液体粘滞系数的测定
液体粘滞系数的测定

实验项目介绍实验资料:实验名称:落球法液体粘滞系数测定指导教师:kunter可预约计划:0 执行教室:1实605实验类型:综合实验仪器:FD-VM-Ⅱ落球法粘滞系数测定仪仪器套数:6准备天数:3实验介绍:用落球法测定液体的粘滞系数一、实验目的和意义液体都具有粘滞性,液体的粘滞系数(又称内摩擦系数或粘度)是液体粘滞性大小的量度,也是粘滞流体的主要动力学参数。
研究和测定流体的粘滞系数,不仅在物性研究方面,而且在医学、化学、机械工业、水利工程、材料科学及国防建设中都有很重要的实际意义。
例如,现代医学发现,许多心血管疾病都与血液粘度的变化有关,血液粘度的增大会使流入人体器官和组织的血流量减少,血液流速减缓,使人体处于供血和供氧不足状态,可能引发多种心脑血管疾病和其他许多身体不适症状,因此,测量血液粘度的大小是检查人体血液健康的重要标志之一。
又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。
液体的粘度受温度的影响较大,通常随着温度的升高而迅速减小。
测定粘滞系数的方法有多种,如转筒法、毛细管法、落球法等。
转筒法,利用外力矩与内摩擦力矩平衡,建立稳定的速度梯度来测定粘度,常用于粘度为0.1~100的流体;毛细管法,通过一定时间内流过毛细管的液体体积来测定粘度,多用于粘度较小的液体如水、乙醇、四氯化碳等;落球法,通过小球在液体中的匀速下落,利用斯托克斯公式测定粘度,常用于粘度较大的透明液体如蓖麻油、变压器油、机油、甘油等。
本实验学习用落球法测定蓖麻油的粘滞系数,如果一小球在粘滞液体中铅直下落,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球爱到粘滞阻力,它的大小与小球下落的速度有关。
当小球作匀速运动时,测出小球下落的速度,就可以计算出液体的粘度。
二、参考资料1、黄秉鍊·大学物理实验·长春:吉林科学技术出版社,2003,P65-68;2、沈元华等·基础物理实验·北京:高等教育出版社,2003,P119-122;3、阎旭东等·大学物理实验·北京:科学出版社,2003,P63-65;4、李天应·物理实验·武汉:华中理工大学出版社,1995,P100-102;5、王惠棣等·物理实验·天津:天津大学出版社,1997,P137-144;6、吴锋等·大学物理实验教程·北京:化学工业出版社,2003,P84-86。
液体粘滞系数测定实验报告

液体粘滞系数测定实验报告实验介绍:液体粘滞系数测定实验是通过测量液体在垂直下落时的速度和时间,对液体的粘滞性进行分析和测定的实验。
液体粘滞系数是指,液体内分子间相互作用的形成的阻力大小,阻碍了分子的相对运动。
液体粘滞系数又叫做黏度,通常用希腊字母mu(μ)表示,其单位是帕秒。
液体粘滞系数是许多流体力学和化学过程的重要参数之一,因此液体粘滞系数测定实验具有非常高的实用价值。
实验原理:液体粘滞系数测定实验的原理基于斯托克斯定理。
根据斯托克斯定理,在实验介质中垂直下落的直径为d的小球,以恒定的速度υ下落的关系式为:f=6πμυd其中f是液体对小球的阻力,μ是液体的粘滞系数,在SI单位下的单位是Pa·s,υ是小球下落的恒定速度,d是小球的直径。
实验内容:实验所需的材料主要有:测量筒、滴管、计时器、小球等。
首先将测试液体倒入测量筒中,并用滴管将小球放入液体中,观察小球在液体中的运动情况并确定小球下落的恒定速度。
然后,利用计时器测量小球下落一定距离所需的时间。
在实验过程中,需要先进行预热,将测试液体倒入测量筒中,用计时器测量室温下小球下落一定距离所需的时间t1,然后将液体测温加热至70℃,用计时器测量小球下落一定距离所需的时间t2。
在实验中,需要多次重复测量,求出液体的平均时间。
利用液体平均时间及小球的下落速度,根据斯托克斯定理,可以计算液体的粘滞系数。
实验数据处理:在实验过程中,需要先计算小球的下落速度υ,通过下式计算:υ=m×g/6πRμ其中,m为小球的质量,R为小球半径,g为重力加速度,μ为液体粘滞系数。
可以求出实验所得液体的平均粘滞系数μ的值,通过求出标准偏差及误差,进一步确定实验数据的可靠性和准确性。
实验结论:通过本次液体粘滞系数测定实验,我们可以得知不同液体的粘滞系数不同,小球下落恒定速度与液体的粘滞系数成反比例关系,液体温度对粘滞系数的影响较大,液体温度升高,粘滞系数减小。
粘滞系数测定

[数据处理与分析]
• 如忽略(5-7)式分母中修正项的误差, 有
Uη = ( ∆ m + ∆Vρ0 m − Vρ 0 )2 + ( ∆ l 2 ∆t 2 ∆ d 2 ) +( ) +( ) l t d
• 其中:
∆Vρ0 = Vρ 0 ∗ (3 ∆ d 2 ∆ ρ0 2 ) +( ) d ρ0
[注意事项]
• (1) • 式中η称为粘滞系数(单位名称为帕秒,符号Pa·s)。 • 不同流体具有不同的粘滞系数,同一种流体在不同温度下其η值变化 也很大。例如蓖麻油当温度从18°C上升到40°C时粘度几乎降到原来 的1/4。 • 液体的粘滞系数是粘滞流体的主要动力学参数,也是液态物质的重要 物理、化学指标之一。精确测定粘滞系数不仅具有实用意义,而且可 以对许多学科的理论研究提供重要的依据。液体粘滞系数测定的方法 有多种,常用的有毛细管法、落球法和园筒旋转法等。通过本实验还 可以对实验技能得到多方面的训练。
•
• • • •
• •
•
[实验内容] 1.选择10个以上表面光滑及直径相同的小球,用螺旋测微计分别测 出直径d,每粒小球测一次,求其平均值d,注意个别小球直径差异 过大,应剔除不用。 2.将已测过直径的10粒以上的小球,用物理天平称衡其总质量,即 可算得每粒的质量m。 3.用游标卡尺测量量筒的内直径,算出半径R;用钢直尺测量量筒 外壁上两条标线N1、N2之间的距离l。 4.用比重计测出液体的比重,并换算密度ρ0。 5.用镊子夹住小球,先将小球在油中浸一下使小球表面完全为油所 浸湿;然后将小球放入量筒的中间液面处,用秒表测出小球匀速下降 通过路径所需的时间t,则速度 v = l t 。 6.在实验前后各测一次油的温度,以平均值作为实验时的油温T。 在进行正式测量前,必须先熟练掌握秒表的使用方法,并练习测量 2~4粒未经测量直径的小球的下落时间,在已能熟练操作后,再进行 正式测量。 7.将有关数据代入公式(6)计算粘滞系数η值,并求其不确定度。
液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告一、实验目的1.加深对泊肃叶公式的理解;2.掌握用间接比较法测定液体粘滞系数的初步技能。
二、实验仪器1.奥氏粘度计(加接橡皮管)2.铁架3. 秒表4.量筒5.烧杯7.橡皮吸球三、实验材料蒸馏水酒精四、实验原理在细管内作稳定流动粘性流体,它的体积流量Q(即单位时间内流过管子一个截面的流体体积)遵从泊肃叶公式:48lpR Q ηπ∆=在流速接近稳定的条件下,若流过细管的流体体积为V ,经过的时间为t ,则Q= V/t , 代入,可得到η的表达式:VlpR t 84∆=πη比较法:即控制不同的流体在某些相同的条件进行实验测量,利用公式进行比较,消去相同的物理量,只要测量少数的物理量即可计算出实验结果来。
这种方法是 以一种流体的某个物理量的值为标准值,通过测量其他的物理量,再利用比较得到的公式,计算出我们需要测量的结果。
实验时,以一定 体积的液体从大管(左)口注入,再用橡皮吸球由小管口将液体吸入(右)泡中,并使液面升高到泡的上刻痕以上某一处高度(注意不要把液体吸到时橡皮管中)。
因两管中液面的高度不同,右泡内的液体将在重力的作用下经毛细管流回左泡。
利用秒表记下液面从上刻痕下降至下记得痕所用的时间。
以相同体积(本实验老师要求6ml)的被测液体和蒸馏水先后注入粘度计,按上述步骤分别测出两种液体的液面由上刻度线下降至下刻度线所需的时间t1和t2来。
五、实验内容、步骤、关键点1、测量同体积(6ml)酒精、水的流动时间t1、t2, 各测6次。
2、查表法得到水的粘滞系数|。
3、数据表格自拟。
4、正确处理数据和误差分析。
关键点:1、保证液体体积相同。
2、更换液体测量时,需清理干净容器。
3、小心轻放、避免打碎容器。
六、实验数据当天气温 27摄氏度查表得 3100.78352⨯=酒ρ 3100.99654⨯=酒ρ -3101.05⨯=酒η -3100.855⨯=水η46.159.130.9965478.850.7835221=⨯⨯=ηη 1.230.8551.05==理论η相对误差B=5.61.231.23-1.46-==理论理论实ηηη% 【误差分析:】1.量取的水和酒精的体积不完全相同。
液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告一、实验目的。
本实验旨在通过测定不同液体的粘滞系数,探究液体的流动特性,并学习粘滞系数的测定方法。
二、实验原理。
液体的粘滞系数是衡量液体黏性的重要指标,通常用于描述流体的内摩擦力。
在本实验中,我们将通过测定液体在不同条件下的流动速度和流动层厚度,利用流变学原理计算出液体的粘滞系数。
三、实验仪器与试剂。
1. 流体力学实验装置。
2. 不同液体样品(如水、甘油、汽油等)。
3. 测量工具(如尺子、计时器等)。
四、实验步骤。
1. 准备工作,将实验装置设置在水平台面上,并将不同液体样品倒入实验装置中。
2. 测定流速,打开实验装置,调节流体流动速度,并测定不同液体在相同条件下的流速。
3. 测定流动层厚度,观察液体流动时的流动层厚度,并记录下来。
4. 数据处理,根据实验数据,利用流变学原理计算出不同液体的粘滞系数。
五、实验结果与分析。
经过实验测定和数据处理,我们得到了不同液体的粘滞系数。
通过对实验结果的分析,我们发现不同液体的粘滞系数存在较大差异,这与液体的性质密切相关。
例如,甘油的粘滞系数较大,而汽油的粘滞系数较小,这与它们的分子结构和相互作用有关。
六、实验总结。
通过本次实验,我们深入了解了液体的粘滞系数测定方法,并学习了流变学原理在实验中的应用。
同时,我们也认识到了不同液体的粘滞系数反映了其内部分子结构和流动特性,这对于液体的工程应用具有重要意义。
七、实验注意事项。
1. 在实验过程中要注意操作规范,确保实验安全。
2. 实验数据的准确性对于结果的可靠性至关重要,要认真记录实验数据。
3. 在测定流速和流动层厚度时,要保持仪器的稳定,避免外界干扰。
八、参考文献。
1. 《流体力学实验方法》,XXX,XXX出版社,XXXX年。
2. 《流变学导论》,XXX,XXX出版社,XXXX年。
以上为本次液体粘滞系数的测定实验报告,谢谢阅读。
粘滞系数的测量

❖实验简介 ❖实验目的 ❖实验原理 ❖实验仪器
❖实验内容 ❖注意事项 ❖数据处理
实验简介
粘滞系数是液体的一项重要物理参数,它表征液体的 稠稀程度。粘滞系数越大液体越稠,与温度有很大关 系。不同的液体有不同的粘滞系数。
实验目的 1. 观察液体的内摩擦现象, 学会用落球法测量液体的粘滞系数。 2. 巩固基本测量仪器 (米尺、游标卡尺、 螺旋测微计、停表)的使用。
量筒,摄子、小球、停表、
米用尺游、 标3游卡.记标尺卡测录尺量和量时螺筒旋的间测内微径时计D ,眼睛必须平视标记线 。
记录时间时,眼睛必须平视标记线 。
8
粘滞系数的测量
停表测小球通过标记线A到标记线B所需的时间t。
量筒,摄子、小球、停表、
(2)量筒的上水平标准线A为什么要取在液面下一段距离处,而且要使小球从靠近液面处,从静止开始自由下落?
(3)为什么要令小球沿圆筒的中心轴线下降?
用游标卡尺测量量筒的内径D
夹起小球,使小球在量筒液面中心处释放,
【预习思考题】
(1)将小球放入液体前,为什么要将小球 在待测液体中浸一下?
(2)量筒的上水平标准线A为什么要取在 液面下一段距离处,而且要使小球从靠 近液面处,从静止开始自由下落?
(3)为什么要令小球沿圆筒的中心轴线下 降?
粘滞系数是液体的一项重要物理参数,它表征液体的稠稀程度。
停表测小球通过标记线A到标记线B所需的时间t。
粘滞系数是液体的一项重要物理参数,它表征液体的稠稀程度。
粘滞系数越大液体越稠,与温度有很大关系。
观察液体的内摩擦现象,
(1)将小球放入液体前,为什么要将小球在待测液体中浸一下?
在量筒上定出两道水平标记线A、B
液体粘滞系数的测定
实验四 液体粘滞系数的测定液体的粘滞系数是表征液体黏滞性强弱的重要参数,在工业生产和科学研究中(如流体的传输、液压传动、机器润滑、船舶制造、化学原料及医学等方面)常常需要知道液体的粘滞系数,准确测量这个量在化学、医学、水利工程、材料科学、机械工业和国防建设中有着重要意义。
例如在用管道输送液体时要根据输送液体的流量,压力差,输送距离及液体粘度,设计输送管道的口径。
测量液体粘度可用落球法,毛细管法,转筒法等方法,其中落球法(也称斯托克斯法)是最基本的一种,它是利用液体对固体的摩擦阻力来确定粘滞系数的,可用来测量粘滞系数较大的液体。
【预习思考题】1. 什么是液体的粘滞性?2. 金属小球在粘滞性流体中下落时,将受到哪些力的作用?3. 液体的粘滞系数与那些因素有关?【实验目的】1. 观察液体中的内摩擦现象。
2. 掌握用落球法测液体粘滞系数的原理和方法。
3. 学习和掌握一些基本测量仪器(如游标卡尺、螺旋测微计、比重计、秒表)的使用。
【实验原理】一个物体在液体中运动时,将受到与运动方向相反的摩擦阻力的作用,这种力Array即为粘滞阻力。
它是由粘附在物体表面的液层与邻近的液层相对运动速度不同而引起的,其微观机理都是分子之间以及在分子运动过程中形成的分子团之间的相互作用力。
不同的液体这种不同液层之间的相互作用力大小是不相同的。
所以粘滞阻力除与液体的分子性质有关外,还与液体的温度、压强等有关。
液体的内摩擦力可用粘滞系数 η来表征。
对于一个在无限深广的液体中以速度 v 运动的半径为 r 的球形物体,若运动速度较小,即运动过程中不产生涡旋,则根据斯托克斯(G.G. Stokes)推导出该球形物体受到的摩擦力即粘滞力为f = 6πηvr (1)当一个球形物体在液体中垂直下落时,它要受到三种力的作用,即向上的粘滞力 f、向上的液体浮力 F和向下的重力 G,如图 1 所示。
球体受到液体的浮力可表示为F = σg4πr3/3 (2)上式中 σ 为液体的密度,g为本地的重力加速度。
液体黏性系数的测定
液体粘性系数的测定实验目的1. 观察球型物体在流体中受内摩擦力的运动状况。
2. 掌握用斯托克斯公式测定液体黏性系数的方法。
3. 学会测量显微镜的使用。
二,仪器用具圆筒形玻璃仪器,小球,测量显微镜,游标卡尺,米尺,秒表,密度计,镊子,蓖麻油二、实验原理①实际液体流动时,由于各层液体流速不同,互相接触的两层液体之间有力的相互作用,流速较慢的与流速较快的两相邻液体层之间的相互作用力,称为粘性力f = d^ S 其中为粘性系数dz②小球在液体中运动时,若速度不大,将受粘滞阻力作用,它是由于黏附在小球表面的液层与邻近液层的内摩擦而产生。
若液体无限广延,黏滞性较大,小球的直径与速度较小,根据斯托克斯公式,有f =3二dv式中d为小球直径,v为小球运动的速度。
③当小球开始在液体中下落时,重力向下,浮力和粘滞阻力向上,由斯托克斯公式可以看出,粘滞阻力随小球运动速度增加而增加。
小球刚开始下落时,速度很小,黏滞阻力较小,所以小球做加速运动,随着速度的增加,黏滞阻力逐渐变大,而小球运动速度达到一定大小时,小球受到的合力为零,小球将以匀速v下降,即1d 3 -1 :d 3:-o^3■:ndv =0 6 6其中「是小球的密度,是 订液体的密度,是g 重力加速度,故可得 丄("d 2g18 v如图,玻璃筒内盛待测液体,筒上有相隔一定距离 L 的水平刻线与,距离液体表面有一定距离,使得小球运动一定距离后,达到时已经开始做匀速运动,在 贴近液体表面玻璃筒中心处轻轻放入小球,小球到达开始计时,到达停止计时, 算出小球经过匀速区间L 的时间t ,由L/t 求得小球下落速度V ,用读数显微镜 测量小球直径,再查得液体密度,即可算出黏性系数。
由于小球不是在无限广延的液体中下落,则需考虑器壁影响。
且小球还受液 体的阻力,则公式可修正为实验误差① 要求小球在无限延长的液体中下落,这是不可能的,如果小球沿着直径为D 的圆筒形容器的轴线下落,液面高度为 h ,则不考虑器壁的影响,修正为n = ________________ (P_P°)一18② 物体所受来自液体的阻力,有粘滞阻力和压差阻力,设小球直径为d,速度为V,液体密度为「°,粘度为,则前者与dv 成正比,后者与 債勺2成正比,流动 缓慢时,粘滞系数起主要作用,这时流体为流程,流动一加快,流动的情形就完 全改变成紊流,压差阻力占优势,两者之比3.3屮2hv(1 2.4°d 2v 2:?°dv其中R e 远小于1当R e不是很小时,由f =3二dv(1 3 R e)162得,丄一一―o dL18 L(1 +2.4 d )(1 +3.3 d ) 16 tD 2h③读数显微镜产生的误差④密度计产生的误差四,实验内容1. 用读数显微镜测量5个小球的直径,每个小球在不同直径方向测5次。
液体粘滞系数的测定实验报告
液体粘滞系数的测定实验报告一、实验目的1、了解用落球法测定液体粘滞系数的原理和方法。
2、掌握游标卡尺、千分尺、秒表等仪器的使用方法。
3、学会数据处理和误差分析。
二、实验原理当一个小球在液体中下落时,它会受到重力、浮力和粘滞阻力的作用。
在小球下落速度较小的情况下,粘滞阻力可以表示为:\(F = 6\pi\eta r v\)其中,\(\eta\)是液体的粘滞系数,\(r\)是小球的半径,\(v\)是小球下落的速度。
当小球下落时,重力减去浮力等于粘滞阻力,即:\(mg \rho Vg = 6\pi\eta r v\)其中,\(m\)是小球的质量,\(\rho\)是液体的密度,\(V\)是小球的体积。
当小球下落达到匀速时,加速度为零,速度不再变化,此时有:\(mg \rho Vg = 6\pi\eta r v_{0}\)其中,\(v_{0}\)是小球匀速下落的速度。
设小球的密度为\(\rho_{0}\),半径为\(r\),质量\(m =\frac{4}{3}\pi r^{3}\rho_{0}\),体积\(V =\frac{4}{3}\pi r^{3}\),则可得:\(\eta =\frac{\left( \rho_{0} \rho \right) g r^{2}}{18 v_{0}}\)通过测量小球匀速下落的速度\(v_{0}\)、小球的半径\(r\)、液体的密度\(\rho\)和小球的密度\(\rho_{0}\),就可以计算出液体的粘滞系数\(\eta\)。
三、实验仪器1、粘滞系数测定仪:包括玻璃圆筒、调平螺丝、激光光电门等。
2、小钢球:若干个。
3、游标卡尺:用于测量小球的直径。
4、千分尺:用于更精确地测量小球的直径。
5、电子秒表:用于测量小球下落的时间。
6、温度计:用于测量液体的温度。
7、镊子:用于夹取小球。
8、纯净水、酒精等不同液体。
四、实验步骤1、调节粘滞系数测定仪水平:通过调节底座的调平螺丝,使玻璃圆筒处于竖直状态,确保小球能够沿直线下落。
液体粘滞系数的原理和测量
液体粘滞系数的原理和测量液体粘滞系数是一个描述液体内部流动阻力的物理量。
它是指单位面积上液体层与相邻层之间的粘滞应力与液体层流动速度梯度之比。
粘滞是指在流动过程中,液体分子之间相互作用引起的内部摩擦阻力。
当液体流动时,由于近层液体粒子与远层液体粒子之间的相互作用力,近层粒子受到远层粒子的牵引,使其速度增加。
在相邻层之间,液体内部存在速度梯度,即速度随距离的变化。
液体粘滞系数的测量方法有多种,下面将介绍几种常用的方法。
一、平板式法测量液体粘滞系数平板式法是通过在液体中夹入平板,通过测量平板下落过程中的速度来求解液体粘滞系数。
实验装置主要包括液体槽、平板和测量设备。
首先将液体倒入槽中,然后将平板缓慢地插入液体中,开始计时,当平板进入液体后,即停止计时,记录下这个时间。
根据牛顿黏滞定律,我们可以获得平板下落过程中的速度。
通过实验测量得到的数据,可以计算出液体的粘滞系数。
二、毛细管法测量液体粘滞系数毛细管法是在液体中将毛细管插入一定深度,并测量液柱高度和时间关系来求解液体粘滞系数。
首先通过调节进口控制阀进入合适的液体流量,使毛细管中液面维持稳定,然后记录下毛细管中液面的高度和时间。
通过实验测量得到的数据,可以计算出液体的粘滞系数。
三、旋转杯法测量液体粘滞系数旋转杯法是利用液体在旋转杯中产生的离心力和摩擦力来测量液体的粘滞系数。
实验装置主要包括旋转杯、电机和测力装置。
首先,将被测液体注入旋转杯中,然后通过电机驱动旋转杯旋转,测力装置测量旋转杯的转矩。
通过测力装置测得的数据,可以计算出液体的粘滞系数。
通过以上三种常用的方法,我们可以测量液体粘滞系数,进而了解液体的粘滞特性。
液体粘滞系数的测量对于工业生产和科学研究都具有重要意义。
在工业领域中,液体粘滞系数的测量可以用于衡量液体的黏稠度,从而确定液体在输送、泵送和混合等过程中的流动性能。
在科学研究中,液体粘滞系数的测量可以用于研究液体的流变学特性,从而推断液体分子结构和力学性质的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液体粘滞系数的测定
在稳定流动的液体中,由于各层液体的流速不同,在相邻两层流体之间存在相对运动而产生切向力,流速快的一层给流速慢的一层以拉力,流速慢的一层给流速快的层以阻力,液层间的这一作用称为内摩擦力或粘滞力,流体这一性质称为粘滞性。
液体的粘滞性在液体(例如石油)管道输送以及医药等方面都有重要的应用。
现代医学发现,许多心脑血管疾病与血液粘度有关,血液粘滞会使流人人体器官和组织的血流量减少、血流流速减缓,使人体处于供血和供氧不足的状态中,可能引发多种心脑血管疾病,所以,血粘度大小成了人体血液健康的重要标志之一。
实验证明,粘滞力f 的大小与两液层间的接触而积△s 和该处的速度空间变化率dy
d υ(常称为速度的梯度)的乘积成正比,即 s dy
d f ∆=υη (5—1) 式(5-1)就是决定流体内摩擦力大小的粘滞定律,式中的比例系数η称为液体的内摩擦系数或粘滞系数。
它决定于液体的性质和温度,在润滑油选择、液压传动以及液体质研究等很多方面是一项主要技术指标,其国际制单位是:“帕斯卡·秒”(Pa·s )。
[实验目的]
(1)用落针法测定液体的粘度。
(2)熟悉各仪器的使用方法。
[实验仪器]
本仪器采用落针法测量液体粘度(粘滞系数),既适于牛顿液体,又适于非牛顿液体,还可测量液体的密度。
实验中使中空细长圆柱体(针)在待测液体中垂直下落,通过测量针的收尾速度,确定粘度。
本仪器采用霍尔传感器和多功能毫秒计(单片机计时器)测量落针的速度,并可自动计算后将粘度显示出来。
巧妙的取针装置和投针装置,使测量过程极为简便。
仪器由本体、落针、霍尔传感器、单片机计时器和恒温控制等部分组成。
见下图: 如图5-1,待测液体(例如蓖麻油)装在被玻璃恒温水套包围的玻璃圆筒容器中,圆筒竖直固定在机座上,机座底部有调水平的螺丝,机座上竖立一个铝合金支架。
其上装有霍尔传感器、提针装置(未画出)。
装在液体容器顶部的盖子上有投针装置发射器,它包括喇叭形的导杯和带永久磁钢的拉杆。
此导杯便于提针和让针沿容器中轴线下落。
当提针装置把针
图 5-1
由容器底部提起时,针沿导杯到达盖子顶部,被拉杆上的永久磁钢吸住。
投针时,拉起拉杆,针将沿容器中轴线自动下落。
1.落针
如图5-2所示,它是有机玻璃制成的中空细长圆柱体,
其外半径为R 2,内直径为d ,平均密度为s 。
在它的内部
两端装有永久磁钢(钐钻合金或钕铁硼),异名磁极相对,
另有配重的铅条,改变铅条的重量可以改变针的平均密度。
两端磁钢的同名磁极间的距离为l 。
2.霍尔传感器 这是灵敏度极高的开关型霍尔传感器,做成圆柱状,外部有螺纹,可用螺母固定在仪器本体的支架上,输出信号通过屏蔽电缆、航空插头接到单片机计时器上,其电路方框图如图5-3所示,传感器由+5V 直流电源供电。
外壳用非磁性金属(铜)封装。
每当磁钢经过霍尔传感器就输出一个脉冲信号。
它的使用,为非透明液体的测量带来方便。
图 5-3
传 感 前置放大 微分处理 整 形 输 出 驱 动 计 算 补 偿 LED 指示 短路保护 键盘输入
AC —DC 稳 压
图5-2
4.单片机计时器(多功能毫秒计)
以单片机为基础的PH —Ⅲ型多功能毫秒计,主要用于计时和处理数据。
硬件采用MCS —51系列微处理芯片。
单片机计时器不仅用来计数、计时,还有存贮、运算和输出等功能。
由AC220V 交流电供电,经稳压电源变为5V 直流电压。
输入信号经航空插座输入。
6位数码管显示。
[实验原理]
当针在待测液体中沿容器中轴线垂直下落时,经过一段时间,针所受重力与粘滞阻力和浮力以及针上下端面压力差达到平衡,针变为匀速运动,这时针的速度称为收尾速度,此速度可通过测量针内两磁铁经过传感器的时间间隔t 求得。
对于牛顿液面,在恒温条件下,求动力粘度η的公式为
)11()11(2313212)(2
12122-⋅-++⋅-=∞R R n R R n L C L V gR r W r L s ρρη (5—1) 式中,R 1—容器内筒半径;R 2一落针外半径;V ∞—针下落收尾速度;g —重力加速度;s ρ—针的有效密度;L ρ—液体密度;其中壁和针长的修正系数为:
C W = 1―2.04K+2.09K 2―0.95K 5 (5—2)
其中K=R 2 / R 1
L r = (L ―2R 2)/2R 2 (5—3) 在实际情况下,上面(1)式可作简化,并考虑到V ∞ = l / t
l —两磁钢同名磁极的间距
t —两磁钢经过传感器的时间间隔
则(5-1)式可改写为:
⎪⎪⎭
⎫ ⎝⎛+--⋅+⋅-=2221222121221)321(2)(R R R R R R n L l t gR r L s ρρη (5—4) 在变温条件下,还必须考虑到液体密度随温度的改变
)])(1/[000t t -+=βρρ (5—5)
β值可用实验方法确定,对蓖麻油大约/1093.0~66.03-⨯=β℃
ρρ=020℃ = 950kg/m 3, t 0=20℃
这样,将(5—5)式代入(5—4)式,即可计算粘度η。
因为仪器已经将计算粘度η的程序固化在芯片中,所以,利用单片机可将粘度η计算并
显示出来,实现了智能化。
[注意事项]
1.测量时应让针沿圆筒中心垂直下落。
2.用提针器将针提起悬挂在容器上端后,由于液体受到扰动,于不稳定状态,应稍等片刻,再进行下一次测量。
3.提针器将针提起并悬挂后,应将提针器放到下面并将其磁钢转离开容器,以免对针的下落造成影响。
4.针在下落过程中应保持垂直状态:
若针头部偏向霍耳探头,时间数据偏大。
若针尾部偏向霍耳探头,时间数据偏小。
仪器主要技术参数:
容器内半径R118.5mm 针内同名磁极间距l70mm
容器高度h 550mm 针体积V 7.08×10-6m3
2260kg/m3提针器永久磁体安装螺栓φ18×6 针有效密度
s 针长L 185mm
针外半径R2 3.5mm
针内半径 d 2.0mm
针质量m 16.0×10-3kg。