统计学 第四章

合集下载

统计学第四章

统计学第四章

第四章 差异量教学目的:1.理解全距、四分位距、百分位距、平均差、方差、标准差和差异系数等概念;2.掌握各种差异量指标的计算方法。

数据的分布特征不仅有集中趋势,还有离中趋势。

以动态的眼光,从不同的角度看,数据是向中间变动的,也是向两端变动的。

两组数据可能平均水平相同,但两组数据的分布特征并不完全相同。

【如】:比较下列两组数据 A 组:88、82、73、76、81 B 组:92、86、70、72、80两组平均数,80==B A X X 但R A =88-73=15,R B=92-70=22。

即A 组较集中,B 组较分散。

因此,我们描述一组数据的分布特征,既要描述其集中趋势,也要描述其离中趋势。

差异量:表示一组数据的离中趋势或变异程度的量称为差异量。

常用的差异量指标有全距、四分位距、百分位距、平均差、方差、标准差和差异系数。

第一节全距、四分位距、百分位距一、全距全距:是一组数距中最大值与最小值之差。

优点:意义明确,计算方便。

缺点:反应不灵敏,易受极端值影响。

二、四分位距(一)四分位距的的概念四分位距:是指一组按大小顺序排列的数据中间部位50%个频数距离的一半。

)(1.4213Q Q QD -=QD :表示四分位距; Q 3:表示第三四分位数;Q 1:表示第一四分位数。

所以:四分位距的公式又为:22575P P QD -=(二)四分位数的计算方法 1、原始数据计算法(1)将数据由小到大进行排列; (2)分别求出三位四分位数(点); (3)代入公式计算。

【例如】:有以下16个数据25、22、29、12、40、15、14、39、37、31、33、19、17、20、35、30,其中四分位距的计算方法如下:(1)先将原始数据从小到大排列好;12、14、15、17、*19、20、22、25、*29、30、31、33、*35、37、39、40Q 1=18 Md =27 Q 3=34(2)求出Q 1、Md 、Q 3;(3)将Q 1、Md 、Q 3的得数代入公式(4.1)。

统计学课件 第四章 时间数列

统计学课件 第四章 时间数列

c a b
故对相对数或平均数时间数列计算平均发展水平,只需要对 其的分子、分母分别计算平均发展水平后再相除即可。即:
c a 分子代表分子数列的平均发展水平,分母代表分母数列的平均发展水平 b
(1)分子分母都是时期数列
某企业产值情况
时间
1月
2月
3月
产值计划完成程度(%) 105 100 109.1
计划产值(万)
某市财政收入情况
月份
1
2
3
4
5
6
财政收入 1(a0) 1.1(a1) 1.05(a2) 1.2(a3) 1.22(a4) 1.3(a5) (亿)
逐期增长量 ----
0.1
-0.05
0.15
0.02
0.08
(亿)
累计增长量 -----
0.1
0.05
0.2
0.22
0.3
(亿)
平均增长量=【0.1+(-0.05)+0.15+0.02+0.08】÷5 =0.3÷5=0.06(亿)
100 110 110
实际产值(万)
105 110 120
求该企业第一季度产值平均计划完成程度?
105110 120
c
3 100 110 110
104.69%
3
第二节 时间数列的水平指标
(2)分子分母都是时点数列
某企业员工情况
时间 1月初 2月初 3月初 4月初
男性比重 52
(%)
50.98 49.09 49.07
Ⅰ、资料逐日登记排列形成,用简单算术平均法。即:例:a a
某车间某月1到15日在册人数资料
n
日 期

统计学第4章综合指标

统计学第4章综合指标
众数
直接观察数据中出现次数最多的数。
平均指标在统计分析中应用
描述统计
用平均指标描述数据的集中 趋势和一般水平,如用算术 平均数描述班级学生的平均 成绩。
比较分析
通过比较不同组数据的平均 指标,揭示它们之间的差异 和联系,如比较不同班级的 平均成绩以评估教学效果。
推断统计
在总体分布未知的情况下, 利用样本平均指标对总体进 行推断,如通过样本均值推 断总体均值。
总量指标的作用
作为计算相对指标和平均指标的基础
描述社会经济现象的总规模和总水平
总量指标种类与计算方法
总量指标的种类
01
时点指标:反映现象在某一时刻上的总量 ,如年末人口数、股票价格等。
03
02
时期指标:反映现象在一段时期内的总量, 如国内生产总值、人口数等。
04
总量指标的计算方法
直接计数法:对总体单位进行逐一计数, 然后汇总得到总量指标。
相对指标种类与计算方法
结构相对指标
部分与总体之比,反映总
总体中不同部分数量之比,反映各部分之间的 比例关系。
比较相对指标
同一现象在不同空间条件下的数量对比,反映现象在不同地区的差异程度。
相对指标种类与计算方法
强度相对指标
两个性质不同但有一定联系的总量指标之比,反映现象的强度、密度和普遍程度。
平均指标种类与计算方法
算术平均数
$bar{x} = frac{sum x}{n}$,其中$sum x$为所有数值之和,$n$为 数值个数。
几何平均数
$G = sqrt[n]{prod x_i}$,其中$prod x_i$为所有数值之积,$n$为 数值个数。
中位数
将数据从小到大排列,若数据量为奇数则取中间数,若数据量为偶数 则取中间两数的平均值。

统计学(第4章)

统计学(第4章)

连续变动结果的总量指标,时期指标是
一个流量。
时间维度上
时期指标的三个特点 具有可加性
时期指标可以累计
时期指标数值大小与时期长短有直接关系
时期指标的数值一般为连续登记
2019/6/15
第四章 描述统计
5
统计学
2、时点指标
时点指标又叫存量指标,是指反映社 会经济现象在某一时点上的总量指标,
四 季度
1 500
计划完成百分数=
1400+1420+1470+1500 5000
=115.8%
注:2010年第一季度前的四个季度的累计量已达5000,说明五年计 划提前三个季度完成。
2019/6/15
第四章 描述统计
33
统计学
(2)累计法
如何确定提前 完成时间?
计算公式:
计划完成相对指标 长期计划期间实际累计完成数 长期计划规定的累计数
时点指标是一个存量。
时间维度上
时点指标的三个特点
不具可加性
不同时点指标数值是不能累加
时点指标数值大小与时点间隔长短无直 接关系
时点指标一般为间断统计
2019/6/15
第四章 描述统计
6
统计学
三、总量指标的计量单位
1、实物量单位(包括度量衡单位) 2、价值量单位 3、劳动量单位(工时和工日)
5 000 1 250 1 340 1 280
102.4
52.4
4 000 1 000 1 030 1 215
121.5
56.1
2 000 500 600 400
80.0
50.0
11 000 2 750 2 970 2 895 105.33

《统计学》 第四章 统计综合指标

《统计学》 第四章 统计综合指标

第四章统计综合指标(一)(一)填空题1、总量指标是反映社会经济现象的统计指标,其表现形式为绝对数。

2、总量指标按其反映总体的内容不同,分为总体的标志总量和总体单位总量;按其反映的时间状况不同,分为时期结构和时点结构.反映总体在某一时刻(瞬间)上状况的总量指标称为时点结构 ,反映总体在一段时期内活动过程的总量指标称为时期结构.3、相对指标的数值有两种表现形式,一是有名数,二是无名数。

4、某企业中,女职工人数与男职工人数之比为1:3,即女职工占25%,则1:3属于比例相对数,25%属于结构相对数。

(二)单项选择题(在每小题备选答案中,选出一个正确答案)1、银行系统的年末储蓄存款余额是( D )A。

时期指标并且是实物指标 B。

时点指标并且是实物指标C。

时期指标并且是价值指标 D. 时点指标并且是价值指标2、某企业计划规定本年产值比上年增长4%,实际增长6%,则该企业产值计划完成程度为( B )A、150%B、101。

9%C、66.7%D、无法计算3、总量指标具有的一个显著特点是( A )A. 指标数值的大小随总体范围的扩大而增加B. 指标数值的大小随总体范围的扩大而减少C。

指标数值的大小随总体范围的减少而增加D. 指标数值的大小随总体范围的大小没有直接联系4、在出生婴儿中,男性占53%,女性占47%,这是( D )A、比例相对指标B、强度相对指标C、比较相对指标D、结构相对指标5、我国1998年国民经济增长(即国内生产总值为)7。

8% ,该指标是( C )A. 结构相对指标B. 比例相对指标 C。

动态相对指标 D。

比较相对指标6、某商店某年第一季度的商品销售额计划为去年同期的110%,实际执行的结果,销售额比去年同期增长24.3%,则该商店的商品销售计划完成程度的算式为( B)A。

124.3%÷210% B。

124.3%÷110%C。

210%÷124。

3 D. 条件不够,无法计算7、下面属于时点指标的是( A )A. 商品库存量 B。

统计学4

统计学4
第四章 统计整理 教学目的: 通过本章学习,认识统计整理在统计活动中的作
用,掌握统计整理的方法,能够针对具体的调查资料
进行分类、汇总并编制统计表。
教学要求:
了解统计整理的概念和步骤,掌握统计分组、
分配数列及统计表的概念,重点掌握统计分组的
方法 、分配数列的编制,并学回会运用统计表来
表现统计资料。
4、1统计整理概述


检查数据是否真实反映客观实际情况,内 容是否符合实际 检查数据是否有错误,计算是否正确等
数据的审核—原始数据
(RAW DATA)

审核数据准确性的方法
1.
2.
逻辑检查 从定性角度,审核数据是否符合逻辑,内容 是否合理,各项目或数字之间有无相互矛盾 的现象 主要用于对分类和顺序据的审核 计算检查 检查调查表中的各项数据在计算结果和计算 方法上有无错误 主要用于对数值型数据的审核
饮料,就将这一饮料的品牌名字记录一次。
下面的表格是记录的原始数据。
顾客购买饮料的品牌名称
旭日升 露露 旭日升 可口可乐 百事可乐 可口可乐 汇源果汁 可口可乐 露露 可口可乐 可口可乐 旭日升 可口可乐 百事可乐 露露 旭日升 旭日升 百事可乐 可口可乐 旭日升 旭日升 可口可乐 可口可乐 旭日升 露露 旭日升 可口可乐 露露 百事可乐 百事可乐 汇源果汁 露露 百事可乐 可口可乐 百事可乐 汇源果汁 可口可乐 汇源果汁 可口可乐 汇源果汁 露露 可口可乐 旭日升 百事可乐 露露 汇源果汁 可口可乐 百事可乐 露露 旭日升
所以要选择组距式分组
第一步:确定组数。
K 1 lg 50 lg 2 7
第二步:确定各组的组距。 最大值为139,最小值为107,

统计学 第四章 推断统计概述

统计学 第四章  推断统计概述

第四章 推断统计概述第一部分 概率论基本知识← 一、概率的定义;二、概率的性质;三、概率的加法定理和乘法定理← 四、概率分布类型四、概率分布类型← 概率分布(probability distribution )是指对随机变量取不同值时的概率的描述,一般用概率分布函数进行描述。

← 依不同的标准,对概率分布可作不同的分类。

1、离散型分布与连续型分布← 依随机变量的类型,可将概率分布分为离散型概率分布与连续型概率分布。

← 教育统计学中最常用的离散型分布是二项分布,最常用的连续型分布是正态分布。

2、经验分布与理论分布← 依分布函数的来源,可将概率分布分为经验分布与理论分布。

← 经验分布(empirical distribution )是指根据观察或实验所获得的数据而编制的次数分布或相对频率分布。

← 理论分布(theoretical distribution )是按某种数学模型计算出的概率分布。

3、基本随机变量分布与抽样分布← 依所描述的数据的样本特性,可将概率分布分为基本随机变量分布与抽样分布(sampling distribution )。

← 基本随机变量分布是随机变量各种不同取值情况的概率分布,← 抽样分布是从同一总体内抽取的不同样本的统计量的概率分布。

第二部分 几种常见的概率分布← 一、二项分布← 二项分布(binomial distribution )是一种具有广泛用途的离散型随机变量的概率分布,它是由贝努里创始的,因此又称为贝努里分布。

← 2.二项分布函数← 二项分布是一种离散型随机变量的概率分布。

← 用 n 次方的二项展开式来表达在 n 次二项试验中成功事件出现的不同次数(X =0,1…,n )的概率分布,叫做二项分布函数。

← 二项展开式的通式(即二项分布函数):← ←← ← ←← 成功概率 p ;样本容量 n← 在成功概率为p 的总体中随机抽样,抽取样本容量为n 的样本中,有X 次为成()011111100q p C q p C q p C q p C q p n n n n n n n n n n n ++++=+---Λ()Xn X X n X q p C P -⋅⋅=()X n X q p X n X n -⋅-=!!!功的概率: ←(X =0,1…,n ) ←称X 服从参数为n ,p 的二项分布,记为: ←X ~B(n ,p ) 其中,0<p<1 ←二项分布的性质 ←二项分布有如下性质: ←①当p=q 时,图形是对称的。

统计学第四章 综合指标

统计学第四章 综合指标

3、计划完成百分数的计算
A、计划数为绝对数。
绝对数的计划完成百分数 实际绝对水平 100% 计划绝对水平
某工业企业总产值资料如下表:
车 名
间 称
总产值(万元) 计划Hale Waihona Puke 实际数计划完成百分数 (%)
(甲)
甲 乙 丙
(1)
50 110 140
(2)
80 100 140
(3)=(2)/(1)
160.00 90.91 100.00
时期指标与时点指标的联系:
1、二者都属于总量指标。 2、二者通常是相互影响的。
总量指标的计算
总量指标的单位一般有: 实物量单位 价值量单位 劳动量单位
1. 实物单位是根据事物的自然属性和特点采用的计 量单位。 实物单位的分类: ①自然单位:它是按照研究现象的自然状况来计量其 数量的一种计量单位。 ②度量衡单位:它是按照同意的度量衡制度的规定来 计量客观事物数量的一种计量单位。 ③双重单位和复合单位:是指在需要同时采用两个或 两个以上单位来计量事物时采用的单位。 ④标准实物单位:按照统一折算的标准来度量被研究 现象数量的一种计量单位。
相对指标在统计分析中的作用:
• 相对指标为人们深入认识事物发展的质 量与状况提供客观的依据,社会经济现 象总是相互联系、相互制约的关系。 • 计算相对指标可以使不能直接对比的现 象找到可以对比的基础,进行有效的分 析。
二、相对指标的种类及计算方法:
1、结构相对指标: • 定义:是在资料分组的基础上,以总体 总量作为比较标准,求出各组总量占总 体总量的比重,来反映总体内部组成情 况的综合指标。


300
320
106.67
要求:计算各车间和全厂总产值的计划完成百分数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章、统计综合指标
实际完成数值
5、计划完成程度相对数=
计划任务数值
6、动态相对数=
基期指标数值
报告期指标数值
平均指标:它可以反映总体各单位标志值分布的集中趋势。

例题:某车间80名工人日产量资料如下;
根据开口组组中值计算公式,计算如下:
假定下限值=上限值-邻组组距=8-4=4 ; 假定上限值=下限值+邻组组距=20+4=24
最小组组中值=
628
42=+=+上限值假定下限值
最大组组中值=
222
24
202=+=+假定上限值下限值
∑∑=
+⋯++++⋯+++=f xf f f f f f x f x f x f x x n n n 321332211=35.1480
1148
=
例题:某商店销售三批同种商品,资料如下;
解:已知价格和各批销售额,可按加权调和平均数公式计算平均价格:
H=∑∑=
++++++x m m x m x m x m m m m n
n n (22)
1121=)(94.109330
36280
112
12320108129601101100012320
1296011000千克元==
++++
例题:某批产品的生产要经过三道工序,且要经过三次检验,第一次检验合格率为95%,第二次检验合格率为96%,第三次检验合格率为98%,求平均合格率。

解:G=%33.96%98%96%95...3321=**=n n x x x x
(1)、确定中位数的位次
2
∑f
=
12002
2400
= ;中位数在1900—2000元,按照公式计算: i f S f
L m
m e *-+
=M -∑12
=1900+)(29.1915100850
107022400
元=*-
(2)、确定众数组,1900—2000组次数最多,该组即为众数组; 根据公式已知:L=1900 U=2000,3904608501=-=∆;6002508502=-=∆
i L e *∆+∆∆+
=M 2
11=1900+
39.1939100600390390
=*+(元)
例题:甲班40名同学平均身高为171cm ,平均差为8.5cm ,乙班身高资料如下图,比较两个班平均身高的代表性:
解:乙
x =171 cm , ∑
∑-=f f x x D A ..=
()cm 3.740292= 甲乙两班平均身高相同,但乙甲....D A D A 〉,故乙x 的代表性大。

解:26100
4
*406*3618*3221*2823*2418*207*163*12=+++++++=
x
全距R=42—10=32
平均差=∑∑-=f f x x D A ..=)(32.5100
532cm = ; 标准差=()∑∑-=
f
f
x x 2
σ=
)(44.6100
4144
cm = 离散系数⎪⎪⎩
⎪⎪⎨⎧
===⇒==*=⇒%77.24%100*266.44%100*%46.20%100*2632.5%100....x V x
D A V D A σσ
标准差系数平均差系数
是非标志的平均数和标准差:
因为是非标志只有两个具体表现,所以可用1代表“是”,用0代表“非”,在此可以把1和0视为是非标志的标志值,全部总体单位数用N 表示,标志值为1的单位数用1N 表示,标志值为0的单位数用0N 来表示,则: N=1N +0N 成数P=
N N 1 ;成数Q=N
N 0 显然N N 1+N N
0=1 即P+Q=1 ,所以 Q=1-P
公式:是非标志的平均数P x = 是非标志的标准差=
σ()P P -1
例题:某工厂生产某种产品合格率为95%,不合格率为5%,求是非标志平均数和标准差? 解:P x ==95% 是非标志的标准差:=
σ()P P -1=()%79.21%951%95=-∙。

相关文档
最新文档