(完整版)基于PLC的锅炉汽包水位控制系统设计毕业设计
基于PLC的锅炉温度控制系统_毕业设计

河南职业技术学院毕业设计(论文)题目PLC的锅炉温度控制系统目录摘要 (1)1.1课题背景 (1)1.2项目内容 (2)第二章 PLC和组态软件 (3)2.1可编程控制器基础 (3)2.1.1可编程控制器的产生和应用 (3)2.1.2可编程控制器的组成和工作原理 (3)2.1.3可编程控制器的分类及特点 (5)2.2组态软件的基础 (6)2.2.1组态的定义 (6)2.2.2组态王软件的特点和仿真的的基本方法 (6)第三章 PLC控制系统的硬件设计 (7)3.1 PLC控制系统设计的基本原则和步骤 (7)3.1.1 PLC控制系统设计的基本原则 (7)3.1.2 PLC控制系统设计的一般步骤 (7)3.1.3 PLC程序设计的一般步骤 (8)3.2 PLC的选型和硬件配置 (9)3.2.1 PLC型号的选择 (9)3.2.2 S7-200CPU的选择 (9)3.2.3 EM235模拟量输入/输出模块 (10)3.2.4 热电式传感器 (10)3.2.5 可控硅加热装置简介 (10)3.3 系统整体设计方案和电气连接图 (11)3.4 PLC控制器的设计 (11)3.4.1 控制系统数学模型的建立 (11)3.4.2 PID控制及参数整定 (12)第四章 PLC控制系统的软件设计 (14)4.1 PLC程序设计的方法 (15)4.2 编程软件STEP7--Micro/WIN 概述 (15)4.2.1 STEP7--Micro/WIN 简单介绍 (15)4.2.2 计算机与PLC的通信 (16)4.3 程序设计 (16)4.3.1程序设计思路 (16)4.3.2 PID指令向导 (16)4.3.3 控制程序及分析 (17)第五章组态画面的设计 (21)5.1组态变量的建立及设备连接 (21)5.1.1新建项目 (21)5.2创建组态画面和主画面 (22)5.2.2新建PID参数设定窗口 (23)5.2.3新建实时曲线 (23)5.2.5新建报警窗口 (24)第六章系统测试 (25)6.1启动组态王 (26)6.2实时曲线观察 (26)6.3查看数据报表 (27)6.4系统稳定性测试 (28)结束语 (29)参考文献 (30)基于PLC的锅炉温度控制系统摘要从上世纪80年代至90年代中期,PLC得到了快速的发展,在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。
基于PLC技术的锅炉汽包水位的保护控制

基于PLC技术的锅炉汽包水位的保护控制摘要:介绍了锅炉汽包水位保护系统的工作原理,利用S7-200PLC来实现水位保护的逻辑控制,以提高系统运行的可靠性。
0 引言汽包锅炉在运行中,维持汽包水位在一定范围之内是保证锅炉正常运行的必要条件。
水位的保护功能应满足在锅炉缺水时能及时保护,避免干锅和烧坏水冷壁;当出现满水时能自动打开放水阀;当水位变化达到极限水位时便停炉、停机、关主汽阀门,防止设备损坏。
一般把水位偏差分三个值,称为高I、II、III值,反之称为低I、II、III值。
高/低I、II值为报警值,高/低III值为停炉值。
1 汽包水位保护的逻辑控制1.1 汽包水位的测量保护回路对水位控制的测量信号要求高度可靠,但只要对高/低I、II、III值6个点进行可靠监视即可,可选用电接点水位计发送水位开关信号。
经现场测试,炉水电阻为40~60K$,饱和蒸汽电阻为120~160K$,利用两者相差很大的特点,水位开关由电触点和继电器组成是比较可靠的。
电接点的绝缘子是接点和容器外壳绝缘,当接点浸在水中时,由于水的电阻较低电接点导通,是电源接通继电器线圈,继电器动作输出报警信号。
为确保水位测量的可靠性,电极座与筒体向下倾斜70°,以利电极挂水后能自动落下,对防止误动作有利;测量筒接点相邻距离应大于60mm;测量筒上每位限采用2个电接点,是可靠性比单接点提高一倍。
为解决报警值偏差,在实际安装电接点水位计测量筒时,离汽包不超过1000mm,将水位控制器安装在测量筒附近,缩减中间信号线缆信号的长度,减少分布电容带来的偏差。
1.2 水位保护信号的摄取为提高保护信号的可靠性,在逻辑上采用两个措施,其一是对每个水位值取三个不同的水位开关,构成“三取二”的逻辑关系。
三取二信号法可以大幅度夫人提高信号单元的可靠性,而且比串并联法少用一个传感器,所以各动作点的开关量信号选取应为三取二法;对于模拟量信号,常用信号多重化摄取法中的三区中方法。
毕业设计基于PLC和组态技术的锅炉水温串级控制系统设计

摘要本设计论述了基于PLC和组态技术的锅炉内胆水温和夹套水温构成的串级控制系统的设计过程。
下位机编程软件采用SIEMENS公司的STEP 7软件,选用西门子S7-400PLC控制锅炉温度的控制系统,介绍了西门子S7-400PLC和系统硬件及软件的具体设计过程。
上位机组态画面软件采用SIMATIC WINCC,对其进行了简单介绍,并详细介绍了项目的创建、变量的新建、画面的组态。
上位机进行程序编写实现控制,下位机组态画面,建立人机界面,进行远程控制。
锅炉水温具有非线性、时变性、大滞后和不对称性等特点,采用传统的控制方法所得到的控制量的控制品质不高。
锅炉内胆与夹套构成串级控制。
由于串级控制具有有效改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等特点,所以在克服被控系统的时滞方面能够取得较好的效果。
串级控制中的主副回路是控制夹套和内胆的温度,温度是一个多变且不易控制的量,而PID控制在这方面具有突出的优点,很适合采用PID控制技术。
综合以上得到一个品质比较高的控制系统。
关键词PLC;组态技术;串级控制;锅炉水温;PID控制ABSTRACTThis design is discussed based on PLC and configuration technology of water temperature and clip boiler water tank consists of cascade control system design process. Lower level computer programming software using the SIEMENS company's STEP 7 software, choose SIEMENS s7-400plc control boiler temperature control system, introduces SIEMENS s7-400plc and system hardware and software, and the specific design process. Upper unit used in the software configuration screen WINCC, the SIMATIC simply introduced, and introduces the creation, variable of project construction, picture configuration. PC for programming realize control, lower frame) unit, establish normal screen man-machine interface, carries on the remote control.Boiler water temperature with nonlinearness, time delay and asymmetry wait for a characteristic, USES the traditional control method can get control portion control quality is not high. Boiler of the bladder and clip constitutes a cascade control. Due to the cascade control has effectively improve the dynamic characteristics, improve process working frequency, reducing the time constant and accelerate equivalent process characteristic, the response speed of the controlled system in overcome delay to the good result is achieved. Cascade control the principal deputy loop is control of the temperature of the clamping and bladder, temperature is a variable and not easy to control, and the amount of PID control in this respect has outstanding advantages, very suitable PID control technology. Comprehensive above gets a quality higher control system.Key words plc;configuration technology;cascade control;boiler water temperature;pid control目录1 引言 (4)1.1 系统的设计背景 (4)1.2 系统设计内容及技术要求 (5)1.3 系统的设计原理 (5)1.4 系统的整体设计方案 (6)2 串级控制系统设计 (7)2.1 串级控制系统的概述 (7)2.2 PID控制系统的简介 (8)2.3 PID控制器的参数整定 (10)3 硬件系统设计 (13)3.1 PLC的基本介绍 (13)3.2 S7-400简介 (14)3.3 其它器件介绍 (16)4 STEP 7简介及组态硬件、程序编写 (18)4.1 STEP 7简介 (18)4.2 STEP 7项目的创建 (20)4.3 组态硬件 (22)4.4 SETP 7编程介绍 (25)4.5 变量及系统程序 (26)5 WINCC简介及人机界面组态 (33)5.1 WinCC简介 (33)5.2 WinCC系统功能 (34)5.3 WinCC的项目创建及组态方法 (35)6 控制系统整体调试 (46)6.1 系统整体测试 (46)6.2 系统测试的结果 (47)结束语 (48)参考文献 (49)致谢 (51)1 引言1.1 系统的设计背景自70年代以来,由于工业过程控制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。
(完整版)汽包锅炉给水水位自动控制系统的设计毕业设计论文

目录引言 (1)第一章第一章给水控制系统的动态特性 (3)1.1锅炉给水控制系统的任务 (3)1.2 给水控制对象和各种扰动下水位变化的动态特性 (3)1.2.1 给水控制对象的动态特性 (3)1.2.2 各种扰动下水位的动态特性 (5)第二章给水自动控制系统的基本要求和基本结构 (9)2.1 给水控制系统的基本要求 (9)2.2 给水控制系统的基本结构及分析 (9)2.2.1 单冲量给水控制系统 (9)2.2.2 前馈-反馈三冲量给水控制系统 (10)2.2.3 串极三冲量给水控制系统分析 (16)第三章给水控制系统的无扰切换 (20)3.1 测量信号的自动校正 (20)3.1.1 水位信号的压力校正 (20)3.1.2 过热蒸汽气流信号的压力、温度校正 (22)3.1.3 给水流量信号的温度校正 (23)3.2 给水控制系统的切换 (24)3.2.1 给水流量测量装置切换系统 (24)3.2.2 大小给水调节阀门的切换 (28)3.2.3 系统的无扰切换 (29)第四章系统的参数整定及MATLAB仿真 (32)4.1 控制系统的参数整定方法 (32)4.1.1 广义频率特性法 (32)4.1.2 工程整定法 (33)4.2 调节器的选取 (35)4.3 参数整定及MATLAB仿真 (36)4.3.1 单冲量调节系统的参数整定及MATLAB仿真 (36)4.3.2 串级三冲量调节系统的参数整定 (37)4.3.3 整个系统和各种扰动量下的SIMULINK结构图和仿真图 (41)结论 (45)参考文献 (46)谢辞 (47)引言自动控制技术在工程和科学发展中起着极为重要的作用,在火电厂的生产过程中也采用了自动控制技术。
在火电厂的生产过程中采用的热工自动控制系统,是伴随着社会对电能需求的日益增加、单机容量的日益扩大和自动控制技术在火力发电厂中应用的深度与广度与日俱增而逐步发展起来的。
电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。
基于plc热电厂锅炉水位控制设计毕业论文

基于plc的热电厂锅炉水位自动控制系统一、研究背景、现状和意义电厂热工过成采用自动化技术已有较长的历史,1766年波尔佐诺夫发明的锅炉给水调节装置、1764年瓦特发明的蒸汽机离心摆调速装置,是热能动力设备最早的自动控制装置,也是整个自动化领域的早期成果。
随着时代科学技术的发展,火力发电机组已由过去的中低压、中小容量发展到现在的高参数、大容量的单元机组,其生产过程的操作由运行人员手动控制到陆续采用各种自动控制装置,实现生产过程的自动控制,使火力发电厂的自动控制水平日益提高和发展【1】。
热工自动化控制技术是理论与技术相结合的一门学科,它的发展可分为理论与技术两个方面。
从理论上大致分为以下三个发展阶段:(1)20世纪50年代以前,一般以简单控制系统为主,机组容量小,自动化水平低。
理论基础是经典控制理论,它是用传递函数对被控对象进行数学描述,以根轨迹和频率法作为分析和综合系统的基本方法。
(2)20世纪60年代,生产设备走向大型化,生产系统日趋复杂,机组的运行与操作要求更为严格。
原来的简单控制已不能满足生产要求,理论上以状态空间分析方法为基础,出现了现代控制理论。
现代控制理论以线性系统为前提进行研究,这是控制理论质的飞跃。
但实际生产过程应用中,效果并不是十分理想。
(3)由于被控对象机理复杂,难以建立精确的数学模型,第三代控制理论的出现以满足生产要求。
以专家系统、神经网络控制和模糊控制为主,同时还有以专家系统、神经网络进行生产过程设备故障分析和性能分析。
从技术装备发展上来分,有以下三个阶段:(1)20世纪30 ~40年代,火力发电机组容量较小,热工生产过程主要是凭生产实践经验来控制,局限于一般的控制元件及机电式控制仪器,采用比较笨重的机电式仪表实现机、炉、电各自独立的分散的局部自动控制。
机、炉、电各控制系统之间没有或是很少有联系。
(2)20世纪50~60年代,出现了电动单元组合仪表和巡回检测装置,因而实现了机、炉作为一个单元整体来进行集中控制,仪表盘装在一起监视,从而使机、炉启停运行更为协调,对提高设备效率和强化生产过程有所促进,适应了工业生产设备日益大型化与连续化发展的需要。
基于PLC的蒸汽锅炉控制系统的设计

基于PLC的蒸汽锅炉控制系统的设计摘要:目前,随着工业的发展,锅炉作为能源转化的重要动力设备之一,其主要作用体现在城市供热和现代化工业生产中。
由于我国目前多数主流锅炉自动化控制水平不高,许多问题接踵而至,比如能源转化率低,导致资源浪费和环境污染;工人的操作水平参差不齐,导致各种安全隐患等。
通过现代化控制手段改造锅炉的燃烧系统,可以提高能源转化率,有效减少资源的浪费。
利用上位机实时监控生产全过程,降低风险,减少一线人员的工作量。
这样在节约能源的同时,也保证了生产运行的安全。
关键词:PLC;蒸汽锅炉;控制系统引言在工业生产阶段,应用与之相匹配的设备不仅能够有效提高生产效率,更能实现对成本的合理缩减。
尤其是在锅炉生产中,安全指标的提升逐渐成为长远发展的关键点,蒸汽锅炉的正确使用也就显得尤为重要。
以技术发展为依托,蒸汽锅炉的PLC系统抓紧被应用到实践生产中,这就大大提高了自动化发展能效。
但是蒸汽锅炉的自动化水平与预期目标之间存在显著差距,相对的能源消耗量大、参数缺少精准调控等问题也频繁发生,这就需要针对PLC的自动控制技术进行全面分析及探究,找寻更为有效的发展路径,促使其能效作用充分发挥。
1基于PLC的新型蒸汽锅炉自动控制系统总体方案基于PLC的新型蒸汽锅炉自动控制系统设计目标为将原来由继电器等基础器件控制或者人工操作的锅炉控制系统通过对水位、蒸汽流量、压力、排烟温度等参数的联合调控实现自动控制。
整个自动控制系统分为三级操控模式。
蒸汽锅炉控制系统的主要功能是实现锅炉的水位控制、蒸汽流量控制、蒸汽压力控制、排烟温度控制和监测。
具体功能如下:(1)自动控制:自动控制锅炉的运行参数,使蒸汽锅炉满足工作要求,并且可以安全、经济地运行。
(2)程序控制:通过对锅炉设定一个具体的操作顺序以及各参数的定义来编制程序实现对锅炉的自动控制,完成锅炉的正常运行。
如首先进行启动设置,然后将煤斗中的煤炭运送至炉膛进行燃烧,并按照顺序控制启动引风机、鼓风机以及炉排。
基于PLC实现的锅炉水位监控系统设计完成

毕业设计基于plc发电厂锅炉水位控制系统设计摘要在锅炉水位监控系统中,水位是一个很重要的控制参数,它间接地反映了锅炉负荷和给水的平衡关系。
本次设计是合理控制水位,其控制方案是于GE90-30 PLC实现三冲量调节系统,即前馈-串级复合控制系统。
本文介绍的是基于PLC实现的锅炉水位监控系统设计,设计中主要解决的是确定锅炉水位的控制方案、系统控制设备选型、PLC梯形图的编程、系统配置、IO配置、上位机工艺操作界面组态的设计。
本锅炉水自控设计选用的美国GE Fanuc自动化公司的90TM-30系列PLC可编程序控制操作站GE Fanuc自动化公司用GE90-30 PLC来实现锅炉水位监控,可以提高锅炉的自动化控制水平,维持水位在给定范围内,保证了锅炉安全运行,降低工作人员的劳动强度,取得了较好的经济和社会效益。
关键词: PLC 水位三冲量调节系统监控软件Abstractfeed-forward complThe article describes the design of based on PLC. The problems solved in the article are the control scheme of , equipment selection, the program for ladder diagram of PLC, IO configuration and the design for the technological operation of PLC, in the design,we choose 90TM-30 series PLC made by automation company GE Fanuc in America with programmable controllers as input and output passages, which realizes data testing and output control in the scene. We choose automatic monitored software CIMPLICITY HMI 4.01 (300 points) produced by GE Fanuc automation company in America as operation station which can realize configuration design for operation station and realize data testing and output control in the scene. As a result, this can realize the control for the . GE90-30 PLC. It can not only improve the standard of automatic control ofKey Words:PLC Water Level of Steam Manifold Tri-Impulse Controlling System Monitoring and Controlling Software引言在锅炉水位监控系统中,水位是一个很重要的控制参数,它间接地反映了锅炉负荷和给水的平衡关系。
基于PLC的燃油锅炉水位控制系统设计

目录目录0第1章引言01.1 PLC控制燃油锅炉的目的和意义01。
2 PLC控制燃油锅炉的设计内容01.3 预期实现的目标0第2章系统总体设计12。
1 系统控制要求12.2 确定设计方案2第3章控制系统硬件设计23.1 PLC选型及扩展23。
2 电机及驱动线路83。
3 检测元件选型93。
4 低压电器选型103。
5 电源设计103。
6 人机接口设计11第4章控制系统软件设计114.1 控制程序流程图114。
2 控制程序设计124。
3 显示操作界面设计13结束语14参考文献14附录1:PLC源程序15附录2:硬件原理图0第1章引言1.1PLC控制燃油锅炉的目的和意义锅炉是一次性能源煤炭、石油、天然气转换成二次能源蒸汽量的重要动力设备。
据有关数据统计,目前我国有各类工业锅炉约25万。
每年耗煤量占全国产量的1/3,同时还消耗大量的石油和天然气.工业锅炉是生产过程中重要的动力设备。
在石油化工领域,它的主要作用是向生产装置提供所需的合格蒸汽,其控制质量的优劣不仅关系到锅炉自身运行的效果,而且还将直接影响到相关装置生产过程的稳定性。
现代燃油燃烧机多为自动控制的燃烧机,一般采用工业程序控制器、火焰检测器以及温度传感器等组成自动控制系统。
燃油锅炉随着城市的发展而越来越多地被应用。
以前使用燃煤锅炉由于其在燃烧时产生大量的CO2和粉尘污染环境而逐渐被淘汰,相对应的用燃油锅炉来代替燃煤锅炉已被广泛用于酒店、大型商场等建筑。
由PLC组成的燃油锅炉控制系统适用于配用各种进口及国产燃烧器的燃油锅炉,对锅炉实行全自动控制,包括锅炉水位、蒸汽压力、燃烧系统的参数检测、指示、调节等进行控制。
1.2PLC控制燃油锅炉的设计内容本设计采用可编程序控制器PLC控制燃油锅炉的稳定可靠运行。
通过PLC的选型和扩展电机及驱动控制、检测元件选型、低压电器选型、电源设计完成燃油锅炉的硬件设计部分。
通过组态软件以及仿真软件的模拟和调试完成燃油锅炉的软件设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以下文档格式全部为word格式,下载后您可以任意修改编辑。
摘要汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。
PLC技术的快速发展使得PLC广泛应用于过程控制领域并极大地提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。
本文从分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“假水位现象”,提出了锅炉汽包水位控制系统的三冲量控制方案。
按照工程整定的方法进行了PID参数整定,并进行了仿真研究。
根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。
关键词:汽包水位三冲量控制PLC PID控制ABSTRACTThe steam drum water level is a very important parameter for the boiler safe operation, both widely be applied to the process control domain and enhances the performance of control system enormously. PLC automatic control domain.Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phenomenon”is analyzed specially, and three impulses control plan for steam drum water level control system is proposed. PID parameters are regulated by engineering regulation method, and simulation study is done. According to the needs of control, the selection of control requirements as well as system software design are carried out. Finally the application of PLC in boiler steam drum water control system is completed.Key words: Steam drum water level Three impulses control PLC PID control目录1绪论 (1)1.1汽包水位控制系统的发展现状 (1)1.2本设计的主要工作 (2)2控制方案设计 (4)2.1汽包水位的影响因素 (4)2.2汽包水位的控制方案设计 (7)3硬件选型 (13)3.1水位传感器选型 (13)3.2流量传感器的选型 (14)3.3电机的选型 (16)3.4变频器的选型 (17)3.5接触器的选型 (17)3.6熔断器的选型 (18)3.7功率三极管的选型 (18)3.8PLC及相关模块的选型 (19)3.9硬件工作原理 (22)4硬件设计 (25)4.1系统总体线路设计 (25)4.2控制线路设计 (28)5控制算法及参数整定 (30)5.1PID算法简介 (30)5.2三冲量控制系统参数整定 (31)6软件设计 (39)6.1程序流程设计 (39)6.2DeviceNet网络组态 (41)6.3RSLogix5000程序设计 (44)7监控界面设计 (50)8结束语 (53)参考文献 (55)致谢 (56)附录 (57)1绪论1.1汽包水位控制系统的发展现状蒸汽锅炉是企业重要的动力设备,其任务是供给合格稳定的蒸汽产品,以满足负荷的需要。
锅炉是一个十分复杂的控制对象,为保证提供合格的蒸汽产品以适应负荷的需要,与其配套设计的控制系统必须满足各主要工艺参数的需要。
保持锅炉汽包水位在正常范围内是锅炉运行的一项重要的安全性能指标,由于负荷、燃烧状况及给水流量等因素的变化,汽包水位会经常发生变化[1]。
因此锅炉汽包水位应当根据设备的运行状况进行实时调节加以严格控制以保证锅炉的安全运行。
工业蒸汽锅炉汽包水位控制的任务是控制给水流量使其与蒸发量保持动态平衡,维持汽包水位在工艺允许的范围内,是保证锅炉安全生产运行的必要条件,锅炉汽包水位也是锅炉运行中一个重要的监控参数,它间接地体现了锅炉负荷和给水之间的平衡关系。
传统的控制方法是以各种分立器件的应用为基础,利用各种检测器件对被控参数实时进行检测并反馈给控制器件,再根据自动控制理论的有关算法完成相应的运算并驱动调节机构完成相应的动作,从而达到自动控制的目的。
但是这种控制方式受分立器件的性能影响大,系统各部分之间影响较大,自动化水平不高,控制效果并非十分理想,而且容易出现故障,不利于系统的长期安全、高效运行。
现在广泛使用的控制技术还有DCS 集散控制系统[2],但由于DCS系统适合有多个控制回路同时工作的复杂系统,而且集散控制系统往往价格昂贵,对于像汽包水位这样的控制系统来说性价比太高,因此对于汽包水位控制系统来说并非理想的选择。
PLC是70年代发展起来的中大规模的控制器,是集CPU、RAM、ROM、IO接口与中断系统于一体的器件[3],已经被广泛应用于机械制造、冶金、化工、能源、交通等各种行业。
随着计算机在操作系统、应用软件、通信能力上的飞速发展,大大增强了PLC通信能力,丰富了PLC编程软件和编程技巧,增强了PLC过程控制能力。
因此,无论是单机还是多机控制、生产流水线控制及过程控制都可以采用PLC技术。
PLC控制锅炉技术是近年来开发的一项新技术。
它是PLC软、硬件、自动控制、锅炉节能等几项技术紧密结合的产物。
作为锅炉控制装置,其主要任务是保证锅炉的安全、稳定、经济运行,减轻操作人员的劳动强度。
采用PLC控制技术,能实现对锅炉运行过程的自动检测、自动控制等多项功能。
它的被控量是汽包水位,而调节量则是汽包给水流量,通过对汽包水位的实时检测并进行反馈,PLC对反馈信号和给定信号进行比较,然后根据控制算法对二者的偏差进行相应的运算,运算结果输出给执行机构从而实现给水流量的调节,使汽包内部的物料达到动态平衡,汽包水位变化在允许范围之内。
1.2本设计的主要工作本次设计的主要工作有:(1)设计锅炉汽包水位控制方案从锅炉汽包水位的动态性能入手,分析影响锅炉汽包水位的主要因素,并对这些因素对锅炉汽包水位动态性能的影响进行理论研究。
在此基础之上,根据各个因素对锅炉汽包水位的影响采用汽包水位三冲量方案,达到控制锅炉汽包水位稳定的目的。
(2)硬件设备的选型与设计根据所设计的控制方案合理地选择检测元件、执行机构和控制设备以及其它必要设备,并在此基础之上根据控制方案合理地进行硬件设计,完成各种设备之间的接线与配置,并进行设备的安装调试。
为整个系统的实现以及稳定、可靠运行打下基础。
(3)控制算法的参数整定根据被控对象的特点以及它的静态、动态特性按照工程整定的方法进行控制器的参数整定,设计调节器的各个参数。
在此基础之上对整定结果进行仿真,并对整定结果进行进一步调整判断其可行性,为后续的软件设计工作打下基础。
(4)PLC程序和监控界面设计根据参数整定和仿真的结果利用相关软件进行PLC梯形图程序设计,最终实现控制算法。
同时利用组态软件进行监控界面的设计,实现通过上位机对整个系统运行状态的实时监控功能,使之能够动态显示系统的运行状况,并可以通过监控界面对系统进行相关操作。
2控制方案设计锅炉是重要的动力设备,其任务是供给合格稳定的蒸汽,以满足负荷的需要。
汽包水位是影响锅炉安全运行的重要参数,如果水位过高,会破坏汽水分离装置的正常工作,严重时会导致蒸汽带水增多,增加在管壁上的结垢和影响蒸汽质量。
如果水位过低,则会破坏水循环,引起水冷壁管的破裂,严重时会造成干锅,损坏汽包。
所以锅炉汽包水位过高过低都可能造成重大事故。
在锅炉汽包水位控制系统中被控量是汽包水位,而调节量则是给水流量,通过对给水流量的调节, 使汽包内部的物料达到动态平衡状态,从而使汽包水位的变化在允许范围之内,保证锅炉的安全运行,生产出合格稳定的高质量蒸汽,以满足负荷的需要。
2.1汽包水位的影响因素首先应该从分析汽包水位的动态特性入手。
锅炉给水调节对象如图2.1所示。
给水调节机构为变频器调节给水量W,汽轮机耗汽量D是由汽轮机阀门开度来控制的。
图 2.1锅炉给水调节对象初看起来,汽包水位的动态特性似乎和单容水槽一样,给水量和蒸汽流量影响汽包水位的高低[4]。
但实际情况并非如此,最突出的一点就是水循环系统中充满了夹杂着大量蒸汽汽泡的水,而蒸汽泡的体积V是随着汽包压力和炉膛热负荷的变化而变化的。
如果有某种原因使汽泡的总体积变化了,即使水循环系统的总水量没有发生变化,汽包水位也会因此随之发生改变从而影响水位的稳定。
影响汽包水位H的主要因素有给水量W,汽轮机耗汽量D和燃料量B三个主要因素。
(1)给水扰动的影响如果把汽包及其水循环系统看作一个单容水槽,那么水位的给水阶跃扰动响应曲线应该为图2.2所示的曲线H1所示。
但考虑到给水的温度低于汽包内饱和的水温度,当它进入汽包后吸收了原有的饱和水中的一部分热量使得锅炉内部的蒸汽产量下降,水面以下的汽泡的总体积V也就会相应的减小,从而导致水位下降如图2.2所示的曲线H2所示。
水位的实际响应曲线应是曲线H1和H2之和,如图2.2所示的曲线H所示。
从图中可以看出该响应过程有一段延迟时间。
即它是一个具有延迟时间的积分环节,水的过冷度越大则响应延迟时间就会越长。
其传递函数可以近似表示为:(2.1) 式2.1中表示汽包水位的飞升速度,表示延迟时间。
图2.2给水扰动响应曲线(2)汽轮机耗汽量扰动的影响当汽轮机耗汽量D突然做阶跃增加时,一方面改变了汽包内的物质平衡状态,使汽包内液体蒸发量变大从而使水位下降,如图2.3所示的曲线H1所示,另一方面由于汽轮机耗汽量D的突然增加,将迫使锅炉内汽泡增多,同时由于燃料量维持不变,汽包压力下降,会导致水面以下蒸汽泡膨胀,总体积V增大,从而导致汽包水位上升,如图2.3所示曲线H2所示。
水位的实际响应曲线应该是曲线H1和H2之和,如图2.3所示曲线H所示。
对于大中型锅炉来说,后者的影响要大于前者,因此负荷做阶跃增加后的一段时间内会出现水位不但没有下降反而明显升高的现象,这种反常现象通常被称为“假水位现象”。