电路原理相量法
(完整版)电路原理课后习题答案

(b)非关联-—同一元件上的电压、电流的参考方向相反,称为非关联参考方向。
(2)ui乘积表示什么功率?
答:(a)吸收功率--关联方向下,乘积p=ui〉 0表示吸收功率;
(b)发出功率——非关联方向,调换电流i的参考方向之后,乘积p=ui<0,表示元件发出功率。
行列式解方程组为
所以
3-11用回路电流法求解题3—11图所示电路中电流I。
题3—11图
解由题已知,
其余两回路方程为
代人整理得
所以
3—12用回路电流法求解题3-12图所示电路中电流 及电压 .
题3—12图
3-15列出题3—15图(a)、(b)所示电路的结点电压方程。
(a)(b)
题3-15图
解:图(a)以④为参考结点,则结点电压方程为:
电压源功率 (发出30W)
(b)由基尔霍夫电压定律和电流定律可得各元件的电压电流如解1-5图(b)
故电阻功率 (吸收45W)
电流源功率 (发出30W)
电压源功率 (发出15W)
(c)由基尔霍夫电压定律和电流定律可得各元件的电压电流如解1—5图(c)
故电阻功率 (吸收45W)
电流源功率 (吸收30W)
独立的KVL方程数分别为
(1) (2)
3—7题3—7图所示电路中 , , , , , ,用支路电流法求解电流 。
题3-7图
解由题中知道 , , 独立回路数为 由KCL列方程:
对结点①
对结点②
对结点③
由KVL列方程:
对回路Ⅰ
对回路Ⅱ
对回路Ⅲ
联立求得
3—8用网孔电流法求解题3—7图中电流 。
正弦量与相量法的基本概念

目
CONTENCT
录
• 正弦量定义与性质 • 相量法基础 • 正弦量与相量法的转换 • 交流电路中的相量法应用 • 相量法在电机控制中的应用 • 正弦量与相量法的实验验证
01
正弦量定义与性质
定义
总结词
正弦量是随时间按正弦规律变化的量 ,通常用复数表示。
详细描述
正弦量是随时间变化的物理量,如交 流电电压、电流等。在数学上,正弦 量通常用复数表示,其实部表示幅值 大小,虚部表示相位。
THANK YOU
感谢聆听
相量法在电机控制中的应用
利用相量法可以简化电机控制中的数学模型,方便分析和 设计控制策略。通过将交流电机等效为直流电机,可以使 用成熟的直流电机控制方法进行控制。
控制算法
利用相量法,可以设计出各种控制算法,如PI控制器、模 糊控制器等,实现对电机的精确控制。
案例分析:无刷直流电机控制
无刷直流电机
无刷直流电机是一种采用电子换向器的直流电机,具有高效、调速范围宽、维护方便等优 点。
乘法运算
两个正弦量的乘法运算可以通 过复数乘法实现,即对应相量 直接相乘。
除法运算
两个正弦量的除法运算可以通 过复数除法实现,即对应相量 直接相除。
运算规则
在进行相量运算时,应遵循复 数的运算法则和运算顺序。
03
正弦量与相量法的转换
转换公式
正弦量与相量法转换公式
$I = I_m angle theta$,其中 $I$ 是 正弦量,$I_m$ 是相量,$theta$ 是 初相角。
信号处理
在信号处理领域,相量法可用 于分析信号的频谱和滤波器的 设计。
04
交流电路中的相量法应用
正弦稳态分析--相量法

第6章正弦稳态分析--相量法 (186)学习重点 (186)6.1 正弦量 (186)6.2 复数 (188)6.3正弦交流电的相量表示 (190)6.3.1问题的引入 (190)6.3.2正弦量的相量式表示 (190)6.3.3正弦量的相量图表示 (192)6.3.正弦量的相量表示的应用 (192)6.4 KCL、KVL相量形式 (194)6.5 电阻、电感和电容元件VCR的相量形式 (195)6.6正弦交流电路的阻抗、导纳及等效 (198)6.6.1阻抗的概念 (198)6.6.2 导纳的概念 (200)6.7 正弦稳态电路的一般分析方法 (201)6.7.1 相量法的原理 (201)6.7.2 相量法的一般分析过程 (202)6.7.3 相量图法 (205)6.8 有功功率、无功功率、视在功率和复功率 (206)6.9 正弦稳态电路的功率守恒 (208)6.10 正弦稳态电路的最大功率传输 (212)6.11 仿真实验 (214)习题六 (216)185186第6章 正弦稳态分析--相量法学习要点(1)正弦量的三要素及相量表示;(2)复阻抗;(3)KCL 、KVL 的相量形式;(4)有功功率、无功功率、视在功率和复功率。
电路的正弦稳态分析是重要的基础性问题,相量法是分析正弦稳态电路的简便有效的方法,重点理解为什么要引入相量法?相量法与正弦量的关系?引入相量法后,还是利用电路的两大约束,应用电路的基本分析方法,求解电路的相量响应,然后进行相量反变换求出时域响应。
本章涉及到的主要概念:三要素、有效值、相量、阻抗、有功功率、无功功率、视在功率、功率因数、复功率和最大功率传输等问题。
6.1 正 弦 量在经典电路理论中,一般把方向和大小均呈现周期性变化(交变)的电压、电流等周期函数(信号)作为基本的分析对象。
其中最重要的周期函数就是按正弦规律变化的正弦量。
可以采用sine 或cos 函数描述正弦量,本书采用cos 函数描述正弦量。
电路原理(上)_ 相量法_

2U 2
e
j t
)
Re(
2U1
e
j t
2U
2
e
j
t
)
Re[
2(U1U 2) e
j t ]
相量关系为:
U
U U1 U2
结论: 同频正弦量的加减运算变为对应相量的加减运算。
8
相量法的基础
电路 原理
i1 i2= i3
I1 I2 I3
例3 u1(t) 6 2cos(314t 30 ) V
u2(t) 4 2cos(314t 60 o) V
u 311.1cos(314t 67) V
试用相量表示i, u。
解
I 100 50A, U 220 67V
例2 已知I 60 30 A , f 50Hz , 试写出电流的瞬时值表达式。
解
i 60 2cos(314t 30) A
6
相量法的基础
相量图
在复平面上用矢量表示相量的图。
u(t) 2Ucos( t θ) U U
j t
Re 2Ie dt Re 2
I j t e
j
dij
dt
IIi
+π
2
II idt j
i 2
11
相量法的基础
电路 原理
例4 用相量运算:
i(t)
+R
u(t)
L
-
C
i(t) 2I cos( t i)
u(t) Ri L di 1 idt dt C
| F |
a2 b2
b
或
θ
arctan( ) a
二. 复数运算
Im
b
F
电路原理-相量法

物 理 意 义
直流I
Rห้องสมุดไป่ตู้
交流i
R
W RI T
2
W Ri (t )dt
2 0
T
电流有效 值定义为
1 T 2 I i (t )dt T 0
def
有效值也称均方根值 (root-mean-square)
1 同样,可定义电压有效值: U T
8.1 复数
1. 复数的表示形式
Im b 向量 0 a Re 0 F
F=a+jb
( j 1 为虚单位)
Im b F |F|
①代数形式 ②三角形式
F a jb F | F | (cos j sin )
F | F | e j
F | F |
a
Re
③指数形式
④极坐标形式
除法:模相除,角相减
(3.41 j3.657) (9.063 j 4.226)
12.47 j 0.569 12.48 2.61
③ 旋转因子
Im
复数 ejθ =cosθ +jsinθ =1∠θ
F• e j 相当于F逆时针旋转一个角度θ , ejθ 称为旋转因子。
j >0, u超前i,或i 落后u ,u 比i先到达最大值。 u, i u i
u i
j
O
t
j <0, i 超前 u,或u 滞后 i ,i 比 u 先到达最大值。
特殊相位关系:
①j = 0, 同相 u, i u i ②j = (180 ) ,反相 u, i u 0 u, i u i 0 i t
电路原理 第八章_相量法

复数 复数
—
孙惠英 shy@
上页
下页
返回
第8章
4、正弦量的相量表示法(续)
—
已知正弦量 220√ 2 cos ( ω t-35° ) 有效值相量 最大值相量 220/ -35° — 220√ 2 /-35°
已知 相量 10/45° and 正弦量的角频率ω 相应的正弦量 — 10 √ 2 cos( ωt + 45° )
0 ωt1
ωt2
ωt
φ
图8-5 用旋转矢量表示的正弦量
孙惠英 shy@
上页
下页
返回
第8章
4、正弦量的相量表示法 F = ⎪F⎪e j(ω t + ϕ )
ejθ = cosθ + jsinθ
设:有一复数
欧拉公式
F = ⎪F⎪ej(ωt + ϕ ) = ⎪F⎪cos(ωt + ϕ) + j⎪F⎪sin(ωt +ϕ) Re [F] = ⎪F⎪cos(ωt + ϕ ) Im [F] = ⎪F⎪sin(ωt + ϕ )
返回
第8章
三、旋转因子
/ϕ 旋转因子: e jϕ = 1 — A = ⎪A⎪ejα Aejϕ = ⎪A⎪ejαejϕ = ⎪A⎪ej(α+ϕ ) ejπ/2 = j1 e-jπ/2 = − j1
+j
Aejϕ
ϕ α
0
A
+1
e-jπ = − 1
孙惠英 shy@
上页
下页
返回
第8章
ϕ 12 = ϕ 1- ϕ 2 —— u1 超前于 u2 的相角 ϕ 21 = ϕ 2- ϕ 1 —— u2 超前于 u1 的相角
电路原理-正弦稳态电路的分析

对记录的数据进行分析,验证正 弦稳态电路的原理和性质。
实验结果与讨论
实验结果
通过实验观察和数据记录,可以 得出正弦稳态电路中电压和电流 的波形关系,以及元件参数对波
形的影响。
结果分析
对实验结果进行分析,验证正弦稳 态电路的基本原理,如欧姆定律、 基尔霍夫定律等。
实验讨论
讨论实验中可能存在的误差来源, 如电源稳定性、示波器的测量误差 等。同时,可以探讨如何减小误差、 提高实验精度的方法。
04 正弦稳态电路的分析实例
单相交流电路分析
总结词
分析单相交流电路时,需要计算电流、电压的有效值以及功率等参数,并考虑阻 抗、导纳和相位角等因素。
详细描述
在单相交流电路中,电压和电流都是时间的正弦函数。为了分析电路,我们需要 计算电流和电压的有效值,以及功率等参数。此外,还需要考虑阻抗、导纳和相 位角等因素,以便更准确地描述电路的性能。
实验步骤与操作
3. 观察波形
2. 连接电源
将电源连接到电路中,为电路提 供稳定的交流电压。
使用示波器观察电路中各点的电 压和电流波形,并记录数据。
4. 调整元件参数
通过调整电阻器、电容器和电感 器的参数,观察波形变化,并记 录数据。
1. 搭建正弦稳态电路
5. 分析数据
根据实验要求,使用电阻器、电 容器和电感器搭建正弦稳态电路。
相量法
1
相量法是一种分析正弦稳态电路的方法,通过引 入复数相量来表示正弦量,将时域问题转化为复 数域问题,简化计算过程。
2
相量法的核心思想是将正弦电压和电流表示为复 数形式的相量,并利用相量图进行电路分析。
3
相量法的优点在于能够直观地表示正弦量的相位 关系和幅度关系,简化计算过程,提高分析效率。
第六章-电路原理-张燕君-清华大学出版社

5. 相序:各相电源经过同一值(如正最大值)的先后顺序
正序(顺序):A—B—C—A
C
B
A
负序(逆序):A—C—B—A
B
A C
6. 对称三相电源连接
A +
•
UA
–N
•
C UC
•
UB
•
IA A
•
•
UAB UCA
N
•
B IB
B
I U •
•
C
BC
C
A
•
UC
•
UA
C
– •
+
B
UB
•
IA
A
•
•
U U •
A B CA
U bc
Z
2Iab
•
•
I ca
U ca
Z
Iab
即,相电流对称。
讨论(接)线电流和相电流的关系
•
IA
令
•
I ab
I0o
•
I bc
I 120o
•
I ca
I1 2 0o
a
•
IB
b
•
IC
•
I ab
Z •
Z
I ca
•Z I bc
线电流:
c
•
•
•
I A I ab I ca
3
•
I ab
30o
•
•
•
I B I bc I ab
(3) 线电压大小等于相电的 压 3倍, 即Ul 3U p .
(4) 线电压相位领先对应相电压30o。
•
•
UAB U AN
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i1 i i2
i3
O
1 2 2 0 3
对任一正弦量,初相允 许任意指定,计时起点不同, 初相位不同。但对于一个电 wt 路中的许多相关的正弦量, 它们只能相对于一个共同的 计时零点确定各自的相位。
正弦量的三要素是正弦量之间进行比较和区分的依据。
正弦量乘以常数,正弦量的微分、积分,同频正弦量 的代数和等运算,其结果仍为一个同频率的正弦量。
2
第八章 相量法
8.1 复数 8.2 正弦量 8.3 相量法的基础 8.4 电路定律的相量形式
3
重点:
正弦量的三要素 相量法 电路定律的相量形式 元件的VCR关系
4
基本概念
按物理量是否随时间改变,可分为恒定量,变动量。
①大小和方向都不随时间而改变,用大写字母表示U, I .
O
t
② 随时间变化的量,每个时刻值称为瞬时值 u(t), i(t) i(t)
19
例 已知正弦电流波形如图,=103rad/s,
1.写出 i(t) 表达式;2.求最大值发生的时间t1
解
100 i
50 t
由于最大值发生在计时起点右侧
o t1
20
三. 相位差 (phase difference):两个同频率正弦量相位之差。
u(t) um cos(wt u ) i(t) im cos(wt i )
F1 Re
F1-F2 -F2
10
②乘除运算 —— 采用极坐标式
若 F1=|F1| 1 ,F2=|F2| 2
则:
模相乘 角相加
模相除 角相减
11
例1
解
例2
解
12
③旋转因子
复数 ej =cos +jsin =1∠
F• ej
Im
F• ej
旋转因子
F
0
Re
13
特殊旋转因子
Im
0
Re
注意 +j, –j, -1 都可以看成旋转因子。
i(t0)
O
t0 t
5
6
相量分析法
正弦量的表示相量法
正弦量
复数
具有两个要素:模和幅角(实部与虚 部)
如 A ae ja (a,a )
而正弦量 i Im sin(t c ) 具有三要素,那么怎样用复数去表示
正弦量呢?
7
8.1 复数
1. 复数的表示形式 代数式
指数式
研究正弦电路的意义
1.正弦稳态电路在电力系统和电子技术领域 占有十分重要的地位。
优 ①正弦函数是周期函数,其加、减、求导、 点 积分运算后仍是同频率的正弦函数;
②正弦信号容易产生、传送和使用。
16
2.正弦信号是一种基本信号,任何非正弦周期信 号可以分解为按正弦规律变化的分量。
n
f (t) Ak cos(kt k ) k 1
Im
b
F
|F|
o
a Re
三角函数式
极坐标式
8
几种表示法的关系: 或
Im b
|F|
o
F a Re
2. 复数运算 ①加减运算 —— 采用代数式
9
若 F1=a1+jb1, F2=a2+jb2 则 F1±F2=(a1±a2)+j(b1±b2)
Im F2
F1+F2
Im
F1+F2
F2
o 图解法
F1 Re o
前言
经典法: 直流电源、动态电路、时域 响应—— 微分方程 相量法: 正弦电源、动态电路、稳态分析, 频域分析法——代数方程
1
前言
第六、七章对直流激励下动态电路分析时 采用的是经典法,即在时域内列解描述直流激 励下动态电路的微分方程。第八~十一章讨论 动态电路的正弦稳态分析,即正弦量激励下的 动态电路分析,采用的是频域分析法。而相量 法是频域内线性动态电路正弦稳态分析的一种 简便而有效地方法。
同频率、同 函数、同符
300
300
(2(1001)050)2401035102不00能号比,较且相在位主差
值范围比较。
23
四.周期性电流、电压的有效值 周期性电流、电压的瞬时值随时间而变,为了确切的衡量
其大小工程上采用有效值来量。 1. 有效值(effective value)定义
电流有效值定义为:
14
8.2 正弦量
1. 正弦量
i
T
波形
瞬时值表达式 0
i(t)=Imcos( t+y) 正弦量为周期函数 f(t)=f ( t+kT )
周期T 和频率f
t
f 1 T
周期T :重复变化一次所需的时间。单位:秒s 频率f :每秒重复变化的次数。单位:赫(兹)Hz
15
正弦电流电路
激励和响应均为同频率的正弦量的线性电路 (正弦稳态电路)称为正弦电路或交流电路。
O
u, i
(180o ) :反相:
O
:正交
2
u, i u i
O
u i
t
u
i t
t
22
例 计算下列两正弦量的相位差。
解
结论
两个正弦量
3π 4 ( π 2) 5π 4 0 进行相位比
5π 4 2π 3π 4 较时应满足
i2
(t
) i2 (1t)0c3ocso(s1(01000ππtt 2110050)0 )
则 相位差
u i 规定:
• 0,u 超前i, 角,或i 滞后 u, 角(u 比 i 先到达最大值);
u, i u i
O
从波形图上看相位差 可取变化趋势相同点
t 来看。
• 0 , i 超前 u, 角,或u 滞后i , 角(i 比 u 先到达最
大值)。
21
特例:
u, i
0 : 同相:
def
I
1 T i 2 (t )dt
T0
瞬时值的平方在一个周期内积分的平均值再取平方根。
有效值也称均方根值(root-mean-square,简记为 rms。)
物理意义:周期性电流 i 流过电阻 R,在一周期T 内吸收的 电能,等于一直流电流I 流过R , 在时间T 内吸 收的电能,则称电流 I 为周期性电流 i 的有效值。
称为正弦量的相位(相角)。角频率ω是正弦量的相位随
时间变化的角速度。即:
= d (t y ) 反映相位随时间变化的快慢。
dt
角频率w rad/s ,弧度/秒 T 2
周期T s,秒
2 f
频率f Hz,赫(兹)
f 1/T
18
3. 初相位(initial phase angle) :在t=0时刻的相位,简称初相, 反映了正弦量的计时起点。 单位用弧度或度表示, 。
结论
对正弦电路的分析研究具有重要的理论 价值和实际意义。
17
二.正弦量的三要素:i(t)=Imcos(w t+y)
1.幅值 (amplitude) (振幅、 最大
i
值)Im:反映正弦量变化幅度
T
的大小。
2.角频率(angular frequency)w : y/ O
t
随时间变化的角度(w t+y)