴1A =, ∴πsin 3f x x =+()().(2)由12f παα+=()(-),得πππsin 1323αα++=()(-),即ππsin 133αα++=()(),可得:ππ2sin 133[]α=(+)-,即1sin 2α=. 因为0πα∈(,),解得:π6α=或5π6. 16.证明:(1)因为M 、N 分别为PD 、PC 的中点, 所以//MN DC ,又因为底面ABCD 是矩形,所以//AB DC .所以//MN AB ,又AB ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB .(2)因为AP AD =,P 为PD 的中点,所以AM PD ⊥.因为平面PAD ⊥平面ABCD ,又平面PAD 平面ABCD =AD ,CD AD ⊥,CD ⊂平面ABCD ,所以CD ⊥平面PAD ,又AM ⊂平面PAD ,所以CD AM ⊥.因为CD 、PD ⊂平面PCD ,CDPD D =,∴AM ⊥平面PCD .17.解:(1)由题意,10F (-,),由焦点210F (,),且经过31,2P (), 由22PF PF a +=,即24a =,则2a =,2223b a c ==-, ∴椭圆的标准方程22143x y +=; (2)设直线AB 的方程为1y k x =+().①若0k =时,24AB a ==,1FD FO +=, ∴4ABDF =.②若0k ≠时,11Ax y (,),22B x y (,),AB 的中点为00M x y (,), 22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,整理得:22224384120k x k x k +++=()-, ∴2122834k x x k +=-+,则202434k x k =-+,则0023134k y k x k =+=+(). 则AB 的垂直平分线方程为2223143434k k y x k k k =+++--(), 由DA DB =,则点D 为AB 的垂直平分线与x 轴的交点, ∴22034k D k +(-,),∴22223313434k k DF k k +=-+=++, 由椭圆的左准线的方程为4x =-,离心率为12,由1142AF x =+,得11(4)2AF x =+, 同理21(4)2BF x =+, ∴212211212()4234k AB AF BF x x k +=+=++=+, ∴4ABDF = 则综上,得ABDF 的值为4.18.解:(1)设DQ 与半圆相切于点Q ,则由四边形CDEF 是等腰梯形知,OQ DE ⊥,以CF 所在直线为x 轴,OQ 所在直线为y 轴,建立平面直角坐标系xOy .设EF 与圆切于G 点,连接OG ,过点E 作EH OF ⊥,垂足为H .∵EH OG =,OFG EFH ∠=∠,GOF HEF ∠=∠,∴Rt EHF Rt OGF △≌△,∴12HF FG EF t ==-. ∴222111()2EF HF EF t =+=+-, 解得1024t EF t t=+(<<). (2)设修建该参观线路的费用为y 万元. ①当103t <≤,由1325[2()]5()42t y t t t t =++=+.2325(02)y t '=-<,可得y 在1(0,]3上单调递减, ∴13t =时,y 取得最小值为32.5. ②当123t <<时,2111632(8)[2()]1242t y t t t t t t=-++=+--. 22331624(1)(331)'12t t t y t t t -+-=-+=. ∵123t <<,∴23310t t +->. ∴1(,1)3t ∈时,0y '<,函数y 此时单调递减;12t ∈(,)时,0y '>,函数y 此时单调递增. ∴1t =时,函数y 取得最小值24.5.由 ①②知,1t =时,函数y 取得最小值为24.5.答:(1)1024t EF t t =+(<<)(百米).(2)修建该参观线路的最低费用为24.5万元.19.解:(1)∵122331a b a b a b +=+=+,∴21111112a b q a d b q a d b +=++=++,化为:2210q q =--,1q ≠±. 解得12q =-. (2)m p p r r m a b a b a b +=+=+,即p m p r a a b b =--,∴p m r m m p m d b q q =--(-)(-),同理可得:1r m m r p d b q =-(-)(-).∵m ,p ,r 成等差数列,∴12p m r p r m ==--(-),记p m q t =-,则2210t t =--, ∵1q ≠±,1t ≠±,解得12t =.即12p m q =-,∴10q -<<, 记p m α=-,α为奇函数,由公差大于1,∴3α≥. ∴11311()()22a q =≥,即131()2q ≤-, 当3α=时,q 取得最大值为131()2-. (3)满足题意的数组为23E m m m =++(,,),此时通项公式为:1133()(1)288m n n a m -=---,*m N ∈. 例如134E =(,,),31188n a n =-. 20.(1)证明:12a =时,21cos 2f x x x =+(), 故sin f x x x '=()-,即sin g x x x =()-,1cos 0g x x '=≥()-, 故g x ()在R 递增;(2)解:∵2sin g x f x ax x ='=()()-,∴2cos g x a x '=()-, ①12a ≥时,1cos 0g x x '≥≥()-,函数f x '()在R 递增, 若0x >,则00f x f '=()>(), 若0x <,则00f x f ''=()<(),故函数f x ()在0+∞(,)递增,在0∞(-,)递减, 故f x ()在0x =处取极小值,符合题意; ②12a ≤-时,1cos 0g x x '≤≤()--,f x '()在R 递减, 若0x >,则00f x f ''=()<(), 若0x <,则00f x f '=()>(), 故f x ()在0+∞(,)递减,在0∞(-,)递增, 故f x ()在0x =处取极大值,不合题意; ③1122a -<<时,存在00x π∈(,),使得0cos 2x a =,即00g x '=(), 但当00x x ∈(,)时,cos 2x a >,即0g x '()<,f x '()在00x (,)递减, 故00f x f ''=()<(),即f x ()在00x (,)递减,不合题意, 综上,a 的范围是1[2+∞,); (3)解:记2cos ln 0h x ax x x x x =+-()(>),①0a >时,ln x x <,则1122ln x x <,即ln x <,当2x >时,112sin 1ln 2222022h x ax x x ax a a+'==()--->--﹣﹣)>,故存在21(2m a+=,函数h x ()在m +∞(,)递增; ②0a ≤时,1x >时,2sin 1ln sin 1ln 0h x ax x x x x '=()---<---<, 故存在1m =,函数h x ()在m +∞(,)递减;综上,函数ln y f x x x =()-在0+∞(,)上广义单调.21.解:连结PA 、PB 、CD 、BC ,因为PAB PCB ∠=∠,又点P 为弧AB 的中点,所以PAB PBA ∠=∠,所以PCB PBA ∠=∠,又DCB DPB ∠=∠,所以PFE PBA DPB PCB DCB PCD ∠=∠+∠=∠+∠=∠,所E 、F 、D 、C 四点共圆.所以PE PC PF PD =.22.解:由题意,111115a b -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,即1115a b -=-⎧⎨--=-⎩,解得2a =,4b =,所以矩阵1214M ⎡⎤=⎢⎥-⎣⎦. 所以矩阵M 的特征多项式为2125614f λλλλλ--==+-()-,令0f λ=(),得矩阵M 的特征值为2和3. 23.解:因为圆心C 在极轴上且过极点,所以设圆C 的极坐标方程为:cos a ρθ=,又因为点)4π在圆C 上,所以cos 4a π=,解得6a =, 所以圆C 的极坐标方程为:6cos ρθ=.24.证明:∵a ,b ,c ,d 是正实数,且1abcd =,∴54a b c d a +++≥=,同理可得:54a b c d b +++≥=,54a b c d c +++≥=,54a b c d d +++≥=,将上面四式相加得:555533334444a b c d a b c d a b c d +++++++≥+++,∴5555a b c d a b c d +++≥+++.25.解:(1)以D 为原点建立如图所示的空间直角坐标系D xyz -,则000D (,,),220B (,,),010C (,,),002S (,,) ∴(2,2,2)SB =-,(0,1,2)SC =-,(0,0,2)DS =设面SBC 的法向量为(,,)m x y z =由222020m SB x y z m SC y z ⎧=+-=⎪⎨=-=⎪⎩可取(1,2,1)m =-∵SD ⊥面ABC ,∴取面ABC 的法向量为(0,0,1)n = 6cos ,m n =∵二面角S BC A --为锐角.二面角S BC A --(2)由(1)知101E (,,),则(2,1,0)CB =,(1,1,1)CE =-, 设CP CB λ=,01λ≤≤().则(2,,0)CP λλ=,(12,1,1)PE CE CP λλ=-=---易知CD ⊥面SAD ,∴面SAD 的法向量可取(0,1,0)CD =cos ,13PE CD ==, 解得13λ=或119λ=(舍去). 此时21(,,0)33CP =,∴5CP =∴线段CP26.解:(1)102()bc ad f x f x ax b -='=+()(), 2132[]2()()()bc ad ax b a bc ad f x f x ax b -+--='='=+()(); (2)猜想111(1)()!()n n n n a bc ad n f x ax b --+-++-++()=,*n N ∈, 证明:①当1n =时,由(1)知结论正确;②假设当n k =,*k N ∈时,结论正确, 即有111(1)()!()k k k k a bc ad k f x ax b --+-+-+=+() 11112(1)()1?1])[(k k k k k k a bc ad k a bc ad k ax b ax b -++-++-+=+++'=+---()(-)(-)()() 所以当10n k =+时结论成立,由①②得,对一切*n ∈N 结论正确.江苏省南通市、扬州市、泰州市2017年高考三模数学试卷解析1.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:∵a+bi=(4+3i)i=﹣3+4i.∴a=﹣3,b=4.∴ab=﹣12.故答案为:﹣12.2.【考点】1F:补集及其运算.【分析】根据补集的定义写出运算结果即可.【解答】解:集合U={x|x>0},A={x|x≥2},则∁U A={x|0<x<2}.故答案为:{x|0<x<2}.3.【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,由此能求出甲、乙2首歌曲至少有1首被播放的概率.【解答】解:∵随机播放甲、乙、丙、丁4首歌曲中的2首,∴基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,∴甲、乙2首歌曲至少有1首被播放的概率:p=1﹣=.故答案为:.4.【考点】EF:程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,循环可得结论.【解答】解:模拟程序的运行,可得S=1,k=1S=2,不满足条件S>10,k=2,S=6不满足条件S>10,k=3,S=15满足条件S>10,退出循环,输出k的值为3.故答案为:3.5.【考点】B3:分层抽样方法.【分析】由题意,其他年级抽取200人,其他年级共有学生3000人,即可求出该校学生总人数.【解答】解:由题意,其他年级抽取200人,其他年级共有学生3000人,则该校学生总人数是=7500.故答案为:7500.6.【考点】85:等差数列的前n项和.【分析】利用等差数列通项公式求出首项a1=2,由此利用等差数列前n项和公式能求出S10.【解答】解:∵等差数列{a n}的前n项和为S n,若公差d=2,a5=10,∴a5=a1+4×2=10,解得a1=2,∴S10=10×2+=110.故答案为:110.7.【考点】HR:余弦定理;HP:正弦定理.【分析】利用三角形的面积公式求出A,再利用余弦定理求出BC.【解答】解:因为锐角△ABC的面积为3,且AB=3,AC=4,所以×3×4×sinA=3,所以sinA=,所以A=60°,所以cosA=,所以BC===.故答案为:.8.【考点】KC:双曲线的简单性质.【分析】根据题意,由抛物线的方程可得其焦点坐标,将其代入双曲线的方程可得a2的值,即可得双曲线的方程,计算可得c的值,由双曲线离心率公式计算可得答案.【解答】解:根据题意,抛物线的方程为y2=8x,其焦点为(2,0),若双曲线﹣y2=1(a>0)经过点(2,0),则有﹣0=1,解可得a2=4,即双曲线的方程为:﹣y2=1,则a=2,c==,则双曲线的离心率e==;故答案为:.9.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】利用扇形的弧长等于圆锥底面周长作为相等关系,列方程求解得到圆锥的底面半径,然后利用勾股定理确定圆锥的高即可.【解答】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=1;圆锥的高为: =2.故答案为:2.10.【考点】6H:利用导数研究曲线上某点切线方程.【分析】先设出切点坐标P(x0,e x0+x0),再利用导数的几何意义写出过P的切线方程,最后由直线是y=2x+b 是曲线y=e x+x的一条切线,求出实数b的值.【解答】解:∵y=e x+x,∴y′=e x+1,设切点为P(x0,e x0+x0),则过P的切线方程为y﹣e x0﹣x0=(e x0+1)(x﹣x0),整理,得y=(e x0+1)x﹣e x0•x0+e x0,∵直线是y=2x+b是曲线y=e x+x的一条切线,∴e x0+1=2,e x0=1,x0=0,∴b=1.故答案为1.11.【考点】7F:基本不等式.【分析】根据题意,将变形可得则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4,由基本不等式分析可得答案.【解答】解:根据题意,x,y满足x+y=1,则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4≥2+4=8,即的最小值是8;故答案为:8.12.【考点】9R:平面向量数量积的运算.【分析】依题意,设=λ(0≤λ≤),=μ(﹣1≤μ≤0),由=+, =+,可求得=(+)•(+)=λ+μ=9λ+4μ;再由0≤λ≤,﹣1≤μ≤0,即可求得﹣4≤9λ+4μ≤6,从而可得答案.【解答】解:∵AB∥DC,∠ABC=90°,AB=3,BC=DC=2,且E,F分别是线段DC和BC上的动点,∴=λ(0≤λ≤),=μ(﹣1≤μ≤0),又=+, =+,∴=(+)•(+)=(+)•(λ+μ)=λ+μ=9λ+4μ.∵0≤λ≤,∴0≤9λ≤6①,又﹣1≤μ≤0,∴﹣4≤4μ≤0②,①+②得:﹣4≤9λ+4μ≤6.即的取值范围是[﹣4,6],故答案为:[﹣4,6].13.【考点】J9:直线与圆的位置关系.【分析】设出=t,化简可得圆的方程,运用两圆相减得交线,考虑圆心到直线的距离不大于半径,即可得出结论.【解答】解:设P(x,y),=t,则(1﹣t2)x2+(1﹣t2)y2﹣2x+(2﹣4t2)y+2﹣4t2=0,圆x2+y2=2两边乘以(1﹣t2),两圆方程相减可得x﹣(1﹣2t2)y+2﹣3t2=0,(0,0)到直线的距离d=,∵t>0,∴0<t≤2,∴的最大值是2,故答案为2.14.【考点】54:根的存在性及根的个数判断.【分析】求出g(x)的解析式,计算g(x)的零点,讨论g(x)在区间[a,+∞)上的零点个数,得出g(x)在(﹣∞,a)上的零点个数,列出不等式解出a的范围.【解答】解:g(x)=,显然,当a=2时,g(x)有无穷多个零点,不符合题意;当x≥a时,令g(x)x=0得x=0,当x<a时,令g(x)=0得x=0或x2=,(1)若a>0且a≠2,则g(x)在[a,+∞)上无零点,在(﹣∞,a)上存在零点x=0和x=﹣,∴≥a,解得0<a<2,(2)若a=0,则g(x)在[0,+∞)上存在零点x=0,在(﹣∞,0)上存在零点x=﹣,符合题意;(3)若a<0,则g(x)在[a,+∞)上存在零点x=0,∴g(x)在(﹣∞,a)上只有1个零点,∵0∉(﹣∞,a),∴g(x)在(﹣∞,a)上的零点为x=﹣,∴﹣<a,解得﹣<a<0.综上,a的取值范围是(﹣,2).故答案为(﹣,2).15.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;H2:正弦函数的图象.【分析】(1)由条件可求周期,利用周期公式可求ω=1,由f(x)的图象经过点(,),可求Asin =.解得A=1,即可得解函数解析式.(2)由已知利用三角函数恒等变换的应用化简可得sin.结合范围α∈(0,π),即可得解α的值.16.【考点】LW:直线与平面垂直的判定;LS:直线与平面平行的判定.【分析】(1)推导出MN∥DC,AB∥DC.从而MN∥AB,由此能证明MN∥平面PAB.(2)推导出AM⊥PD,CD⊥AD,从而CD⊥平面PAD,进而CD⊥AM,由此能证明AM⊥平面PCD.17.【考点】KL:直线与椭圆的位置关系.【分析】(1)根据椭圆的定义,即可求得2a=4,由c=1,b2=a2﹣c2=3,即可求得椭圆的标准方程;(2)分类讨论,当直线的斜率存在时,代入椭圆方程,由韦达定理及中点坐标公式求得M点坐标,求得直线AB垂直平分线方程,即可求得D点坐标,由椭圆的第二定义,求得丨AF丨=(x1+4),即丨BF丨=(x2+4),利用韦达定理即可求得丨AB丨,即可求得的值.18.【考点】6K:导数在最大值、最小值问题中的应用.【分析】(1)设DQ与半圆相切于点Q,则由四边形CDEF是等腰梯形知,OQ⊥DE,以CF所在直线为x 轴,OQ所在直线为y轴,建立平面直角坐标系xoy.设EF与圆切于G点,连接OG,过点E作EH⊥OF,垂足为H.可得Rt△EHF≌Rt△OGF,HF=FG=EF﹣t.利用EF2=1+HF2=1+,解得EF.(2)设修建该参观线路的费用为y万元.①当,由y=5=5.利用y′,可得y在上单调递减,即可得出y的最小值.②当时,y==12t+﹣﹣.利用导数研究函数的单调性极值最值即可得出.19.【考点】84:等差数列的通项公式.【分析】(1)由a1+b2=a2+b3=a3+b1,利用等差数列与等比数列的通项公式可得:a1+b1q==a1+2d+b1,化简解出即可得出.(2)a m+b p=a p+b r=a r+b m,即a p﹣a m=b p﹣b r,可得(p﹣m)d=b m(q p﹣m﹣q r﹣m),同理可得:(r﹣p)d=b m(q r ﹣m﹣1).由m,p,r成等差数列,可得p﹣m=r﹣p=(r﹣m),记q p﹣m=t,解得t=.即q p﹣m=,由﹣1<q<0,记p﹣m=α,α为奇函数,由公差大于1,α≥3.可得|q|=≥,即q,即可得出.(3)满足题意的数组为E=(m,m+2,m+3),此时通项公式为:a n=,m∈N*.20.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,根据导函数的符号,求出函数的单调区间即可;(2)求出函数的导数,通过讨论a的范围求出函数的单调区间,单调函数的极小值,从而确定a的具体范围即可;(3)记h(x)=ax2+cosx﹣xlnx(x>0),求出函数的导数,通过讨论a的范围结合函数的单调性证明即可.21.【考点】NC:与圆有关的比例线段.【分析】连结PA、PB、CD、BC,推导出∠PFE=∠PBA+∠DPB=∠PCB+∠DCB=∠PCD,从而E、F、D、C四点共圆.由此能证明PE•PC=PF•PD.22.【考点】OV:特征值与特征向量的计算.【分析】设出矩阵,利用特征向量的定义,即二阶变换矩阵的概念,建立方程组,即可得到结论.[选修4-4:坐标系与参数方程]23.【考点】Q4:简单曲线的极坐标方程.【分析】因为圆心C在极轴上且过极点,所以设圆C的极坐标方程为:ρ=acosθ,又因为点(3,)在圆C上,代入解得ρ即可得出圆C的极坐标方程.[选修4-5:选修4-5:不等式选讲]24.【考点】R6:不等式的证明.【分析】由不等式的性质可得:a5+b+c+d≥4=4a,同理可得其他三个式子,将各式相加即可得出结论.解答题25.【考点】MI:直线与平面所成的角;MT:二面角的平面角及求法.【分析】以D为原点建立如图所示的空间直角坐标系D﹣xyz,则D(0,0,0),B(2,2,0),C(0,1,0),S(0,0,2),利用空间向量求解.26.【考点】RG:数学归纳法;63:导数的运算.【分析】(1)利用条件,分别代入直接求解;(2)先说明当n=1时成立,再假设n=K(K∈N*)时,猜想成立,证明n=K+1时,猜想也成立.从而得证.。
江苏省连云港市、徐州市、宿迁市2017届高三下学期第三次模拟考试数学试题含答案-精编

(这是边文,请据需要手工删加)(这是边文,请据需要手工删加)苏北三市高三年级第三次模拟考试 2017届高三年级第三次模拟考试(三)数学参考公式:样本数据1,2,…,n 的方差s 2=1n ∑n i =1 (i -)2,其中=1n∑n i =1i . 棱锥的体积V =13Sh ,其中S 是棱锥的底面积,h 是高.一、 填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合A ={-1,1,2},B ={0,1,2,7},则集合A∪B 中元素的个数为________.2. 设a ,b ∈R ,1+i 1-i=a +b i(i 为虚数单位),则b 的值为________.(第5题)3. 在平面直角坐标系Oy 中,双曲线x 24-y23=1的离心率是________.4. 现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是________.5. 如图是一个算法的流程图,则输出的的值为________.6. 已知一组数据3,6,9,8,4,则该组数据的方差是________.7. 已知实数,y 满足⎩⎪⎨⎪⎧y ≤x -1,x ≤3x +y≥2,则yx的取值范围是________.8. 若函数f ()=2sin (2+φ)⎝⎛⎭⎪⎫0<φ<π2的图象过点(0,3),则函数f ()在上的单调减区间是________.9. 在公比为q 且各项均为正数的等比数列{a n }中,S n 为{a n }的前n 项和.若a 1=1q 2,且S 5=S 2+2,则q 的值为________.10. 如图,在正三棱柱ABCA 1B 1C 1中,已知AB =AA 1=3,点P 在棱CC 1上,则三棱锥PABA 1的体积为________.(第10题)(第11题)11. 如图,已知正方形ABCD 的边长为2,BC 平行于轴,顶点A ,B 和C 分别在函数y 1=3log a ,y 2=2log a 和y 3=log a (a>1)的图象上,则实数a 的值为________.12. 已知对于任意的∈(-∞,1)∪(5,+∞),都有2-2(a -2)+a>0,则实数a 的取值范围是________.13. 在平面直角坐标系Oy 中,圆C :(+2)2+(y -m )2=3.若圆C 存在以G 为中点的弦AB ,且AB =2GO ,则实数m 的取值范围是________.14. 已知△ABC 三个内角A ,B ,C 的对应边分别为a ,b ,c ,且C =π3,c =2.当AC →·AB→取得最大值时,ba的值为________.二、 解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或计算步骤.15. (本小题满分14分)如图,在△ABC 中,已知点D 在边AB 上,AD =3DB ,cos A =45,cos ∠ACB =513,BC =13.(1) 求cos B 的值; (2) 求CD 的长.16. (本小题满分14分)如图,在四棱锥PABCD 中,底面ABCD 是矩形,点E 在棱PC 上(异于点P ,C),平面ABE 与棱PD 交于点F.(1) 求证:AB∥EF;(2) 若平面PAD⊥平面ABCD ,求证:AF⊥EF.如图,在平面直角坐标系Oy 中,已知椭圆C :x 24+y23=1的左、右顶点分别为A ,B ,过右焦点F 的直线l 与椭圆C 交于P ,Q 两点(点P 在轴上方).(1) 若QF =2FP ,求直线l 的方程;(2) 设直线AP ,BQ 的斜率分别为1,2.是否存在常数λ,使得1=λ2?若存在,求出λ的值;若不存在,请说明理由.某景区修建一栋复古建筑,其窗户设计如图所示.圆D 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,且AB AD ≥12.设∠E OF=θ,透光区域的面积为S.(1) 求S 关于θ的函数关系式,并求出定义域.(2) 根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB 的长度.已知两个无穷数列{a n }和{b n }的前n 项和分别为S n ,T n ,a 1=1,S 2=4,对任意的n∈N *,都有3S n +1=2S n +S n +2+a n .(1) 求数列{a n }的通项公式;(2) 若{b n }为等差数列,对任意的n ∈N *,都有S n >T n .证明:a n >b n ; (3) 若{b n }为等比数列,b 1=a 1,b 2=a 2,求满足a n +2T n b n +2S n=a (∈N *)的n 值.已知函数f ()=m x+ln(m >0),g ()=ln -2. (1) 当m =1时,求函数f ()的单调增区间;(2) 设函数h ()=f ()-g ()-2,>0.若函数y =h (h ())的最小值是322,求m 的值;(3) 若函数f (),g ()的定义域都是,对于函数f ()的图象上的任意一点A ,在函数g ()的图象上都存在一点B ,使得OA ⊥OB ,其中e 是自然对数的底数,0为坐标原点.求m 的取值范围.(这是边文,请据需要手工删加)(这是边文,请据需要手工删加)(这是边文,请据需要手工删加)2017届高三年级第三次模拟考试(三)数学附加题21. 本题包括A 、B 、C 、D 四小题,请选定其中两题.......,.并作答.....若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A . (本小题满分10分)如图,圆O 的弦AB ,MN 交于点C ,且A 为弧MN 的中点,点D 在弧BM 上.若∠ACN=3∠ADB ,求∠ADB 的度数.B . (本小题满分10分)已知矩阵A =⎣⎢⎡⎦⎥⎤a 32d ,若A =⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤84,求矩阵A 的特征值.C. (本小题满分10分)在极坐标系中,已知点A ⎝⎛⎭⎪⎫2,π2,点B 在直线l :ρcos θ+ρsin θ=0(0≤θ≤2π)上.当线段AB最短时,求点B的极坐标.D. (本小题满分10分)已知a,b,c为正实数,且a3+b3+c3=a2b2c2.求证:a+b+c≥333.【必做题】第22题、第23题.每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22. (本小题满分10分)在平面直角坐标系Oy中,点F(1,0),直线=-1与动直线y=n的交点为M,线段MF 的中垂线与动直线y=n的交点为P.(1) 求动点P的轨迹E的方程;(2) 过动点M作曲线E的两条切线,切点分别为A,B,求证:∠AMB的大小为定值.23. (本小题满分10分)已知集合U={1,2,…,n}{n∈N*,n≥2),对于集合U的两个非空子集A,B,若A∩B =∅,则称(A,B)为集合U的一组“互斥子集”.记集合U的所有“互斥子集”的组数为f(n)(视(A,B)与(B,A)为同一组“互斥子集”).(1) 写出f(2),f(3),f(4)的值;(2) 求f(n).(这是边文,请据需要手工删加)(这是边文,请据需要手工删加)2017届高三年级第三次模拟考试(三)(苏北三市)数学参考答案一、填空题1. 52. 13.72 4. 16 5. 6 6. 265(或 5.2) 7. ⎣⎢⎡⎦⎥⎤-13,23⎝⎛⎭⎪⎫或-13≤y x ≤23 8. (π12,7π12)⎝ ⎛⎭⎪⎫或⎣⎢⎡⎦⎥⎤π12,7π12 9. 5-12 10. 943 11. 2 12. (1,5](或1<a≤5) 13. (或-2≤m ≤2) 14. 2+ 3二、 解答题15. (1) 在△ABC 中,cos A =45,A ∈(0,π),所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫452=35.(2分) 同理可得,sin ∠ACB =1213. (4分)所以cos B =cos =-cos (A +∠ACB)=sin A sin ∠ACB -cos A cos ∠ACB (6分) =35×1213-45×513=1665.(8分) (2) 在△ABC 中,由正弦定理得,AB =BCsin Asin ∠ACB =1335×1213=20.(10分)又AD =3DB ,所以BD =14AB =5. (12分)在△BCD 中,由余弦定理得, CD =BD 2+BC 2-2BD·BC cos B =52+132-2×5×13×1665=9 2. (14分)16. (1) 因为ABCD 是矩形,所以AB∥CD.(2分) 又因为AB ⊄平面PDC ,CD ⊂平面PDC , 所以AB∥平面PDC.(4分) 又因为AB ⊂平面ABEF , 平面ABEF∩平面PDC =EF , 所以AB∥EF.(6分)(2) 因为ABCD 是矩形,所以AB⊥AD. (8分)又因为平面PAD⊥平面ABCD ,平面PAD∩平面ABCD =AD , AB ⊂平面ABCD ,所以AB⊥平面PAD. (10分) 又AF ⊂平面PAD ,所以AB⊥AF. (12分) 又由(1)知AB∥EF,所以AF⊥EF.(14分)17. (1) 因为a 2=4,b 2=3,所以c =a 2-b 2=1, 所以F 的坐标为(1,0),(1分)设P(1,y 1),Q(2,y 2),直线l 的方程为=my +1, 代入椭圆方程,得(4+3m 2)y 2+6my -9=0, 则y 1=-3m +61+m 24+3m 2, y 2=-3m -61+m 24+3m2. (4分) 若QF =2PF ,则-3m -61+m 24+3m 2+2×-3m +61+m24+3m 2=0, 解得m =255,故直线l 的方程为5-2y -5=0.(6分)(2) 由(1)知,y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m 2,所以my 1y 2=-9m 4+3m 2=32(y 1+y 2),(8分)所以k 1k 2=y 1x 1+2·x 2-2y 2=y 1(my 2-1)y 2(my 1+3) (12分)=32(y 1+y 2)-y 132(y 1+y 2)+3y 2=13, 故存在常数λ=13,使得1=132.(14分)18. (1) 过点O 作OH⊥FG 于点H ,则∠OFH=∠EOF=θ, 所以OH =OF sin θ=sin θ, FH =OF cos θ=cos θ.(2分) 所以S =4S △OFH +4S 扇形OEF=2sin θcos θ+4×⎝ ⎛⎭⎪⎫12θ =sin 2θ+2θ,(6分) 因为AB AD ≥12,所以sin θ≥12,所以定义域为⎣⎢⎡⎭⎪⎫π6,π2.(8分)(2) 矩形窗面的面积为S 矩形=AD·AB=2×2sin θ=4sin θ. 则透光区域与矩形窗面的面积比值为 2sin θcos θ+2θ4sin θ=cos θ2+θ2sin θ.(10分)设f(θ)=cos θ2+θ2sin θ,π6≤θ<π2.则f′(θ)=-12sin θ+sin θ-θcos θ2sin 2θ=sin θ-θcos θ-sin 3θ2sin 2θ=sin θcos 2θ-θcos θ2sin 2θ=cos θ⎝ ⎛⎭⎪⎫12sin 2θ-θ2sin 2θ,(12分)因为π6≤θ<π2,所以12sin 2θ≤12,所以12sin 2θ-θ<0,故f′(θ)<0,所以函数f(θ)在⎣⎢⎡⎭⎪⎫π6,π2上单调减. 所以当θ=π6时,f (θ)有最大值π6+34,此时AB =2sin θ=1(m ).(14分)答:(1) S 关于θ的函数关系式为S =sin 2θ+2θ,定义域为⎣⎢⎡⎭⎪⎫π6,π2;(2) 透光区域与矩形窗面的面积比值最大时,AB 的长度为1m .(16分) 19. (1) 由3S n +1=2S n +S n +2+a n ,得2(S n +1-S n )=S n +2-S n +1+a n , 即2a n +1=a n +2+a n ,所以a n +2-a n +1=a n +1-a n . (2分) 由a 1=1,S 2=4,可知a 2=3.所以数列{a n }是以1为首项,2为公差的等差数列.故{a n }的通项公式为a n =2n -1.(4分)(2) 证法一:设数列{b n }的公差为d ,则T n =nb 1+n (n -1)2d ,由(1)知,S n =n 2.因为S n >T n ,所以n 2>nb 1+n (n -1)2d ,即(2-d)n +d -2b 1>0恒成立,所以⎩⎪⎨⎪⎧2-d≥0,d -2b 1>0, 即⎩⎪⎨⎪⎧d≤2,2b 1<d.(6分) 又由S 1>T 1,得b 1<1,所以a n -b n =2n -1-b 1-(n -1)d =(2-d)n +d -1-b 1 ≥(2-d)+d -1-b 1=1-b 1>0. 所以a n >b n ,得证. (8分)证法二:设{b n }的公差为d ,假设存在自然数n 0≥2,使得an 0≤bn 0, 则a 1+(n 0-1)×2≤b 1+(n 0-1)d ,即a 1-b 1≤(n 0-1)(d -2), 因为a 1>b 1,所以d>2.(6分)所以T n -S n =nb 1+n (n -1)2d -n 2=⎝ ⎛⎭⎪⎫d 2-1n 2+⎝ ⎛⎭⎪⎫b 1-d 2n ,因为d 2-1>0,所以存在N 0∈N *,当n >N 0时,T n -S n >0恒成立.这与“对任意的n ∈N *,都有S n >T n ”矛盾! 所以a n >b n ,得证. (8分)(3) 由(1)知,S n =n 2.因为{b n }为等比数列,且b 1=1,b 2=3, 所以{b n }是以1为首项,3为公比的等比数列. 所以b n =3n -1,T n =3n-12.(10分)则a n +2T n b n +2S n =2n -1+3n -13n -1+2n 2=3n +2n -23n -1+2n 2=3-6n 2-2n +23n -1+2n2, 因为n ∈N *,所以6n 2-2n +2>0,所以a n +2T nb n +2S n<3.(12分)而a =2-1,所以a n +2T nb n +2S n=1,即3n -1-n 2+n -1=0(*).当n =1,2时,(*)式成立;(14分) 当n ≥2时,设f (n )=3n -1-n 2+n -1,则f (n +1)-f (n )=3n -(n +1)2+n -(3n -1-n 2+n -1)=2(3n -1-n )>0,所以0=f (2)<f (3)<…<f (n )<…. 故满足条件的n 的值为1和2.(16分) 20. (1) 当m =1时,f()=1x +ln ,f ′()=-1x2+ln +1.(2分)因为f′()在(0,+∞)上单调增,且f′(1)=0, 所以当>1时,f ′()>0;当0<<1时,f ′()<0. 所以函数f()的单调增区间是(1,+∞).(4分)(2) h()=m x +2-2,则h′()=2-m x 2=2x 2-mx 2,令h′()=0得=m 2, 当0<<m2时,h ′()<0,函数h()在(0,m2)上单调减; 当>m2时,h ′()>0,函数h()在(m2,+∞)上单调增. 所以min =h(m2)=22m - 2.(6分) ①当2(2m -1)≥m 2,即m≥49时, 函数y =h(h())的最小值h(22m -2)= 2⎣⎢⎡⎦⎥⎤m 2(2m -1)+2(2m -1)-1=322,即17m -26m +9=0,解得m =1或m =917(舍),所以m =1;………8分)②当0<2(2m -1)<m 2,即14<m<49时, 函数y =h(h())的最小值h ⎝ ⎛⎭⎪⎫m 2=2(2m -1)=322, 解得m =54(舍).综上所述,m 的值为1.(10分)(3) 由题意知,OA =m x 2+ln ,OB =ln x -2x.考虑函数y =ln x -2x ,因为y′=3-ln xx 2>0在上恒成立, 所以函数y =ln x -2x在上单调增,故OB ∈⎣⎢⎡⎦⎥⎤-2,-1e .(12分)所以OA ∈⎣⎢⎡⎦⎥⎤12,e ,即12≤m x 2+ln ≤e 在上恒成立,即x 22-2ln ≤m ≤2(e -ln )在上恒成立. 设p()=x 22-2ln ,则p′()=-2ln ≤0在上恒成立,所以p()在上单调减,所以m≥p(1)=12. (14分)设q()=2(e -ln ),则q′()=(2e -1-2ln )≥(2e -1-2lne )>0在上恒成立, 所以q()在上单调增,所以m≤q(1)=e .综上所述,m 的取值范围为⎣⎢⎡⎦⎥⎤12,e . (16分) 附加题21. A. 连结AN ,DN . 因为A 为弧MN 的中点, 所以∠ANM =∠ADN . 而∠NAB =∠NDB ,所以∠ANM +∠NAB =∠ADN +∠NDB , 即∠BCN =∠ADB . (5分) 又因为∠ACN =3∠ADB ,所以∠ACN +∠BCN =3∠ADB +∠ADB =180°, 故∠ADB =45°.(10分)B. 因为A ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤a 32d ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤a +62+2d =⎣⎢⎡⎦⎥⎤84,所以⎩⎪⎨⎪⎧a +6=8,2+2d =4, 解得⎩⎪⎨⎪⎧a =2,d =1.所以A =⎣⎢⎡⎦⎥⎤2321.(5分) 所以矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4,令f (λ)=0,解得矩阵A 的特征值为λ1=-1,λ2=4.(10分) C. 以极点为原点,极轴为轴正半轴,建立平面直角坐标系,则点A (2,π2)的直角坐标为(0,2),直线l 的直角坐标方程为+y =0.(4分)AB 最短时,点B 为直线-y +2=0与直线l 的交点,解⎩⎪⎨⎪⎧x -y +2=0,x +y =0得⎩⎪⎨⎪⎧x =-1,y =1. 所以点B 的直角坐标为(-1,1).(8分) 所以点B 的极坐标为(2,34π).(10分)D. 因为a 3+b 3+c 3=a 2b 2c 2≥33a 3b 3c 3, 所以abc ≥3,(5分)所以a +b +c ≥33abc ≥333,当且仅当a =b =c =33时,取“=”.(10分)22. (1) 因为直线y =n 与=-1垂直,所以MP 为点P 到直线=-1的距离. 连结PF ,因为P 为线段MF 的中垂线与直线y =n 的交点,所以MP =PF. 所以点P 的轨迹是抛物线.(2分) 焦点为F(1,0),准线为=-1. 所以曲线E 的方程为y 2=4. (5分)(2) 由题意,过点M(-1,n)的切线斜率存在,设切线方程为y -n =(+1),联立⎩⎪⎨⎪⎧y =kx +k +n ,y 2=4x , 得y 2-4y +4+4n =0,所以Δ1=16-4(4+4n)=0,即2+n -1=0(*),(8分) 因为Δ2=n 2+4>0,所以方程(*)存在两个不等实根,设为12, 因为1·2=-1,所以∠AMB=90°,为定值. (10分)23. (1) f(2)=1,f(3)=6,(2分) f(4)=25. (4分)(2) 解法一:设集合A 中有个元素,=1,2,3,…,n -1. 则与集合A 互斥的非空子集有2n --1个.(6分)于是f(n)=12k =1n -1C k n (2n --1)=12[错误!C 错误!-C 错误!-C 错误!=2n-2,所以f(n)=12=12(3n -2n +1+1).(10分)解法二:任意一个元素只能在集合A ,B ,C =∁U (A∪B)之一中, 则这n 个元素在集合A ,B ,C 中,共有3n种;(6分) 其中A 为空集的种数为2n,B 为空集的种数为2n, 所以A ,B 均为非空子集的种数为3n-2×2n+1,(8分) 又(A ,B)与(B ,A)为同一组“互斥子集”, 所以f(n)=12(3n -2n +1+1).(10分)。
2017年江苏省南通市、扬州市高考数学三模试卷 有答案

2017年江苏省南通市、扬州市、泰州市高考数学三模试卷一、填空题(每题5分,满分70分,将答案填在答题纸上)1.设复数z=a+bi(a,b∈R,i为虚数单位),若z=(4+3i)i,则ab的值是.2.已知集合U={x|x>0},A={x|x≥2},则∁U A=.3.某人随机播放甲、乙、丙、丁4首歌曲中的2首,则甲、乙2首歌曲至少有1首被播放的概率是.4.如图是一个算法流程图,则输出的k的值是.5.为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本,其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是.6.设等差数列{a n}的前n项和为S n,若公差d=2,a5=10,则S10的值是.7.在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3,则BC的长是.8.在平面直角坐标系xOy中,若双曲线﹣y2=1(a>0)经过抛物线y2=8x的焦点,则该双曲线的离心率是.9.圆锥的侧面展开图是半径为3,圆心角为的扇形,则这个圆锥的高是.10.若直线y=2x+b为曲线y=e x+x的一条切线,则实数b的值是.11.若正实数x,y满足x+y=1,则的最小值是.12.如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=3,BC=DC=2,若E,F分别是线段DC和BC上的动点,则的取值范围是.13.在平面直角坐标系xOy中,已知点A(0,﹣2),点B(1,﹣1),P为圆x2+y2=2上一动点,则的最大值是.14.已知函数f(x)=若函数g(x)=2f(x)﹣ax恰有2个不同的零点,则实数a的取值范围是.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.已知函数f(x)=Asin(ωx+)(A>0,ω>0)图象的相邻两条对称轴之间的距离为π,且经过点(,)(1)求函数f(x)的解析式;(2)若角α满足f(α)+f(α﹣)=1,α∈(0,π),求α值.16.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.求证:(1)MN∥平面PAB(2)AM⊥平面PCD.17.在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的左焦点为F(﹣1,0),且经过点(1,).(1)求椭圆的标准方程;(2)已知椭圆的弦AB过点F,且与x轴不垂直.若D为x轴上的一点,DA=DB,求的值.18.如图,半圆AOB是某爱国主义教育基地一景点的平面示意图,半径OA的长为1百米.为了保护景点,基地管理部门从道路l上选取一点C,修建参观线路C﹣D﹣E﹣F,且CD,DE,EF均与半圆相切,四边形CDEF是等腰梯形,设DE=t百米,记修建每1百米参观线路的费用为f(t)万元,经测算f(t)=(1)用t表示线段EF的长;(2)求修建参观线路的最低费用.19.已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,q≠±1,正整数组E=(m,p,r)(m<p<r)(1)若a1+b2=a2+b3=a3+b1,求q的值;(2)若数组E中的三个数构成公差大于1的等差数列,且a m+b p=a p+b r=a r+b m,求q的最大值.(3)若b n=(﹣)n﹣1,a m+b m=a p+b p=a r+b r=0,试写出满足条件的一个数组E和对应的通项公式a n.(注:本小问不必写出解答过程)20.已知函数f(x)=ax2+cosx(a∈R)记f(x)的导函数为g(x)(1)证明:当a=时,g(x)在R上的单调函数;(2)若f(x)在x=0处取得极小值,求a的取值范围;(3)设函数h(x)的定义域为D,区间(m,+∞)⊆D.若h(x)在(m,+∞)上是单调函数,则称h(x)在D上广义单调.试证明函数y=f(x)﹣xlnx在0,+∞)上广义单调.[选修4-1:几何证明选讲]21.如图,已知AB为圆O的一条弦,点P为弧的中点,过点P任作两条弦PC,PD分别交AB于点E,F求证:PE•PC=PF•PD.[选修4-2:距阵与变换]22.已知矩阵M=,点(1,﹣1)在M对应的变换作用下得到点(﹣1,5),求矩阵M的特征值.[选修4-4:坐标系与参数方程]23.在坐标系中,圆C的圆心在极轴上,且过极点和点(3,),求圆C的极坐标方程.[选修4-5:选修4-5:不等式选讲]24.知a,b,c,d是正实数,且abcd=1,求证:a5+b5+c5+d5≥a+b+c+d.解答题25.如图,在四棱锥S﹣ABCD中,SD⊥平面ABCD,四边形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1(1)求二面角S﹣BC﹣A的余弦值;(2)设P是棱BC上一点,E是SA的中点,若PE与平面SAD所成角的正弦值为,求线段CP的长.26.已知函数f0(x)=(a≠0,ac﹣bd≠0),设f n(x)为f n(x)的导数,n∈N*.﹣1(1)求f1(x),f2(x)(2)猜想f n(x)的表达式,并证明你的结论.2017年江苏省南通市、扬州市、泰州市高考数学三模试卷参考答案与试题解析一、填空题(每题5分,满分70分,将答案填在答题纸上)1.设复数z=a+bi(a,b∈R,i为虚数单位),若z=(4+3i)i,则ab的值是﹣12.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:∵a+bi=(4+3i)i=﹣3+4i.∴a=﹣3,b=4.∴ab=﹣12.故答案为:﹣12.2.已知集合U={x|x>0},A={x|x≥2},则∁U A={x|0<x<2} .【考点】1F:补集及其运算.【分析】根据补集的定义写出运算结果即可.【解答】解:集合U={x|x>0},A={x|x≥2},则∁U A={x|0<x<2}.故答案为:{x|0<x<2}.3.某人随机播放甲、乙、丙、丁4首歌曲中的2首,则甲、乙2首歌曲至少有1首被播放的概率是.【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,由此能求出甲、乙2首歌曲至少有1首被播放的概率.【解答】解:∵随机播放甲、乙、丙、丁4首歌曲中的2首,∴基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,∴甲、乙2首歌曲至少有1首被播放的概率:p=1﹣=.故答案为:.4.如图是一个算法流程图,则输出的k的值是3.【考点】EF:程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,循环可得结论.【解答】解:模拟程序的运行,可得S=1,k=1S=2,不满足条件S>10,k=2,S=6不满足条件S>10,k=3,S=15满足条件S>10,退出循环,输出k的值为3.故答案为:3.5.为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本,其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是7500.【考点】B3:分层抽样方法.【分析】由题意,其他年级抽取200人,其他年级共有学生3000人,即可求出该校学生总人数.【解答】解:由题意,其他年级抽取200人,其他年级共有学生3000人,则该校学生总人数是=7500.故答案为:7500.6.设等差数列{a n}的前n项和为S n,若公差d=2,a5=10,则S10的值是110.【考点】85:等差数列的前n项和.【分析】利用等差数列通项公式求出首项a1=2,由此利用等差数列前n项和公式能求出S10.【解答】解:∵等差数列{a n}的前n项和为S n,若公差d=2,a5=10,∴a5=a1+4×2=10,解得a1=2,∴S10=10×2+=110.故答案为:110.7.在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3,则BC的长是.【考点】HR:余弦定理;HP:正弦定理.【分析】利用三角形的面积公式求出A,再利用余弦定理求出BC.【解答】解:因为锐角△ABC的面积为3,且AB=3,AC=4,所以×3×4×sinA=3,所以sinA=,所以A=60°,所以cosA=,所以BC===.故答案为:.8.在平面直角坐标系xOy中,若双曲线﹣y2=1(a>0)经过抛物线y2=8x的焦点,则该双曲线的离心率是.【考点】KC:双曲线的简单性质.【分析】根据题意,由抛物线的方程可得其焦点坐标,将其代入双曲线的方程可得a2的值,即可得双曲线的方程,计算可得c的值,由双曲线离心率公式计算可得答案.【解答】解:根据题意,抛物线的方程为y2=8x,其焦点为(2,0),若双曲线﹣y2=1(a>0)经过点(2,0),则有﹣0=1,解可得a2=4,即双曲线的方程为:﹣y2=1,则a=2,c==,则双曲线的离心率e==;故答案为:.9.圆锥的侧面展开图是半径为3,圆心角为的扇形,则这个圆锥的高是2.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】利用扇形的弧长等于圆锥底面周长作为相等关系,列方程求解得到圆锥的底面半径,然后利用勾股定理确定圆锥的高即可.【解答】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=1;圆锥的高为:=2.故答案为:2.10.若直线y=2x+b为曲线y=e x+x的一条切线,则实数b的值是1.【考点】6H:利用导数研究曲线上某点切线方程.【分析】先设出切点坐标P(x0,e x0+x0),再利用导数的几何意义写出过P的切线方程,最后由直线是y=2x+b是曲线y=e x+x的一条切线,求出实数b的值.【解答】解:∵y=e x+x,∴y′=e x+1,设切点为P(x0,e x0+x0),则过P的切线方程为y﹣e x0﹣x0=(e x0+1)(x﹣x0),整理,得y=(e x0+1)x﹣e x0•x0+e x0,∵直线是y=2x+b是曲线y=e x+x的一条切线,∴e x0+1=2,e x0=1,x0=0,∴b=1.故答案为1.11.若正实数x,y满足x+y=1,则的最小值是8.【考点】7F:基本不等式.【分析】根据题意,将变形可得则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4,由基本不等式分析可得答案.【解答】解:根据题意,x,y满足x+y=1,则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4≥2+4=8,即的最小值是8;故答案为:8.12.如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=3,BC=DC=2,若E,F分别是线段DC和BC上的动点,则的取值范围是[﹣4,6] .【考点】9R:平面向量数量积的运算.【分析】依题意,设=λ(0≤λ≤),=μ(﹣1≤μ≤0),由=+,=+,可求得=(+)•(+)=λ+μ=9λ+4μ;再由0≤λ≤,﹣1≤μ≤0,即可求得﹣4≤9λ+4μ≤6,从而可得答案.【解答】解:∵AB∥DC,∠ABC=90°,AB=3,BC=DC=2,且E,F分别是线段DC和BC上的动点,∴=λ(0≤λ≤),=μ(﹣1≤μ≤0),又=+,=+,∴=(+)•(+)=(+)•(λ+μ)=λ+μ=9λ+4μ.∵0≤λ≤,∴0≤9λ≤6①,又﹣1≤μ≤0,∴﹣4≤4μ≤0②,①+②得:﹣4≤9λ+4μ≤6.即的取值范围是[﹣4,6],故答案为:[﹣4,6].13.在平面直角坐标系xOy中,已知点A(0,﹣2),点B(1,﹣1),P为圆x2+y2=2上一动点,则的最大值是2.【考点】J9:直线与圆的位置关系.【分析】设出=t,化简可得圆的方程,运用两圆相减得交线,考虑圆心到直线的距离不大于半径,即可得出结论.【解答】解:设P(x,y),=t,则(1﹣t2)x2+(1﹣t2)y2﹣2x+(2﹣4t2)y+2﹣4t2=0,圆x2+y2=2两边乘以(1﹣t2),两圆方程相减可得x﹣(1﹣2t2)y+2﹣3t2=0,(0,0)到直线的距离d=,∵t>0,∴0<t≤2,∴的最大值是2,故答案为2.14.已知函数f(x)=若函数g(x)=2f(x)﹣ax恰有2个不同的零点,则实数a的取值范围是(﹣,2).【考点】54:根的存在性及根的个数判断.【分析】求出g(x)的解析式,计算g(x)的零点,讨论g(x)在区间[a,+∞)上的零点个数,得出g(x)在(﹣∞,a)上的零点个数,列出不等式解出a的范围.【解答】解:g(x)=,显然,当a=2时,g(x)有无穷多个零点,不符合题意;当x≥a时,令g(x)x=0得x=0,当x<a时,令g(x)=0得x=0或x2=,(1)若a>0且a≠2,则g(x)在[a,+∞)上无零点,在(﹣∞,a)上存在零点x=0和x=﹣,∴≥a,解得0<a<2,(2)若a=0,则g(x)在[0,+∞)上存在零点x=0,在(﹣∞,0)上存在零点x=﹣,符合题意;(3)若a<0,则g(x)在[a,+∞)上存在零点x=0,∴g(x)在(﹣∞,a)上只有1个零点,∵0∉(﹣∞,a),∴g(x)在(﹣∞,a)上的零点为x=﹣,∴﹣<a,解得﹣<a<0.综上,a的取值范围是(﹣,2).故答案为(﹣,2).二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.已知函数f(x)=Asin(ωx+)(A>0,ω>0)图象的相邻两条对称轴之间的距离为π,且经过点(,)(1)求函数f(x)的解析式;(2)若角α满足f(α)+f(α﹣)=1,α∈(0,π),求α值.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;H2:正弦函数的图象.【分析】(1)由条件可求周期,利用周期公式可求ω=1,由f(x)的图象经过点(,),可求Asin=.解得A=1,即可得解函数解析式.(2)由已知利用三角函数恒等变换的应用化简可得sin.结合范围α∈(0,π),即可得解α的值.【解答】解:(1)由条件,周期T=2π,即=2π,所以ω=1,即f(x)=Asin(x+).因为f(x)的图象经过点(,),所以Asin=.∴A=1,∴f(x)=sin(x+).(2)由f(α)+f(α﹣)=1,得sin(α+)+sin(α﹣+)=1,即sin(α+)﹣cos(α+)=1,可得:2sin[()﹣]=1,即sin.因为α∈(0,π),解得:α=或.16.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.求证:(1)MN∥平面PAB(2)AM⊥平面PCD.【考点】LW:直线与平面垂直的判定;LS:直线与平面平行的判定.【分析】(1)推导出MN∥DC,AB∥DC.从而MN∥AB,由此能证明MN∥平面PAB.(2)推导出AM⊥PD,CD⊥AD,从而CD⊥平面PAD,进而CD⊥AM,由此能证明AM⊥平面PCD.【解答】证明:(1)因为M、N分别为PD、PC的中点,所以MN∥DC,又因为底面ABCD是矩形,所以AB∥DC.所以MN∥AB,又AB⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)因为AP=AD,P为PD的中点,所以AM⊥PD.因为平面PAD⊥平面ABCD,又平面PAD∩平面ABCD=AD,CD⊥AD,CD⊂平面ABCD,所以CD⊥平面PAD,又AM⊂平面PAD,所以CD⊥AM.因为CD、PD⊂平面PCD,CD∩PD=D,∴AM⊥平面PCD.17.在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的左焦点为F(﹣1,0),且经过点(1,).(1)求椭圆的标准方程;(2)已知椭圆的弦AB过点F,且与x轴不垂直.若D为x轴上的一点,DA=DB,求的值.【考点】KL:直线与椭圆的位置关系.【分析】(1)根据椭圆的定义,即可求得2a=4,由c=1,b2=a2﹣c2=3,即可求得椭圆的标准方程;(2)分类讨论,当直线的斜率存在时,代入椭圆方程,由韦达定理及中点坐标公式求得M点坐标,求得直线AB垂直平分线方程,即可求得D点坐标,由椭圆的第二定义,求得丨AF丨=(x1+4),即丨BF丨=(x2+4),利用韦达定理即可求得丨AB丨,即可求得的值.【解答】解:(1)由题意,F(﹣1,0),由焦点F2(1,0),且经过P(1,),由丨PF丨+丨PF2丨=2a,即2a=4,则a=2,b2=a2﹣c2=3,∴椭圆的标准方程;(2)设直线AB的方程为y=k(x+1).①若k=0时,丨AB丨=2a=4,丨FD丨+丨FO丨=1,∴=4.②若k≠0时,A(x 1,y1),B(x2,y2),AB的中点为M(x0,y0),,整理得:(4k2+3)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,则x0=﹣,则y0=k(x0+1)=.则AB的垂直平分线方程为y﹣=﹣(x+),由丨DA丨=丨DB丨,则点D为AB的垂直平分线与x轴的交点,∴D(﹣,0),∴丨DF丨=﹣+1=,由椭圆的左准线的方程为x=﹣4,离心率为,由=,得丨AF丨=(x1+4),同理丨BF丨=(x2+4),∴丨AB丨=丨AF丨+丨BF丨=(x1+x2)+4=,∴=4则综上,得的值为4.18.如图,半圆AOB是某爱国主义教育基地一景点的平面示意图,半径OA的长为1百米.为了保护景点,基地管理部门从道路l上选取一点C,修建参观线路C﹣D﹣E﹣F,且CD,DE,EF均与半圆相切,四边形CDEF是等腰梯形,设DE=t百米,记修建每1百米参观线路的费用为f(t)万元,经测算f(t)=(1)用t表示线段EF的长;(2)求修建参观线路的最低费用.【考点】6K:导数在最大值、最小值问题中的应用.【分析】(1)设DQ与半圆相切于点Q,则由四边形CDEF是等腰梯形知,OQ⊥DE,以CF所在直线为x轴,OQ所在直线为y轴,建立平面直角坐标系xoy.设EF与圆切于G点,连接OG,过点E作EH⊥OF,垂足为H.可得Rt△EHF≌Rt△OGF,HF=FG=EF﹣t.利用EF2=1+HF2=1+,解得EF.(2)设修建该参观线路的费用为y万元.①当,由y=5=5.利用y′,可得y在上单调递减,即可得出y的最小值.②当时,y==12t+﹣﹣.利用导数研究函数的单调性极值最值即可得出.【解答】解:(1)设DQ与半圆相切于点Q,则由四边形CDEF是等腰梯形知,OQ⊥DE,以CF所在直线为x轴,OQ所在直线为y轴,建立平面直角坐标系xoy.设EF与圆切于G点,连接OG,过点E作EH⊥OF,垂足为H.∵EH=OG,∠OFG=∠EFH,∠GOF=∠HEF,∴Rt△EHF≌Rt△OGF,∴HF=FG=EF﹣t.∴EF2=1+HF2=1+,解得EF=+(0<t<2).(2)设修建该参观线路的费用为y万元.①当,由y=5=5.y′=<0,可得y在上单调递减,∴t=时,y取得最小值为32.5.②当时,y==12t+﹣﹣.y′=12﹣+=.∵,∴3t2+3t﹣1>0.∴t∈时,y′<0,函数y此时单调递减;t∈(1,2)时,y′>0,函数y此时单调递增.∴t=1时,函数y取得最小值24.5.由①②知,t=1时,函数y取得最小值为24.5.答:(1)EF=+(0<t<2)(百米).(2)修建该参观线路的最低费用为24.5万元.19.已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,q≠±1,正整数组E=(m,p,r)(m<p<r)(1)若a1+b2=a2+b3=a3+b1,求q的值;(2)若数组E中的三个数构成公差大于1的等差数列,且a m+b p=a p+b r=a r+b m,求q的最大值.(3)若b n=(﹣)n﹣1,a m+b m=a p+b p=a r+b r=0,试写出满足条件的一个数组E和对应的通项公式a n.(注:本小问不必写出解答过程)【考点】84:等差数列的通项公式.【分析】(1)由a1+b2=a2+b3=a3+b1,利用等差数列与等比数列的通项公式可得:a1+b1q==a1+2d+b1,化简解出即可得出.(2)a m+b p=a p+b r=a r+b m,即a p﹣a m=b p﹣b r,可得(p﹣m)d=b m(q p﹣m﹣q r﹣m),同理可得:(r﹣p)d=b m(q r﹣m﹣1).由m,p,r成等差数列,可得p﹣m=r﹣p=(r﹣m),记q p﹣m=t,解得t=.即q p﹣m=,由﹣1<q<0,记p﹣m=α,α为奇函数,由公差大于1,α≥3.可得|q|=≥,即q,即可得出.(3)满足题意的数组为E=(m,m+2,m+3),此时通项公式为:a n=,m ∈N*.【解答】解:(1)∵a1+b2=a2+b3=a3+b1,∴a1+b1q==a1+2d+b1,化为:2q2﹣q﹣1=0,q ≠±1.解得q=﹣.(2)a m+b p=a p+b r=a r+b m,即a p﹣a m=b p﹣b r,∴(p﹣m)d=b m(q p﹣m﹣q r﹣m),同理可得:(r﹣p)d=b m(q r﹣m﹣1).∵m,p,r成等差数列,∴p﹣m=r﹣p=(r﹣m),记q p﹣m=t,则2t2﹣t﹣1=0,∵q≠±1,t≠±1,解得t=.即q p﹣m=,∴﹣1<q<0,记p﹣m=α,α为奇函数,由公差大于1,∴α≥3.∴|q|=≥,即q,当α=3时,q取得最大值为﹣.(3)满足题意的数组为E=(m,m+2,m+3),此时通项公式为:a n=,m ∈N*.例如E=(1,3,4),a n=.20.已知函数f(x)=ax2+cosx(a∈R)记f(x)的导函数为g(x)(1)证明:当a=时,g(x)在R上的单调函数;(2)若f(x)在x=0处取得极小值,求a的取值范围;(3)设函数h(x)的定义域为D,区间(m,+∞)⊆D.若h(x)在(m,+∞)上是单调函数,则称h(x)在D上广义单调.试证明函数y=f(x)﹣xlnx在0,+∞)上广义单调.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,根据导函数的符号,求出函数的单调区间即可;(2)求出函数的导数,通过讨论a的范围求出函数的单调区间,单调函数的极小值,从而确定a的具体范围即可;(3)记h(x)=ax2+cosx﹣xlnx(x>0),求出函数的导数,通过讨论a的范围结合函数的单调性证明即可.【解答】(1)证明:a=时,f(x)=x2+cosx,故f′(x)=x﹣sinx,即g(x)=x﹣sinx,g′(x)=1﹣cosx≥0,故g(x)在R递增;(2)解:∵g(x)=f′(x)=2ax﹣sinx,∴g′(x)=2a﹣cosx,①a≥时,g′(x)≥1﹣cosx≥0,函数f′(x)在R递增,若x>0,则f′(x)>f(0)=0,若x<0,则f′(x)<f′(0)=0,故函数f(x)在(0,+∞)递增,在(﹣∞,0)递减,故f(x)在x=0处取极小值,符合题意;②a≤﹣时,g′(x)≤﹣1﹣cosx≤0,f′(x)在R递减,若x>0,则f′(x)<f′(0)=0,若x<0,则f′(x)>f′(0)=0,故f(x)在(0,+∞)递减,在(﹣∞,0)递增,故f(x)在x=0处取极大值,不合题意;③﹣<a<时,存在x0∈(0,π),使得cosx0=2a,即g′(x0)=0,但当x∈(0,x0)时,cosx>2a,即g′(x)<0,f′(x)在(0,x0)递减,故f′(x)<f′(0)=0,即f(x)在(0,x0)递减,不合题意,综上,a的范围是[,+∞);(3)解:记h(x)=ax2+cosx﹣xlnx(x>0),①a>0时,lnx<x,则ln<,即lnx<2,当x>时,h′(x)=2ax﹣sinx﹣1﹣lnx>2ax﹣2﹣2=2(﹣)(﹣)>0,故存在m=,函数h(x)在(m,+∞)递增;②a≤0时,x>1时,h′(x)=2ax﹣sinx﹣1﹣lnx<﹣sinx﹣1﹣lnx<0,故存在m=1,函数h(x)在(m,+∞)递减;综上,函数y=f(x)﹣xlnx在(0,+∞)上广义单调.[选修4-1:几何证明选讲]21.如图,已知AB为圆O的一条弦,点P为弧的中点,过点P任作两条弦PC,PD分别交AB于点E,F求证:PE•PC=PF•PD.【考点】NC:与圆有关的比例线段.【分析】连结PA、PB、CD、BC,推导出∠PFE=∠PBA+∠DPB=∠PCB+∠DCB=∠PCD,从而E、F、D、C四点共圆.由此能证明PE•PC=PF•PD.【解答】解:连结PA、PB、CD、BC,因为∠PAB=∠PCB,又点P为弧AB的中点,所以∠PAB=∠PBA,所以∠PCB=∠PBA,又∠DCB=∠DPB,所以∠PFE=∠PBA+∠DPB=∠PCB+∠DCB=∠PCD,所E、F、D、C四点共圆.所以PE•PC=PF•PD.[选修4-2:距阵与变换]22.已知矩阵M=,点(1,﹣1)在M对应的变换作用下得到点(﹣1,5),求矩阵M的特征值.【考点】OV:特征值与特征向量的计算.【分析】设出矩阵,利用特征向量的定义,即二阶变换矩阵的概念,建立方程组,即可得到结论.【解答】解:由题意,=,即,解得a=2,b=4,所以矩阵M=.所以矩阵M的特征多项式为f(λ)==λ2﹣5λ+6,令f(λ)=0,得矩阵M的特征值为2和3.[选修4-4:坐标系与参数方程]23.在坐标系中,圆C的圆心在极轴上,且过极点和点(3,),求圆C的极坐标方程.【考点】Q4:简单曲线的极坐标方程.【分析】因为圆心C在极轴上且过极点,所以设圆C的极坐标方程为:ρ=acosθ,又因为点(3,)在圆C上,代入解得ρ即可得出圆C的极坐标方程.【解答】解:因为圆心C在极轴上且过极点,所以设圆C的极坐标方程为:ρ=acosθ,又因为点(3,)在圆C上,所以=acos,解得a=6,所以圆C的极坐标方程为:ρ=6cosθ.[选修4-5:选修4-5:不等式选讲]24.知a,b,c,d是正实数,且abcd=1,求证:a5+b5+c5+d5≥a+b+c+d.【考点】R6:不等式的证明.【分析】由不等式的性质可得:a5+b+c+d≥4=4a,同理可得其他三个式子,将各式相加即可得出结论.【解答】证明:∵a,b,c,d是正实数,且abcd=1,∴a5+b+c+d≥4=4a,同理可得:a+b5+c+d≥4=4b,a+b+c5+d≥4=4c,a+b+c+d5≥4=4d,将上面四式相加得:a5+b5+c5+d5+3a+3b+3c+3d≥4a+4b+4c+4d,∴a5+b5+c5+d5≥a+b+c+d.解答题25.如图,在四棱锥S﹣ABCD中,SD⊥平面ABCD,四边形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1(1)求二面角S﹣BC﹣A的余弦值;(2)设P是棱BC上一点,E是SA的中点,若PE与平面SAD所成角的正弦值为,求线段CP的长.【考点】MI:直线与平面所成的角;MT:二面角的平面角及求法.【分析】以D为原点建立如图所示的空间直角坐标系D﹣xyz,则D(0,0,0),B(2,2,0),C(0,1,0),S(0,0,2),利用空间向量求解.【解答】解:(1)以D为原点建立如图所示的空间直角坐标系D﹣xyz,则D(0,0,0),B(2,2,0),C(0,1,0),S(0,0,2)∴,,设面SBC的法向量为由可取∵SD⊥面ABC,∴取面ABC的法向量为|cos|=,∵二面角S﹣BC﹣A为锐角.二面角S﹣BC﹣A的余弦值为(2)由(1)知E(1,0,1),则,,设,(0≤λ≤1).则,易知CD⊥面SAD,∴面SAD的法向量可取|cos|=,解得λ=或λ=(舍去).此时,∴||=,∴线段CP的长为26.已知函数f0(x)=(a≠0,ac﹣bd≠0),设f n(x)为f n(x)的导数,n∈N*.﹣1(1)求f1(x),f2(x)(2)猜想f n(x)的表达式,并证明你的结论.【考点】RG:数学归纳法;63:导数的运算.【分析】(1)利用条件,分别代入直接求解;(2)先说明当n=1时成立,再假设n=K(K∈N*)时,猜想成立,证明n=K+1时,猜想也成立.从而得证.【解答】解:(1)f1(x)=f0′(x)=,f2(x)=f1′(x)=[]′=;(2)猜想f n(x)=,n∈N*,证明:①当n=1时,由(1)知结论正确;②假设当n=k,k∈N*时,结论正确,即有f k(x)==(﹣1)k﹣1a k﹣1(bc﹣ad)•(k+1)![(ax+b)﹣(k+1)]′=所以当n=k+10时结论成立,由①②得,对一切n∈N*结论正确.。
江苏省苏州吴江区2017届高三第三次调研(最后一卷)数学

江苏省苏州吴江区2017届高三第三次调研(最后一卷)数学数 学 2017.5一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在相应位置上...... 1.已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B = .2.设a ∈R ,若复数(1)()i a i ++在复平面内对应的点位于实轴上,则a = . 3.设a ∈R ,则“1>a ”是“21a >”的 条件.(填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”)4.已知平面向量,a b 的夹角为3π,且|a |=1,|b |=12,则2+a b 与b 的夹角大小是 .5.已知双曲线22221(0,0)yx a b a b -=>>的焦距为,且双曲线的一条渐近线与直线20x y +=垂直,则双曲线的方程为 .6.已知函数()(2+1)e x f x x =(e 是自然对数的底),则函数()f x 在点(0,1)处的切线方程为 .7.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某人根据这一思想,设计了如右图所示的程序框图,若输出m 的值为35,则输入的a 的值为 . 8.若3tan 4α= ,则2cos 2sin 2αα+= . 9.当实数x ,y 满足240,10,1x y x y x +-⎧⎪--⎨⎪⎩≤≤≥时,14ax y +≤≤恒成立,则实数a 的取值范围是 .10.已知O 为坐标原点,F 是椭圆C :22221y x a b+=(0a b >>)的左焦点,A ,B 分别为C 的左,右 顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 .11.已知M 是面积为1的△ABC 内的一点(不含边界),若△MBC ,△MCA ,△MAB 的面积分为x ,y ,z ,则1x yx y z +++的最小值分别为 .12.若n S 为等差数列{}n a 的前n 项和,且1101,55a S ==.记[]=l g n n b a ,其中[x ]表示不超过x 的最大整数,如[][]0.90,lg991==.则数列{}n b 的前2017项和为 .A DCB E 13.如图,在平面四边形ABCD 中,已知∠A =2π,∠B =2π, AB =6.在AB 边上取点E 使得BE =1,连结EC ,ED ,若 ∠CED =23π,EC CD = . 14.已知函数4,0,e ()2,0,ex x x f x x x ⎧+<⎪=⎨⎪⎩≥若123123()()()()f x f x f x x x x ==<<,则21()f x x 的范围是.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知函数()4sin cos()3f x x x π=+0,6x π⎡⎤∈⎢⎥⎣⎦.(1)求函数()f x 的值域;(2)已知锐角ABC ∆的角,,A B C,,a b c ,设两边长a ,b 分别为函数()f x 的最小值与最大值,且ABC ∆ABC ∆的面积.ADPM B16.(本小题满分14分) 如图,在四棱锥P ABCD -中,PA PB =,PA PB ⊥,AB BC ⊥,且平面PAB ⊥平面ABCD ,若2AB =,1BC =,AD BD == (1)求证:PA ⊥平面PBC ;(2)若点M 在棱PB 上,且:3PM MB =,求证//CM 平面PAD .17.(本小题满分14分) 有一块以点O 为圆心,半径为2百米的圆形草坪,草坪内距离O米的D 点有一用于灌溉的水笼头,现准备过点D 修一条笔直小路交草坪圆周于A ,B 两点,为了方便居民散步,同时修建小路OA ,OB ,其中小路的宽度忽略不计. (1)若要使修建的小路的费用最省,试求小路的最短长度;(2)若要在△ABO 区域内(含边界)规划出一块圆形的场地用于老年人跳广场舞,试求这块圆形广场的最大面积.(结果保留根号和π)18.(本小题满分16分) 平面直角坐标系xOy 中,椭圆C :()222210y x a b a b+=>>,抛物线E ∶24x y =的焦点F 是C 的一个顶点. (1)求椭圆C 的方程;(2)设与坐标轴不重合的动直线l 与C 交于不同的两点A 和B ,与x 轴交于点M ,且1(,2)2P 满足2PA PB PM k k k +=,试判断点M 是否为定点?若是定点求出点M 的坐标;若不是定点请说明理由.19.(本小题满分16分) 各项为正的数列{}n a 满足2*111,()2n n n aa a a n λ+==+∈N ,(1)当1n a λ+=时,求证:数列{}n a 是等比数列,并求其公比;(2)当2λ=时,令12n nb a =+,记数列{}n b 的前n 项和为n S ,数列{}n b 的前n 项之积为n T ,求证:对任意正整数n ,12n n n T S ++为定值.20.(本小题满分16分) 已知函数2ln )(ax x x f +=(a ∈R ),)(x f y =的图象连续不间断.(1)求函数)(x f y =的单调区间;(2)当1=a 时,设l 是曲线)(x f y =的一条切线,切点是A ,且l 在点A 处穿过函数)(x f y =的图象(即动点在点A 附近沿曲线)(x f y =运动,经过点A 时,从l 的一侧进入另一侧),求切线l 的方程.。
江苏省南通、扬州、泰州市2017届高三第三次模拟考试数学试题-Word版含答案

1. 设复数 z a b i (a,b R,i 为虚数单位) ,若 z (4 3 i)i ,则 ab的值是 . 2. 已知集合Ux | x 0 , A x | x 2,则 e U A. 3. 某人随机播放甲、乙、丙、丁 4 首歌曲中的 2 首,则甲、乙 2 首歌曲至少有 1首被播放的 概率是 . 4. 如图是一个算法流程图,则输出的k的值是 . 5. 为调査某高校学生对 “一带一路” 政策的了解情况, 现采用分层抽样的方法抽取一个容量 为 500的样 本,其中大一年级抽取200 人,大二年级抽取 100 人. 若其他年级共有学生 3000人,则该 校学生总人数是. 6. 设等差数列 a n 的前 n 项和为 S n ,若公差 d 2, a 5 10 ,则 S10 的值是 . 7. 在锐角 ABC 中, AB 3, AC 4 ,若 ABC 的面积为 3 3 ,则 BC 的长是8. 在平面直角坐标系 xOy 中,若双曲线x 2a2y 21 a0 经过抛物线 y 28x 的焦点,则该双曲线的离心率是 .9. 已 知 圆 锥 的 侧 面 展 开 图 是 半 径 为 3 , 圆 心 角 为 2 3的 扇 形 , 则 这 个 圆 锥 的 高为.江苏省南通、扬州、泰州 2017 届高三第三次模拟考试数学试题第Ⅰ卷(共 70 分)一、填空题(每题 5 分,满分 70 分,将答案填在答题纸上).210. 若直线 y2x b 为曲线 y e xx 的一条切线,则实数 b 的值是.11. 若正实数 x, y 满足 x y 1 ,则 y 4 的最小值是.x y12. 如图, 在直角梯形 ABCD 中, AB / / DC ,ABC 90 , AB 3,BC DC 2 ,若 E, F分别是线段 DC 和 BC 上的动点,则AC EF 的取值范围是.13. 在平面直角坐标系 xOy 中,已知点PB A 0, 2 ,点 B 1, 1 , P 为圆 xy2 上一动点,则的最大值是 .PAx, x a14. 已知函数 f xx33 x , x a若函数 gx2 f x ax 恰有 2 个不同的零点, 则实数 a 的取值范围是.第Ⅱ卷(共 90 分)二、解答题 (本大题共 6 小题,共 90 分. 解答应写出文字说明、证明过程或演算步骤. )15. 已知函数 f xAsinxA 0, 0 3图象的相邻两条对称轴之间的距离为,且经过点,3 .3 2(1) 求函数f x 的解析式;(2) 若角满 足 f3 f1, 0,2,求角 值.16. 如图,在四棱锥 P ABCD 中,底面 ABCD 是矩形,平面 PAD平面ABCD , AP AD, M , N 分别为棱 PD , PC 的中点 . 求证:2(1) MN / / 平 面 PAB ;(2) AM 平面 PCD .17. 在平面直角坐标系 xOy 中,已知椭圆x2 y2 a 2b21 a b0 的左焦点为 F1,0 , 且经过点 1, 3.2(1) 求椭圆的标准方程;(2) 已知椭圆的弦 AB 过点 F ,且与 x 轴不垂直 . 若 D 为 x 轴上的一点, DA DB , 求 ABDF的值 . 18.如图,半圆 AOB 是某爱国主义教育基地一景点的平面示意图,半径 OA 的长为 1 百米.为了保护景点,基地管理部门从道路l 上选取一点 C ,修建参观线路 C D E F , 且CD , DE , EF , 均与半圆相切, 四边形 CDEF 是等腰梯形, 设 DEt 百米, 记修建每 1百米参观线路的费用为f t 万元,经测算 f t5,08 1 t3.1 , 1t 2 t 3(1)用t 表示线段EF 的长;(2)求修建参观线路的最低费用.19. 已知a n是公差为d 的等差数列,b n 是公比为q 的等比数列,q 1 ,正整数组E m, p, r m p r .(1)若a1 b2a2 b3a3 b1,求q 的值;(2)若数组 E 中的三个数构成公差大于 1 的等差数列,且am bpapbrarbm,求q的最大值.(3)若b nn 11, a m b m2a pb p a r b r0 ,试写出满足条件的一个数组 E 和对应的通项公式a n .( 注:本小问不必写出解答过程)20. 已知函数 f x ax2 cosx(a R ),记 f x 的导函数为g x .(1)证明:当a 1时,g x 在R 上的单调函数;2(2)若 f x 在x0 处取得极小值,求 a 的取值范围;(3)设函数h x 的定义域为 D ,区间m, D . 若h x 在m, 上是单调函数,则称h x 在D 上广义单调. 试证明函数y f x x ln x 在0, 上广义单调.数学Ⅱ( 附加题)21. 【选做题】本题包括A、B、C、四个小题,请选定其中两题,并在相应的答题区域内作答. 若多做,则按作答的前两题评分. 解答应写出文字说明、证明过程或演算步骤.A.选修4-1 :几何证明选讲如图,已知AB 为圆O 的一条弦,点P 为弧AB 的中点,过点P 任作两条弦PC, PD 分别交AB 于点E, F .求证:PE PC PF PD .B.选修4-2 :距阵与变换已知矩阵M 1 a,点1, 1 在M 对应的变换作用下得到点1, 5 ,求矩阵M 的特1b征值.C.选修4-4 :坐标系与参数方程在坐标系中,圆 C 的圆心在极轴上,且过极点和点 3 2, ,求圆 C 的极坐标方程.4D.选修4-5 :选修4-5 :不等式选讲已知a, b, c, d 是正实数,且abcd 1 ,求证:a5b5 c5 d 5 a b b d .【必做题】第22、23 题,每题10 分,共计20 分,解答时应写出文字说明、证明过程或演算步骤.22. 如图,在四棱锥S ABCD 中,SD 平面ABCD ,四边形ABCD 是直角梯形,ADC DAB 90 , SD AD AB 2, DC 1 .(1) 求二面角S BC A 的余弦值;(2) 设 P 是棱 BC 上一点, E 是 SA 的中点, 若 PE 与平面 SAD 所成角的正弦值为2 26 ,13求线段 CP 的长 .23. 已知函数 f xcx d a0, ac bd 0 ,设 f x 为 fx 的导数, n N .(1) 求 f 1x , f 2 ax bx ;nn 1(2) 猜想f n x 的表达式,并证明你的结论 .江苏省南通、扬州、泰州2017 届高三第三次模拟考试数学试题参考答案一、填空题 :1. 122.6. 110x | 0 x 23.5 64.35.75007.13 8.529.2 210.111.812:4,613. 214.3 , 2 2二、解答题 :15. 解: (1) 由条件,周期 T2 ,即 22 ,所以1 ,即f xAsin x.3因为 fx 的图象经过点,3,所以 Asin 23, A 1, f x sin x.3 23 23(2) 由 f3 f1,得 sin2 3 cos3 1,即3 2sin3 cos1, 2sin1 ,即 333 3sin1 . 因为20,,或5 .6616. 解: (1) 因为 M , N 分别为棱 PD , PC 的中点,所以 MN / / DC ,又因为底面 ABCD 是矩形,所以 AB / /DC ,MN / / AB . 又 AB 平面 PAB, MN 平面 PAB ,所以 MN / / 平面 PAB .(2) 因为 APAD , M 为 PD 的中点,所以 AMPD . 因为平面 PAD 平面 ABCD ,又平面 PAD平面 ABCDAD ,CD AD, CD 平面 ABCD ,所以 CD平面 PAD ,又AM平面 PAD ,所以 CD AM . 因为 CD , PD 平面 PCD ,CDPD D, AM平面 PCD .2217.解: (1) 由题意,知 2a1 123 1 1234, a 2 . 又22c 1,a2b2c 2, b3 ,所以椭圆的标准方程为x2y21.4 3(2) 设直线 AB 的方程为y k x 1 . ①若 k 0 时,AB 2a 4, FDFO 1,AB 4 .DF②若 k0 时, A x 1, y 1 , B x 2 , y 2 , AB 的中点为 M x 0 , y 0 ,代入椭圆方程,整理得3 4k 2 x28k 2x 4k212 0 ,所以4k 26 k 21 4k26 k214k2 3kx 13 4k2, x 23 4k 2, x 03 4k2, y 0k x 0 13 4k 2,所以 AB 的垂直平分线方程为y3k 1 x 4k . 因为 DA DB ,所以点 D 3 4k2k 为 AB 的垂直平分线与x 轴的交点,所以3 4k 2k2D3 4k2,0 , DFk21 3 4k 23 3k 23 4k 2,因为椭圆的左准线的方程为x 4 ,离心率为1 AF 1 ,由,得 2x 1 421 AFx 1 24 ,同理1 1 12 12k 2AB BFx 2 4 , AB AF BFx 1 x 2 4 x 0 42 ,所以4 ,223 4kDFAB 综上,得DF的值为 4 .18.解:设 DE 与半圆相切于点 Q ,则由四边形 CDEF 是等腰梯形知, OQ l , DQ QE ,以 OF 所在直线为 x 轴, OQ 所在直线为 y 轴,建立平面直角坐标系 xOy .(1) 设 EF 圆切于 G ,连结 OG 过点 E 作 EHAB ,垂足为 H . 因为EHOG, OFG EFH , GOFHEF ,所以Rt EHFRt OGF , HFFGEF 1t . 2由 EF21 HF 212EF 1 t , EFt 1 0 t 2 .24 t(2) 设修建该参观线路的费用为y 万元. ①当2m q0 t1 , y 5 2t 1 t5 3 t 2 ,由 y ' 5 3 20 ,则 y 在 0, 1上单34 t2 t2 t 23调递减,所以当 t1 时, y 取得最小值为 32.5 . ②当1t 2 时, y8 13 2 t 1 t12t 316 3 2 ,所以t 4 tt 2 t 2162 4 t 1 3t23t 1y ' 12 t2t3t3,1 t 2, 3t233t 1 0 ,且当 t1,1 时, 3y ' 0 ;当 t1,2时, y ' 0 ,所以 y在1,1 3上单调递减,在 1,2 上单调递增 . 所以当 t 1 时, y 取得最小值为 24.5 . 由 ①②知, y 取得最小值为 24.5 .答:( 1) EF 的长为 1 1 4 t百米;( 2)修建该参观线路的最低费用为24.5 万元 .19. 解:(1) 由条件,知2a 1b 1q a 1d b 1q d b 1q q ,即 2 , 2 q q1 0 ,a db q2a 2db d b q 211 q1, q.211111(2) 由a mb p a p b r ,即 a p a m b p b r ,所以 p m d b qp mqr m,同理可得,r p d b mq r m1 ,因为m, p, r 成等差数列,所以p m rp1r m . 记2 qp mt ,则有 2t 2t 1 0 , q1, t1 ,故 t1 p m,即 21, 1 211 q 0 .1 1 3记 p m,则为奇函数,又公差大于 1,所以3, q,即22111 33 q 1 3q,当2时, 取最大值为.2(3) 满足题意的数组E m,m 2,m 3 ,此时通项公式为2nm 1a 1 3 n 3 m28 81 , m N .例如: E1,3, 4 , a n3 11 n . 8 820. 解: (1) 当 a1 时, f x21 x 22cos x, f ' xx sin x ,即g xx sin x, g ' x 1 cosx 0 , g x 在 R 上单调递增 .(2)g xf ' x2ax sin x, g ' x2a cosx . ①当 a1 时,2g' x1 cosx 0 ,所以函数 f ' x 在 R 上单调递增 . 若 x 0 ,则 f ' xf 0 0 ;若 x 0 ,则 f 'xf ' 00 ,所以函数 f x 的单调增区间是 0,,单调减区间是,0 ,所以 f x 在 x0 处取得极小值,符合题意 . ②当 a1 时,2g' x1 cosx 0 ,所以函数 f ' x 在 R 上单调递减 . 若 x 0 ,则f ' xf ' 00 ; 若x 0 , 则 f ' x f ' 0 0 ,所以 f x 的单调减区间是 0,,单调增区间是,0 ,所以 f x 在 x0 处取得极大值,不符合题意 . ③当1 a1时,x 00,,使得cosx 02a ,即 g ' x 00,但当 x0, x 0时, cos x 222a ,即g' x0 ,所以函数 f ' x 在 0, x 0 上单调递减, 所以 f ' xf ' 00 ,即函数 f x在0, x 单调递减,不符合题意 . 综上所述, a 的取值范围是1 , .21 1(3) 记 hx ax2cosx x ln x x 0 . ①若 a 0 ,注意到 ln x x ,则 ln x 2 x 2 ,即 ln x2 x , 当 x214a 1 时,2ah ' x2ax sin x 1 ln x 2ax 2 x 214a 1 1 4a 1 2xx0 .2a2a所以 m1 4 a 2a21 ,函数 hx 在 m,上单调递增 . ②若 a0 ,当 x1 时,h ' x 2ax sin x 1 ln x sin x 1 ln x 0 ,所以 m 1 ,函数 h x 在 m,上单调递减,综上所述,函数y f x x ln x 在区间0, 上广义单调.数学Ⅱ ( 附加题)21. A. 解:连结PA, PB,CD , BC ,因为PAB PCB ,又点P 为弧AB 的中点,所以PAB PBA, PCB PBA ,又DCB DPB ,所以PFE PBA DPB PCB DCB PCD ,所以E, F , D,C 四点共圆. 所以PE PC PF PD .B. 解:由题意,1 a 1 1 1 a,即1b 1 5 1 b1,解得a52, b 4 ,所以矩阵1 2M . 所以矩阵M 的特征多项式为f141 2 21 45 6 ,令f 0 ,得12, 2 3 ,所以M 的特征值为 2 和3 .C. 解:因为圆心 C 在极轴上且过极点,所以设圆 C 极坐标方程为 a cos ,又因为点3 2, 在圆C 上,所以 3 24 a cos4,解得a 6 ,所以圆C 极坐标方程为6cos .D. 解:因为a, b, c, d 是正实数,且abcd 1, a5 b c d 4 4 a5bcd 4a ,①同理b5 b c d 4b ,②c5 b c d 4c ,③ d 5 b c d 4d ,④将①②③④式相加并整理,即得 d 5 b5 c5 d 5 a b c d .22. 解:, ,0 , CP(1) 以 D 为坐标原点,建立如图所示空间直角坐标系D xyz ,则D 0,0,0 , B 2,2,0 , C 0,1,0 , S 0,0,2 ,所以SB2,2, 2 , S C 0,1, 2 , DS0,0,2 ,设平面 SBC 的法向量为 n 1x, y, z ,由n 1 SB 0,n 1 SC 0 ,得 2 x 2 y 2 z 0 且 y 2 z 0 ,取 z 1,得 x1, y 2 ,所以 n 11,2,1 是平面 SBC 的一个法向量 . 因为 SD 平面 ABC ,取平面 ABC 的一个法向量 n0,0,1,设二面角 S BC A 的大小为 ,所以cosn 1 n 2 1 6 , n 1 n 26 6由图可知二面角 S BC A 为锐二面角,所以二面角 S BC A 的余弦值为6 .6(2) 由( 1)知 E 1,0,1 ,则 CB 2,1,0 , CE1, 1,1 . 设 CP CB 0 1 ,则CP 2,1,0 2 , ,0 , PE CE CP1 2 , 1,,1 ,易知 CD平面 SAD, CD0,1,0 是平面 SAD 的一个法向量 . 设 PE 与平面 SAD 所成的角为,所以sincos PE ,CDPE CD 1 ,即1 2 26 ,得PE CD5223522313111 或(舍) . 所以 CP2 15 , 所以线段 CP 的长为5 .393 33323. 解:( 1)22k f xf 'xcx d 'bc ad , f x f 'x'cb ad 2a bc ad .121ax b ax b2ax b3ax b1n 1a n 1bc ad n!(2)猜想 f n xn 1ax b, n N . 证明: ① 当 n 1 时,由 (1) 知结论正确;1k 1ak 1bc ad k !②假设当 nk, k N 时,结论正确,即有 f k xk 1. 当ax bn k 1 时,k 1k 1'fx f 'x1 abc ad k !k 1kk 1ax b1k 1a1bc ad k !ax bk 1'1kakbc ad k k 2ax b1 !,所以当n k 1 时结论成立,由①②得,对一切 n N 结论正确 .。
【江苏省南通、扬州、泰州】2017学年高考三模数学年试题答案

江苏省南通市2017届高三高考全真模拟数学试卷(一)一、填空题:本大题共14个小题,每小题5分,共70分.1.已知集合{0,1,2}A =,则的子集个数为________.2.已知复数12z 2,2i ai z =+=-,(其中0a >,i 为虚数单位).若12|z ||z |=,则a 的值为________. 3.执行如图所示的流程图,则输出的结果S =________.4.若直线1y x b =+(e 是自然对数的底数)是曲线ln y x =的一条切线,则实数b 的值是________.9.已知函数21,0()(1),0x x f x f x x -⎧-+≤=⎨->⎩,若方程()log (2)(01)a f x x a =+<<有且仅有两个不同的实数根,则实数a 的取值范围为________.O 到正六角星12个顶点的向量都写成15.在平面直角坐标系中,已知点(0,0)A ,(4,3)B ,若,,A B C 三点按顺时针方向排列构成等边三角形ABC ,且直线BC 与x 轴交于点.(1)求cos CAD ∠的值;(2)求点C 的坐标.16.如图,在四棱柱1111ABCD A B C D -中,平面11A ABB ⊥底面ABCD ,且π2ABC ∠=.(1)求证:BC ∥平面11AB C ;(2)求证:平面11A ABB ⊥平面11AB C .17.已知城A 和城相距20 km ,现计划以AB 为直径的半圆上选择一点C (不与点A ,B 重合)建造垃圾处理厂.垃圾处理厂对城市的影响度与所选地点到城市的距离有关,对城A 和城B 的总影响度为对城A 与城B 的影响度之和.记点到C 城A 的距离为km x ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y .统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比例关系,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比例关系,比例系数为k .当垃圾处理厂建在AB 的中点时,对城和城的总影响度为0.065.(1)将y 表示x 成的函数.(2)讨论(1)中函数的单调性,并判断在AB 上是否存在一点,使建在此处的垃圾处理厂对城A 和城的总影响度最小?若存在,求出该点到城A 的距离;若不存在,请说明理由.18.已知椭圆22:31(0)C mxmy m +=>的长轴长为O 为坐标原点.(1)求椭圆C 的方程和离心率.(2)设点(3,0)A ,动点B 在y 轴上,动点P 在椭圆C 上,且点P 在y 轴的右侧.若BA BP =,求四边形OPAB 面积的最小值.19.已知函数32()(0)f x ax bx cx b a a =-++=>.(1)设0c =.①若a b =,曲线()y f x =在0x x =处的切线过点(1,0),求0x 的值;②若a b >,求()f x 在区间[0,1]上的最大值.(2)设()f x 在1x x =,2x x =两处取得极值,求证:11()f x x =,22()f x x =不同时成立.20.若数列{}n a 和{}n b 的项数均为m ,则将数列{}n a 和{}n b 的距离定义为111||mi a b =-∑.(1)求数列1,3,5,6和数列2,3,10,7的距离.(2)记A 为满足递推关系111n n na a a ++=-的所有数列{}n a 的集合,数列{}nb 和{}nc 为A 中的两个元素,且项数均为m .若12b =,13c =,数列{}n b 和{}n c 的距离小于2 016,求m 的最大值.(3)记S 是所有7项数列{}n a (其中17n ≤≤,0n a =或1)的集合,T S ⊆,且T 中的任何两个元素的距离大于或等于3.求证:T 中的元素个数小于或等于16.(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .如图,,AB BC 分别与圆O 相切于点D ,C ,AC 经过圆心O ,且2AC AD =,求证:2BC OD =.B .在平面直角坐标系中,已知点(0,0)A ,(2,0)B ,(2,2)C ,(0,2)D ,先将正方形ABCD 绕原点A 逆时针旋转90︒,再将所得图形的纵坐标压缩为原来的一半、横坐标不变,求连续两次变换所对应的矩阵M .C .在平面直角坐标系xOy 中,已知曲线C 的参数方程为cos 1sin x y αα=+⎧⎨=⎩(α为参数).现以O 为极点,x 轴的正半轴为极轴,建立极坐标系,求曲线C 的极坐标方程.D .已知,a b 为互不相等的正实数,求证:3334()()a b a b +>+.【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡制定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.从集合{1,2,3,4,5,6,7,8,9}M =中,抽取三个不同的元素构成子集123{,,}a a a .(1)求对任意的i j ≠满足||2i j a a -≥的概率;(2)若125,,a a a 成等差数列,设其公差为(0)ξξ>,求随机变量ξ的分布列与数学期望.23.已知数列{}n a 的前n 项和为n S ,通项公式为1n a n =,且221,1(),2n nn S n f n S S n -=⎧=⎨-≥⎩. (1)计算(1),(2),(3)f f f 的值;(2)比较()f n 与1的大小,并用数学归纳法证明你的结论.。
江苏省苏北三市(连云港、徐州、宿迁)2017届高三年级第三次调研考试数学试题
第Ⅰ卷(共70分)一、填空题(每题5分,满分70分,江答案填在答题纸上)1. 已知集合,,则集合中元素的个数为__________.【答案】5【解析】由题意可得:错误!未找到引用源。
,即集合错误!未找到引用源。
中元素的个数为5个.2. 设,,(为虚数单位),则的值为__________.【答案】1【解析】错误!未找到引用源。
,故:错误!未找到引用源。
.3. 在平面直角坐标系中,双曲线的离心率是__________.【答案】4. 现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是__________.【答案】【解析】把这三张卡片排序有“中”“国”“梦”,“中”“梦”“国”,“国”“中”“梦”;“国”“梦”“中”“梦”“中”“国”;“梦”“国”“中”;共计6种,能组成“中国梦” 的只有1种,概率为错误!未找到引用源。
.【点睛】本题为古典概型,三个字排列可采用列举法,把所有情况按顺序一、一列举出来,写出基本事件种数,再找出符合要求的基本事件种数,再利用概率公式错误!未找到引用源。
,求出概率值.5. 如图是一个算法的流程图,则输出的的值为__________.【答案】66. 已知一组数据3,6,9,8,4,则该组数据的方差是__________.【答案】 (或5.2)【解析】错误!未找到引用源。
7. 已知实数,满足则的取值范围是__________.【答案】(或)【解析】绘制不等式组表示的平面区域,目标函数错误!未找到引用源。
表示可行域内的点与坐标原点连线的斜率,数形结合可得目标函数的取值范围是错误!未找到引用源。
,写成区间的形式是错误!未找到引用源。
.点睛:本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.8. 若函数的图象过点,则函数在上的单调减区间是__________.【答案】(或)9. 在公比为且各项均为正数的等比数列中,为的前项和.若,且,则的值为__________.【答案】【解析】解:由题意可得:错误!未找到引用源。
江苏省苏北三市(连云港、徐州、宿迁)2017届高三数学第三次模拟考试试题(含解析)
江苏省苏北三市(连云港、徐州、宿迁)2017届高三数学第三次模拟考试试题(含解析)参考公式:样本数据的方差,其中.棱锥的体积,其中是棱锥的底面积,是高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1. 已知集合,,则集合中元素的个数为____.【答案】【解析】由于,所以集合中元素的个数为5.【点睛】根据集合的交、并、补定义:,,,求出,可得集合中元素的个数.2. 设,(为虚数单位),则的值为____.【答案】1【解析】由于,有,得.3. 在平面直角坐标系中,双曲线的离心率是____.【答案】【解析】4. 现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是____.【答案】【解析】把这三张卡片排序有“中”“国”“梦”,“中”“梦”“国”,“国”“中”“梦”;“国”“梦”“中”“梦”“中”“国”;“梦”“国”“中”;共计6种,能组成“中国梦” 的只有1种,概率为.【点睛】本题为古典概型,三个字排列可采用列举法,把所有情况按顺序一、一列举出来,写出基本事件种数,再找出符合要求的基本事件种数,再利用概率公式,求出概率值.5. 如图是一个算法的流程图,则输出的的值为____.【答案】【解析】试题分析:由得,再由题意知.考点:算法流程图的识读和理解.6. 已知一组数据,,,,,则该组数据的方差是____.【答案】(或)【解析】7. 已知实数,满足则的取值范围是____.【答案】(或)【解析】本题为线性规划,画出一元二次不等式组所表示的可行域,目标函数为斜率型目标函数,表示可行域内任一点与坐标原点连线的斜率,得出最优解为,则的取值范围是【点睛】线性规划问题为高考热点问题,线性规划考查方法有两种,一为直接考查,目标函数有截距型、斜率型、距离型(两点间距离和点到直线距离)等,二为线性规划的逆向思维型,给出最优解或最优解的个数反求参数的范围或参数的值.8. 若函数的图象过点,则函数在上的单调减区间是____.【答案】(或)【解析】函数的图象过点,则,,,.,,,有于在为减函数,所以,解得.9. 在公比为且各项均为正数的等比数列中,为的前项和.若,且,则的值为____.【答案】【解析】 , ,,.10. 如图,在正三棱柱中,已知,点在棱上,则三棱锥的体积为____.【答案】【解析】由已知,由于平面,所以【点睛】求三棱锥的体积要注意利用体积转化,以方便计算.体积转化方法有平行转化法、比例转化法、对称转化法.用上述方法交换顶点的位置,此外还经常利用底面的关系交换底面,利用图形特点灵活转化,达到看图清楚,计算简单的目的.11. 如图,已知正方形的边长为,平行于轴,顶点,和分别在函数,和()的图象上,则实数的值为____.【答案】【解析】由于顶点,和分别在函数,和()的图象上,设,由于平行于轴,则,有,解得,又,则.【点睛】由于正方形三个顶点在对数函数图像上,且平行于轴,则轴,因此可以巧设出三点的坐标,利用两点纵坐标相等,横坐标之差的绝对值为边长2,以及两点横坐标相等,纵坐标之差的绝对值为边长2,解答出本题.12. 已知对于任意的,都有,则实数的取值范围是____.【答案】(或)【解析】利用一元二次方程根的分布去解决,设,当时,即时,对恒成立;当时,,不合题意;当时,符合题意;当时,,即,即:综上所述:实数的取值范围是.【点睛】有关一元二次方程的根的分布问题,要结合一元二次方程和二次函数的图象去作,要求函数值在某区间为正,需要分别对判别式大于零、等于零和小于零进行分类研究,注意控制判别式、对称轴及特殊点的函数值的大小,列不等式组解题.13. 在平面直角坐标系中,圆.若圆存在以为中点的弦,且,则实数的取值范围是____.【答案】(或)【解析】由于圆存在以为中点的弦,且,所以,如图,过点作圆的两条切线,切点分别为,圆上要存在满足题意的点,只需,即,连接,,由于,,,解得.【点睛】已知圆的圆心在直线上,半径为,若圆存在以为中点的弦,且,说明,就是说圆上存在两点,使得.过点作圆的两条切线,切点分别为,圆上要存在满足题意的点,只需,即,则只需,列出不等式解出的范围.14. 已知三个内角,,的对应边分别为,,,且,.当取得最大值时,的值为____.【答案】【解析】设的外接圆半径为,则 .,,.,,则当,即:时,取得最大值为,此时中,.【点睛】已知三角形的一边及其所对的角,可以求出三角形外接圆的半径,利于应用正弦定理“边化角”“角化边”,也利于应用余弦定理. 具备这样的条件时要灵活选择解题路线,本题采用先“边化角”后减元的策略,化为关于角的三角函数式,根据角的范围研究三角函数的最值,从角的角度去求最值,由于答案更加准确,所以成为一种通法,被更多的人采用.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或计算步骤.15. 如图,在中,已知点在边上,,,,.(1)求的值;(2)求的长.【答案】(1)(2)【解析】试题分析:根据平方关系由求出,利用求出,根据三角形内角和关系利用和角公式求出,利用正弦定理求出,根据,计算,最后利用余弦定理求出.试题解析:(1)在中,,,所以.同理可得,.所以.(2)在中,由正弦定理得,.又,所以.在中,由余弦定理得,.【点睛】凑角求值是高考常见题型,凑角求知要“先备料”后代入求值,第二步利用正弦定理和余弦定理解三角形问题,要灵活使用正、余弦定理,有时还要用到面积公式,注意边角互化.16. 如图,在四棱锥中,底面是矩形,点在棱上(异于点,),平面与棱交于点.(1)求证:;(2)若平面平面,求证:.【答案】(1)(2)【解析】试题分析:利用线面平行的判定定理由,说明平面,再由线面平行的性质定理,说明线线平行;由面面垂直的性质定理,平面内一条直线垂直交线,说明线面垂直,利用线面垂直的判定定理说明线面垂直.(1)因为是矩形,所以.又因为平面,平面,所以平面.又因为平面,平面平面,所以.(2)因为是矩形,所以.又因为平面平面,平面平面,平面,所以平面.又平面,所以.又由(1)知,所以.【点睛】证明垂直问题时,从线线垂直入手,进而达到线面垂直,最终证明面面垂直,而面面垂直的性质定理显得更加重要,使用面面垂直的性质定理时,一定要抓住交线,面面垂直性质定理的使用非常重要,要引起重视.17. 如图,在平面直角坐标系中,已知椭圆的左、右顶点分别为,,过右焦点的直线与椭圆交于,两点(点在轴上方).(1)若,求直线的方程;(2)设直线,的斜率分别为,.是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.【答案】(1)(2)【解析】试题分析:设直线的方程,联立方程组,利用向量关系找出两交点的纵坐标关系,解方程求出直线方程;利用第一步的根与系数关系,借助已知的斜率关系求出的值.试题解析:(1)因为,,所以,所以的坐标为,设,,直线的方程为,代入椭圆方程,得,则,.若,则,解得,故直线的方程为.(2)由(1)知,,,所以,所以,故存在常数,使得.【点睛】求直线方程首先要设出方程,根据题目所提供的坐标关系,求出直线方程中的待定系数,得出直线方程;第二步存在性问题解题思路是首先假设存在,利用所求的,,结合已知条件,得出坐标关系,再把,代入求出符合题意,则存在,否则不存在.18. 某景区修建一栋复古建筑,其窗户设计如图所示.圆的圆心与矩形对角线的交点重合,且圆与矩形上下两边相切(为上切点),与左右两边相交(,为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,且.设,透光区域的面积为.(1)求关于的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边的长度.【答案】(1)(2)【解析】试题分析: 根据题意表示出所需的线段长度,再分别求三角形和扇形面积,从而表示出总面积,再根据题意要求求出函数的定义域;根据题意表示出“透光比”函数,借助求导,研究函数单调性求出最大值.试题解析:(1)过点作于点,则,所以,.所以,因为,所以,所以定义域为.(2)矩形窗面的面积为.则透光区域与矩形窗面的面积比值为.…10分设,.则,因为,所以,所以,故,所以函数在上单调减.所以当时,有最大值,此时(m).答:(1)关于的函数关系式为,定义域为;(2)透光区域与矩形窗面的面积比值最大时,的长度为1m.【点睛】应用问题在高考试题中很常见,也是学生学习的弱点,建立函数模型是关键,本题根据题目所给的条件列出面积关于自变量的函数关系,注意函数的定义域;求函数最值问题方法很多,求导是一种通法.19. 已知两个无穷数列和的前项和分别为,,,,对任意的,都有.(1)求数列的通项公式;(2)若为等差数列,对任意的,都有.证明:;(3)若为等比数列,,,求满足的值.【答案】(1)(2)【解析】试题分析:利用题目提供的方面的关系,借助转化为的关系,证明出满足等差数列定义,利用等差数列通项公式求出,进而得出,成等差数列,写出,根据恒成立,得出和公差的要求,比较的大小可采用比较法;是以为首项,为公比的等比数列,求出和,根据题意求出的值.试题解析:(1)由,得,即,所以.由,,可知.所以数列是以为首项,为公差的等差数列.故的通项公式为.(2)证法一:设数列的公差为,则,由(1)知,.因为,所以,即恒成立,所以即又由,得,所以.所以,得证.证法二:设的公差为,假设存在自然数,使得,则,即,因为,所以.所以,因为,所以存在,当时,恒成立.这与“对任意的,都有”矛盾!所以,得证.(3)由(1)知,.因为为等比数列,且,,所以是以为首项,为公比的等比数列.所以,.则,因为,所以,所以.而,所以,即(*).当,时,(*)式成立;当时,设,则,所以.故满足条件的的值为和.【点睛】等差数列和等比数列是高考的重点,要掌握等差数列和等比数列的通项公式与前项和公式,另外注意利用这个公式,从到,从到转化.20. 已知函数,.(1)当时,求函数的单调增区间;(2)设函数,.若函数的最小值是,求的值;(3)若函数,的定义域都是,对于函数的图象上的任意一点,在函数的图象上都存在一点,使得,其中是自然对数的底数,为坐标原点.求的取值范围.【答案】(1)(2)【解析】试题分析:求函数的单调区间可利用求导完成,求函数的最值可通过求导研究函数的单调性求出极值,并与区间端点函数值比较得出最值;解决问题,先求出斜率的取值范围,根据垂直关系得出斜率的取值范围,转化为恒成立问题,借助恒成立思想解题.试题解析:(1)当时,,.因为在上单调增,且,所以当时,;当时,.所以函数的单调增区间是.(2),则,令得,当时,,函数在上单调减;当时,,函数在上单调增.所以.①当,即时,函数的最小值,即,解得或(舍),所以;②当,即时,函数的最小值,解得(舍).综上所述,的值为.(3)由题意知,,.考虑函数,因为在上恒成立,所以函数在上单调增,故.所以,即在上恒成立,即在上恒成立.设,则在上恒成立,所以在上单调减,所以.设,则在上恒成立,所以在上单调增,所以.综上所述,的取值范围为.【点睛】求函数的单调区间、极值和最值是高考常见基础题,求函数的单调区间可利用求导完成,求函数的最值可通过求导研究函数的单调性求出极值,并与区间端点函数值比较得出最值;恒成立为题为高考热点,已经连续命题许多年,必须重视.本题包括21、22、23、24四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.21.如图,圆的弦,交于点,且为弧的中点,点在弧上.若,求的度数.【答案】45°【解析】试题分析:同弧或等弧所对的圆周角相等,利用等量代换,借助角与角的关系求出所求的角 .试题解析:连结,.因为为弧的中点,所以.而,所以,即.又因为,所以,故.【点睛】平面几何选讲部分要注意与圆有关的定理,特别是涉及到角的关系的定理,寻求角的相等,边与边的关系,大多利用全等三角形或相似三角形解题.22.已知矩阵,若,求矩阵的特征值.【答案】矩阵的特征值为,.【解析】试题分析: 根据矩阵运算解出,写出矩阵的特征多项式,计算后令,求出特征值.试题解析:因为,所以解得所以.所以矩阵的特征多项式为,令,解得矩阵的特征值为,.【点睛】矩阵为选修内容,根据矩阵运算解出,写出矩阵的特征多项式,计算后令,求出特征值.23.在极坐标系中,已知点,点在直线上.当线段最短时,求点的极坐标.【答案】点的极坐标为.【解析】试题分析:利用极坐标与直角坐标互化公式,把化为直角坐标,再把的方程化为直角坐标方程,要使最短,过点作直线的垂线,垂足为,写出垂线方程,解方程组求出交点坐标,再化为极坐标.试题解析:以极点为原点,极轴为轴正半轴,建立平面直角坐标系,则点的直角坐标为,直线的直角坐标方程为.最短时,点为直线与直线的交点,解得所以点的直角坐标为.所以点的极坐标为.【点睛】极坐标为选修内容,掌握极坐标与直角坐标互化公式,掌握点和方程的互化,结合解析几何知识解题.24. 已知,,为正实数,且.求证:.【答案】详见解析【解析】试题分析:根据实施等转不等,得出,再根据三个正数的算术平均数不小于几何平均数,证明出结论.试题解析:因为,所以,所以,当且仅当时,取“”.【点睛】不等式选讲为选修内容,注意利用均值不等式、柯西不等式、排序不等式进行证明,另外注意选用证明方法,如综合法、分析法、反证法,与正整数有关的命题有时还采用数学归纳法.【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25. 在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.(1)求动点的轨迹的方程;(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.【答案】(1)曲线的方程为.(2)详见解析试题解析:(1)因为直线与垂直,所以为点到直线的距离.连结,因为为线段的中垂线与直线的交点,所以.所以点的轨迹是抛物线.焦点为,准线为.所以曲线的方程为.(2)由题意,过点的切线斜率存在,设切线方程为,联立得,所以,即(*),因为,所以方程(*)存在两个不等实根,设为,因为,所以,为定值.【点睛】求动点轨迹方程是常见考题,常用方法有直接法、坐标相关法,定义法、交轨法、参数法等,定点、定值问题常出现在考题的第二步,一般采用设而不求的解题思想.26. 已知集合,对于集合的两个非空子集,,若,则称为集合的一组“互斥子集”.记集合的所有“互斥子集”的组数为(视与为同一组“互斥子集”).(1)写出,,的值;(2)求.【答案】(1),,.(2).【解析】试题分析:分别对三种情况研究集合的非空子集,并找出交集为空集的子集对数,得出,任意一个元素只能在集合,,之一中,则这个元素在集合,,中,共有种;减去为空集的种数和为空集的种数加1,又与为同一组“互斥子集”,得出.试题解析:(1),,.(2)解法一:设集合中有k个元素,.则与集合互斥的非空子集有个.于是.因为,,所以.解法二:任意一个元素只能在集合,,之一中,则这个元素在集合,,中,共有种;其中为空集的种数为,为空集的种数为,所以,均为非空子集的种数为,又与为同一组“互斥子集”,所以.【点睛】本题为自定义信息题,这是近几年一些省市高考压轴题,首先要读懂新定义的概念的含义,从简单的情况入手去研究,如本题先从入手,,其非空子集有三个,满足的有一对,则,继续探讨,推广到.。
江苏苏北三市(连云港、徐州、宿迁)2017年高考年级第三次模拟考试数学试题卷及答案解析
数学Ⅰ
参考公式:样本数据
x1, x2 ,, xn
s2 的方差
1 n
n
( xi
i 1
x )2
,其中
x
1 n
n
xi
i 1
V .棱锥的体积
1 Sh 3,
其中 S 是棱锥的底面积, h 是高.
一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答题卡相应位置
是
第六圈
否
0
0
1
0
2
-2
3
-2
4
0
5
4
输出 5
∴最终输出结果 k=5 【考点】程序框图。
6.已知一组数据 3 , 6 , 9 , 8 , 4 ,则该组数据的方差是____.
26 【答案】 5
【解析】
x
1
(3
6
9
8
4)
6, S 2
1 [(3
6)2
(6
6)2
(9
6)2
(8
62 )
P( A) m
件种数,再找出符合要求的基本事件种数,再利用概率公式
n ,求出概率值.
5.下图是一个算法流程图,则输出的 k 的值是 . 【答案】5。 【解析】 根据流程图所示的顺序,程序的运行过程中变量值变化如下表:
是否继续循环
k
k2 5k 4
循环前
第一圈
是
第二圈
是
第三圈
是
第四圈
江苏省南通、扬州、泰州2017届高三第三次调研考试5月数学
江苏省泰州市2017届高三第三次调研测试数学Ⅰ2017.5一、填空题:(本大题共14小题,每小题5分,共70分)设复数(),z a bi a b R =+∈,i 为虚数单位),若()43z i i =+,则ab 的值是 .1. 已知集合{}{}|0,|2U x x A x x =>=≥,则U C A =.3.某人随机播放甲、乙、丙、丁4首歌曲中的2首,则甲、乙2两首歌曲至少有1首播放k 的概率是 .4.右图是一个算法的流程图,则输出的的值是 .5.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人,.若其它年级共有学生3000人,则该校学生总人数是 .6.设等差数列{}n a 的前n 项和为n S ,若公差52,10d a ==,则10S 的值是 .7.在ABC ∆中,3,4AB AC ==.若ABC ∆的面积为33则BC 的长是 .8.在平面直角坐标系中,若双曲线()22210x y a a-=>经过抛物线28y x =的焦点,则该双曲线的离心率是 .9.已知圆锥的侧面展开图是半径为3,圆心角为23π的扇形,则这个圆锥的高为 .10.若直线2y x b =+为曲线x y e x =+的一条切线,则实数b 的值为 .11.若正数,x y 满足1x y +=,则4y x y +的最小值是 .12.如图,在直角梯形ABCD 中,//,90,3,2AB CD ABC AB BC DC ∠====,若,E F 分别是线段DC 和BC 上的动点,则AC EF ⋅的取值范围为 .13.在平面直角坐标系xoy 中,已知点()()0,2,1,1A B --,P 为圆222x y +=上一个动点,则PBPA 的最大值为 .14.已知函数()3,3,x x af x x x x a ≥⎧=⎨-<⎩,若函数()()2g x f x ax =-恰有2个不同的零点,则实数a 的取值范围为 .二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.15.(本题满分14分)已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭图象的两条对称轴之间的距离为π,且经过点3.3π⎛ ⎝⎭(1)求函数()f x 的解析式;(2)若角α满足()()31,0,2f παααπ⎛⎫-=∈ ⎪⎝⎭,求α的值.16.(本题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,平面PAD ⊥平面ABCD ,,M N 分别为棱,PD PC 的中点.(1)//MN 平面PAB ;(2)AM ⊥平面PCD .17.(本题满分14分)在平面直角坐标系xoy 中,已知椭圆()222210x y a b a b+=>>的左焦点为()1,0F -,且经过点31,2⎛⎫ ⎪⎝⎭(1)求椭圆的标准方程;(2)已知椭圆的弦AB 过点F,且与x 轴不垂直,若D 为x 轴上的一点,DA DB =,求AB DF的值. 18.(本题满分16分)如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图.半径OA 的长为1百米,为了保护景点,基底管理部门从道路l 上选取一点C,修建参观线路C-D-E-F ,且CD,DE,EF 均与半圆.相切,四边形CDEF 为等腰梯形,设DE=t 百米,记修建每1百米参观线路的费用为()f t 万元,经测算()15,03118, 2.3t f t t t ⎧<≤⎪⎪=⎨⎪-<<⎪⎩(1)用t 表示线段EF 的长;(2)求修建该参观线路的最低费用.19.(本题满分16分)已知{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,1q ≠±,正整数组()(),,.E m p r m p r =<<.(1)若122331a b a b a b +=+=+,求q 的值;(2)若数组E 中的三个数构成公差大于1的等差数列,且m p p r r m a b a b a b +=+=+,求q 的最大值;(3)若11,02n n m m p p r r b a b a b a b -⎛⎫=-+=+=+= ⎪⎝⎭,试写出满足条件的一个数字E 和对应的通项公式n a .(注:本问不必写出解答过程)20.(本题满分16分)已知函数()2cos f x ax x =+,记()f x 的导函数为().g x(1)证明:当12a =时,()g x 在R 上单调递增; (2)若()f x 在0x =处取得极小值,求a 的取值范围;(3)设函数()h x 的定义域为D,区间(),m D +∞⊂,若()h x 在(),m +∞上是单调函数,则称()h x 在D 上广义单调,试证明函数()ln y f x x x=-在()0,+∞上广义单调.江苏省泰州市2017届高三第三次调研测试数学Ⅱ21.【选做题】在A,B,C,D 四个小题中只能选做2题,每小题10分,共计20分.请在答题纸的指定区域内作答,解答应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,已知AB 为圆O 的一条弦,点P 为弧AB 的中点,过点P 任作两条弦PC,PD,分别交AB 于点E,F.求证:PE PC PF PD ⋅=⋅.B.选修4-2:矩阵与变换已知矩阵11a M b ⎡⎤=⎢⎥-⎣⎦,点()1,1-在M 对应的变换作用下得到点()1,5--,求矩阵M 的特征值.C.选修4-4:坐标系与参数方程在极坐标系中,圆C 的圆心在极轴上,且过极点和点32,4π⎛⎫ ⎪⎝⎭,求圆C 的极坐标方程.D.选修4-5:不等式选讲已知,,,a b c d 是正实数,且1abcd =,求证:5555a b c d a b c d +++≥+++【必做题】第22题、第23题,每题10分共计20分.请答题卡的指定区域内作答解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在四棱锥S ABCD -中,SD ⊥平面ABCD ,四边形ABCD 是直角梯形,90,2, 1.ADC DAB SD AD AB DC ∠=∠=====(1)求二面角S BC A --的余弦值;(2)设P 是棱BC 上一点,E 是SA 的中点,若PE 与平面SAD 所226,求线段CP 的长. 23.(本小题满分10分)已知函数()()00,0cx d f x a ac bd ax b+=≠-≠+,设()n f x 是()1n f x -的导数.n N *∈ (1)求()()12,f x f x ;(2)猜想()n f x 的表达式,并证明你的结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连云港市2017届高三年级模拟考试数学Ⅰ第Ⅰ卷(共70分)一、填空题(每题5分,满分70分,江答案填在答题纸上)1.已知集合}211{,,-=A ,}7,210{,,=B ,则集合B A 中元素的个数为 .2.设a ,Rb ∈,bi a ii+=-+11(i 为虚数单位),则b 的值为 . 3.在平面直角坐标系xOy 中,双曲线13422=-y x 的离心率是 . 4.现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是 .5.如图是一个算法的流程图,则输出的k 的值为 .6.已知一组数据3,6,9,8,4,则该组数据的方差是 .7.已知实数x ,y 满足⎪⎩⎪⎨⎧≥+≤-≤,2,3,1y x x x y 则x y 的取值范围是 .8.若函数)2sin(2)(ϕ+=x x f )20(πϕ<<的图象过点)3,0(,则函数)(x f 在],0[π上的单调减区间是 .9.在公比为q 且各项均为正数的等比数列}{n a 中,n S 为}{n a 的前n 项和.若211qa =,且225+=S S ,则q 的值为 .10.如图,在正三棱柱111C B A ABC -中,已知31==AA AB ,点P 在棱1CC 上,则三棱锥1ABA P -的体积为 .11.如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和C 分别在函数x y a log 31=,x y a log 22=和)1(log 3>=a x y a 的图象上,则实数a 的值为 .12.已知对于任意的),5()1,(+∞-∞∈ x ,都有0)2(22>+--a x a x ,则实数a 的取值范围是 .13.在平面直角坐标系xOy 中,圆C :3)()2(22=-++m y x .若圆C 存在以G 为中点的弦AB ,且GO AB 2=,则实数m 的取值范围是 .14.已知ABC ∆三个内角A ,B ,C 的对应边分别为a ,b ,c ,且3π=C ,2=c ,当AB AC •取得最大值时,ab的值为 . 第Ⅱ卷(共90分)二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.如图,在ABC ∆中,已知点D 在边AB 上,DB AD 3=,54cos =A ,135cos =∠ACB ,13=BC .(1)求B cos 的值; (2)求CD 的长.16.如图,在四棱锥ABCD P -中,底面ABCD 是矩形,点E 在棱PC 上(异于点P ,C ),平面ABE 与棱PD 交于点F .(1)求证:EF AB //;(2)若平面⊥PAD 平面ABCD ,求证:EF AE ⊥.17. 如图,在平面直角坐标系xOy 中,已知椭圆C :13422=+y x 的左、右顶点分别为A ,B ,过右焦点F 的直线l 与椭圆C 交于P ,Q 两点(点P 在x 轴上方).(1)若FP QF 2=,求直线l 的方程;(2)设直线AP ,BQ 的斜率分别为1k ,2k ,是否存在常数λ,使得21k k λ=?若存在,求出λ的值;若不存在,请说明理由.18. 某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,且21≥AD AB ,设θ=∠EOF ,透光区域的面积为S .(1)求S 关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB 的长度.19. 已知两个无穷数列}{n a 和}{n b 的前n 项和分别为n S ,n T ,11=a ,42=S ,对任意的*∈N n ,都有n n n n a S S S ++=++2123.(1)求数列}{n a 的通项公式;(2)若}{n b 为等差数列,对任意的*∈N n ,都有n n T S >.证明:n n b a >; (3)若}{n b 为等比数列,11a b =,22a b =,求满足)(22*∈=++N k a S b T a k nn nn 的n 值.20. 已知函数)0(ln )(>+=m x x xmx f ,2ln )(-=x x g . (1)当1=m 时,求函数)(x f 的单调区间;(2)设函数2)()()(--=x xg x f x h ,0>x .若函数))((x h h y =的最小值是223,求m 的值;(3)若函数)(x f ,)(x g 的定义域都是],1[e ,对于函数)(x f 的图象上的任意一点A ,在函数)(x g 的图象上都存在一点B ,使得OB OA ⊥,其中e 是自然对数的底数,O 为坐标原点,求m 的取值范围.21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,圆O 的弦AB ,MN 交于点C ,且A 为弧MN 的中点,点D 在弧BM 上,若ADB ACN ∠=∠3,求ADB ∠的度数.B.选修4-2:矩阵与变换 已知矩阵⎥⎦⎤⎢⎣⎡=d a A 23,若⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=4821A ,求矩阵A 的特征值. C.选修4-4:坐标系与参数方程 在极坐标系中,已知点)2,2(πA ,点B 在直线l :)20(0sin cos πθθρθρ≤≤=+上,当线段AB 最短时,求点B 的极坐标. D.选修4-5:不等式选讲已知a ,b ,c 为正实数,且222333c b a c b a =++,求证:333≥++c b a .请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,点)0,1(F ,直线1-=x 与动直线n y =的交点为M ,线段MF 的中垂线与动直线n y =的交点为P .(1)求动点P 的轨迹E 的方程;(2)过动点M 作曲线E 的两条切线,切点分别为A ,B ,求证:AMB ∠的大小为定值. 23.选修4-5:不等式选讲已知集合},...,2,1{n U =)2,(≥∈*n N n ,对于集合U 的两个非空子集A ,B ,若∅=B A ,则称),(B A 为集合U 的一组“互斥子集”.记集合U 的所有“互斥子集”的组数为)(n f (视),(B A 与),(A B 为同一组“互斥子集”). (1)写出)2(f ,)3(f ,)4(f 的值; (2)求)(n f .三师2017届高三第三次质量检测参考答案与评分标准试一、填空题1.52. 13.27 4. 61 5.6 6. 526 (或5.2) 7. ]32,31[-(或3231≤≤-x y ) 8. )127,12(ππ(或]127,12[ππ) 9.215- 10. 34911. 2 12. ]5,1((或51≤<a )13. ]2,2[-(或22≤≤-m ) 14. 32+二、解答题15.解:(1)在ABC ∆中, 54cos =A , ),0(π∈A , 所以=-=A A 2cos 1sin 53)54(12=-. 同理可得, 1312sin =∠ACB . 所以=∠+-=)](cos[cos ACB A B π)cos(ACB A ∠+-ACB A ACB A ∠-∠=cos cos sin sin6416135********=⨯-⨯=. (2)在ABC ∆中,由正弦定理得, BBC AB sin =2013125313sin =⨯=∠ACB .又DB AD 3=,所以541==AB BD . 在BCD ∆中,由余弦定理得, B BC BD BC BD CD cos 222•-+=6416135213522⨯⨯⨯-+= 29=.16. 解:(1) 因为ABCD 是矩形,所以CD AB //.又因为⊄AB 平面PDC ,⊂CD 平面PDC , 所以//AB 平面PDC .又因为⊂AB 平面ABEF ,平面 ABEF 平面EF PDC =, 所以EF AB //.(2)因为ABCD 是矩形,所以AD AB ⊥.又因为平面⊥PAD 平面ABCD ,平面 PAD 平面AD ABCD =,⊂AB 平面ABCD ,所以⊥AB 平面PAD .又⊂AF 平面PAD ,所以AF AB ⊥. 又由(1)知EF AB //,所以EF AF ⊥.17. 解:(1) 因为42=a ,32=b ,所以122=-=b a c ,所以F 的坐标为(1,0), 设),(11y x P ,),(22y x Q ,直线l 的方程为1+=my x , 代入椭圆方程,得096)34(22=-++my y m ,则22134163m m m y +++-=,22234163m m m y ++--=.若PF QF 2=,则0341632341632222=+++-⨯+++--mm m m m m , 解得552=m ,故直线l 的方程为0525=--y x . (2)由(1)知,221346m m y y +-=+,221349m y y +-=, 所以)(2334921221y y m m y my +=+-=,所以22112122y x x y k k --+=)3()1(1221+-=my y my y 313)(23)(23221121=++-+=y y y y y y ,故存在常数31=λ,使得2131k k =. 18. 解:(1) 过点O 作FG OH ⊥于点H ,则θ=∠=∠EOF OFH , 所以θθsin sin ==OF OH ,θθcos cos ==OF FH .所以OEF OFH S S S 扇形44+=∆)21(4cossin 2θθθ⨯+=θθ22sin +=,因为21≥AD AB ,所以21sin ≥θ,所以定义域为)2,6[ππ.(2)矩形窗面的面积为θθsin 4sin 22=⨯=•=AB AD S 矩形. 则透光区域与矩形窗面的面积比值为θθθθθθθsin 22cos sin 42cos sin 2+=+. 设θθθθsin 22cos )(+=f ,26πθπ<≤. 则θθθθθθ2sin 2cos sin sin 21)(-+='f θθθθθ23sin 2sin cos sin --=θθθθθ22sin 2cos cos sin -=θθθθ2sin 2)2sin 21(cos -=, 因为26πθπ<≤,所以212sin 21≤θ,所以02sin 21<-θθ,故0)(<'θf , 所以函数)(θf 在)2,6[ππ上单调减. 所以当6πθ=时,)(θf 有最大值436+π,此时)(1sin 2m AB ==θ 答:(1)S 关于θ的函数关系式为θθ22sin +=S ,定义域为)2,6[ππ;(2)透光区域与矩形窗面的面积比值最大时,AB 的长度为1m . 19. 解:(1) 由n n n n a S S S ++=++2123,得n n n n n a S S S S +-=-+++121)(2,即n n n a a a +=++212,所以n n n n a a a a -=-+++112. 由11=a ,41=S ,可知32=a .所以数列}{n a 是以1为首项,2为公差的等差数列. 故}{n a 的通项公式为12-=n a n .(2)证法一:设数列}{n b 的公差为d ,则d n n nb T n 2)1(1-+=, 由(1)知,2n S n =.因为n n T S >,所以d n n nb n 2)1(12-+>,即02)2(1>-+-b d n d 恒成立, 所以⎩⎨⎧>-≥-,02,021b d d 即⎩⎨⎧<≤,2,21d b d 又由11T S >,得11<b , 所以d n b n b a n n )1(121----=-11)2(b d n d --+-=11)2(b d d --+-≥011>-=b .所以n n b a >,得证.证法二:设}{n b 的公差为d ,假设存在自然数20≥n ,使得00n n b a >, 则≤⨯-+2)1(01n a d n b )1(01-+,即)2)(1(011--≤-d n b a , 因为11b a >,所以2>d . 所以212)1(n d n n nb S T n n --+=-n db n d )2()12(12-+-=, 因为012>-d,所以存在*∈N N n 0,当0n N n >时,0>-n n S T 恒成立. 这与“对任意的*∈N n ,都有T S n >”矛盾! 所以n n b a >,得证.(3)由(1)知,2n S n =.因为}{n b 为等比数列,且11=b ,32=b ,所以}{n b 是以1为首项,3为公比的等比数列. 所以13-=n n b ,213-=n n T .则2123131222nn S b T a n n n n n n +-+-=++-2123223n n n n +-+=-212232263n n n n ++--=-,因为*∈N n ,所以02262>+-n n ,所以322<++nn n n S b T a . 而12-=k a k ,所以122=++nn n n S b T a ,即01321=-+--n n n (*). 当2,1=n 时,(*)式成立;当2≥n 时,设13)(21-+-=-n n n f n , 则n n n f n f n ++-=-+2)1(3)()1(0)3(2)13(121>-=-+----n n n n n , 所以...)(...)3()2(0<<<<=n f f f .故满足条件的n 的值为1和2.20. 解:(1) 当1=m 时,x x x x f ln 1)(+=,1ln 1)(2++='x xx f . 因为)(x f '在),0(+∞上单调增,且0)1(='f ,所以当1>x 时,0)(>'x f ;当10<<x 时,0)(<'x f .所以函数)(x f 的单调增区间是),1(+∞.(2)22)(-+=x xm x h ,则22222)(x m x x m x h -=-=',令0)(='x h 得2m x =, 当20m x <<时,0)(<'x h ,函数)(x h 在)2,0(m 上单调减; 当2m x >时,0)(>'x h ,函数)(x h 在),2(+∞m 上单调增. 所以222)2()]([min -==m m h x h . ①当2)12(2m m ≥-,即94≥m 时, 函数))((x h h y =的最小值)12(2[2)222(-=-m m m h 223]1)12(2=--+m , 即092617=+-m m ,解得1=m 或179=m (舍),所以1=m ; ②当2)12(20m m <-<,即9441<<m 时,函数))((x h h y =的最小值223)12(2)2(=-=m m h ,解得54=m (舍). 综上所述,m 的值为1. (3)由题意知,x x m k OA ln 2+=,xx k OB 2ln -=. 考虑函数x x y 2ln -=,因为2ln 3x x y -='在],1[e 上恒成立, 所以函数x x y 2ln -=在],1[e 上单调增,故]1,2[ek OB --∈. 所以],21[e k OA ∈,即e x x m ≤+≤ln 212在],1[e 上恒成立, 即)ln (ln 2222x e x m x x x -≤≤-在],1[e 上恒成立. 设x x x x p ln 2)(22-=,则0ln 2)(≤-='x x p 在],1[e 上恒成立, 所以)(x p 在],1[e 上单调减,所以21)1(=≥p m . 设)ln ()(2x e x x q -=,则≥--=')ln 212()(x e x x q 0ln 212(>--e e x 在],1[e 上恒成立,所以)(x q 在],1[e 上单调增,所以e q m =≤)1(.综上所述,m 的取值范围为],21[e .21.解:A .连结AN ,DN .因为A 为弧MN 的中点,所以ADN ANM ∠=∠.而NDB NAB ∠=∠,所以NDB ADN NAB ANM ∠+∠=∠+∠,即ADB BCN ∠=∠.又因为ADB ACN ∠=∠3,所以︒=∠+∠=∠+∠1803ADB ADB BCN ACN ,故︒=∠45ADB .B .因为⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=212321d a A ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++=48226d a , 所以⎩⎨⎧=+=+42286d a 解得⎩⎨⎧==14d a 所以⎥⎦⎤⎢⎣⎡=1232A . 所以矩阵A 的特征多项式为1232)(---=λλλf 436)1)(2(2--=---=λλλλ,令0)(=λf ,解得矩阵A 的特征值为11-=λ,42=λ.C .以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,则点)2,2(πA 的直角坐标为)2,0(,直线l 的直角坐标方程为0=+y x .AB 最短时,点B 为直线02=+-y x 与直线l 的交点,解⎩⎨⎧=+=+-002y x y x 得⎩⎨⎧=-=11y x 所以点B 的直角坐标为(-1,1). 所以点B 的极坐标为)43,2(π.D .因为33332223333c b a c b a c b a ≥=++,所以3≥abc ,所以33333≥≥++abc c b a ,当且仅当33===c b a 时,取“”.22. 解:(1) 因为直线n y =与1-=x 垂直,所以MP 为点P 到直线1-=x 的距离. 连结PF ,因为P 为线段MF 的中垂线与直线n y =的交点,所以PF MP =. 所以点P 的轨迹是抛物线.焦点为)0,0(P ,准线为1-=x .所以曲线E 的方程为x y 42=.(2)由题意,过点),1(n M -的切线斜率存在,设切线方程为)1(+=-x k n y , 联立⎩⎨⎧=++=,4,2x y n k kx y 得04442=++-n k y ky , 所以0)44(4161=+-=∆n k k ,即012=-+kn k (*),因为0422>+=∆n ,所以方程(*)存在两个不等实根,设为1k ,2k ,因为121-=•k k ,所以︒=∠90AMB ,为定值.23. 解:(1) 1)2(=f ,6)3(=f ,25)4(=f .(2)解法一:设集合A 中有k 个元素,1,...,3,2,1-=n k . 则与集合A 互斥的非空子集有12--k n 个. 于是)12(21)(11-=--=∑k n n k k n C n f ]2[211111∑∑-=--=-=n k k n k n n k k n C C . 因为=--=∑k n n k k n C 211∑-=---1000222n k n n n n k n k n C C C 12312)12(--=--+=n n n n , n n n n k k n n k kn C C C C--=∑∑-=-=0101122-=n , 所以---=)123[(21)(n n n f )123(21)]22(1+-=-+n n n . 解法二:任意一个元素只能在集合A ,B ,)(B A C C U =之一中, 则这n 个元素在集合A ,B ,C 中,共有n 3种; 其中A 为空集的种数为n 2,B 为空集的种数为n 2, 所以A ,B 均为非空子集的种数为1223+⨯-n n , 又),(B A 与),(A B 为同一组“互斥子集”, 所以)123(21)(1+-=+n n n f .。