遗传学论文
遗传学论文

基因治疗殷建楠摘要:基因治疗是一种新兴的治疗手段,随着对基因治疗的深入研究,更多的疾病将会被攻克。
本文主要描述了基因治疗在亨廷顿病和糖尿病治疗方面的研究进展,以及基因治疗的前景。
关键词:基因治疗、亨廷顿病、糖尿病、腺病毒载体一、基因治疗概述基因治疗是指将人的正常基因或有治疗作用的基因通过一定方式导入人体靶细胞, 以纠正基因缺陷或者发挥治疗作用, 从而达到治疗疾病的目的。
广义的基因治疗是指利用基因药物的治疗, 而通常所称狭义的基因治疗是指用完整的基因进行基因替代治疗, 一般用DNA 序列。
基因治疗常用方法有2 种, 即体内疗法( in vivo) 和体外疗法( ex vivo) , 主要的治疗途径是体外基因治疗, 即在体外用基因转染病人靶细胞, 然后将经转染的靶细胞输入病人体内, 最终给予病人的疗效物质是基因修饰的细胞, 而不是基因药物。
体内疗法是将外源基因导人受体体内有关的器官组织和细胞内, 以达到治疗的目的。
这些基因药物可以是完整基因, 也可以是基因片段( 包括DNA 或RNA) ; 可以是替代治疗, 也可以是抑制性治疗( 包括DNA 转录水平和mRNA 翻译水平) 。
基因药物不但可用于治疗疾病, 而且可用于预防疾病。
这类基因药物疗法简单易行, 发展迅速, 新型基因药物也不断产生。
基因治疗目前主要用于治疗那些对人类健康威胁严重的疾病, 包括遗传病( 如血友病、囊性纤维病、家族性高胆固醇血症等) 、恶性肿瘤、心血管疾病、感染性疾病( 如艾滋病、类风湿等) 等。
二、基因治疗的形式基因治疗有两种形式:(1)体细胞基因治疗,正在广泛使用;(2)生殖细胞基因治疗,因能引起遗传改变而受到限制。
(1)体细胞基因治疗:体细胞基因治疗(somatic cell gene therapy)是指将正常基因转移到体细胞,使之表达基因产物,以达到治疗目的。
这种方法的理想措施是将外源正常基因导入靶体细胞内染色体特定基因座位,用健康的基因确切地替换异常的基因,使其发挥治疗作用,同时还须减少随机插入引起新的基因突变的可能性。
遗传学课程论文——细胞质遗传并非完全是母系遗传

生命科学学院2010级本科遗传学课程论文细胞质遗传并非完全是母系遗传姓名:孙颖雯班级:2010级生物科学(师范)2班学号:222010317011053指导教师:帅小蓉【摘要】细胞质遗传一般表现为具母系遗传的特征,但随着科学技术的日益发达,DNA分子标记技术的发展和应用,科学家们已发现在动物及植物中均存在有低频的线粒体DNA单亲父系遗传以及双亲遗传的现象。
对质体DNA遗传的研究表明:被子植物的质体DNA大多表现为母系遗传,而裸子植物的质体DNA则主要表现为父系遗传的方式,同时也发现存在其它的遗传规律[1]。
由此证实了细胞质基因的遗传并非全部都是母系遗传。
【关键词】细胞质遗传母系遗传线粒体DNA遗传质粒DNA遗传【引言】母系遗传是细胞质遗传的普遍形式,高等生物的细胞质遗传包括母系遗传、父系遗传和双亲遗传。
母系遗传是指:正交和反交的遗传表现不同,通常子代只表现母本性状,这种表型和母本表型一致而与父本表型无关的细胞质遗传又称母系遗传。
异配生殖的生物,其合子中细胞质主要来自雌配子,同时父本所形成的配子中,细胞质基因或丢失、或以某种方式被破坏、或失去活性,即只有母本的细胞质基因得到表达,父本的细胞质基因没有表达,因此,后代通常只表现母本的性状,这种细胞质遗传才是母系遗传[2]。
但是,如果过分强调雌配子中的细胞质多,而雄配子中细胞质少是母系遗传的主要原因,则以后就难以理解父系遗传和双亲遗传。
通常所说的细胞质遗传特点其实是指母系遗传的特点,如子代通常只表现母本性状,母系遗传和细胞质遗传是包容关系的概念。
因此,母系遗传一定是细胞质遗传,而细胞质遗传却不一定是母系遗传[3]。
例如花斑紫茉莉白色枝叶、绿色枝叶、花斑枝叶的遗传和链孢霉的慢性生长性状遗传,属于母系遗传;而酵母菌小菌落遗传属于细胞质遗传但不属于母系遗传。
【正文】细胞质遗传中,正、反交结果是不同的,因此,我们常常根据正、反交结果和后代的性状分离比来判断一种遗传是否是细胞质遗传。
医学遗传学论文【范本模板】

医学遗传学论文有关X—显性遗传和X-隐性遗传的研究进展作者:摘要:X-连锁遗传(X—linked inheritance)根据其x染色体上致病基因性质的不同,可分为X-连锁显性遗传、X连锁隐性遗传。
控制某种性状或遗传病的基因位于X染色体上,且这种基因为显性基因,其遗传方式称为X—连锁显性遗传(X—linked dominant inheritance,XD).同样的,若控制某种性状或遗传病的基因位于X染色体上,且这种基因为隐性基因,其遗传方式称为X—连锁隐性遗传(X—recessive inheritance,XR)。
关键词:X—连锁遗传(X—linked inheritance);X—连锁显性遗传(X-linked dominant inheritance,XD);X-连锁隐性遗传(X-recessive inheritance,XR);X-连锁遗传病同意染色体上的某些基因以及他们所控制的性状结合在一起传递的现象叫做连锁遗传。
连锁现象是1906年英国学者贝特森(Bateson)和番奈特(Pannett)研究香豌豆两队性状遗传时,首先发现的。
人类疾病的遗传与遗传病中,有一类为单基因遗传病,单基因遗传是指受一对等位基因控制的性状遗传,对后代的传递受孟德尔规律的制约,又称为孟德尔遗传.【1】孟德尔的豌豆杂交试验广泛引起人们关注之后,在1905年,摩尔根开始用果蝇为材料进行遗传试验.摩尔根假设:控制白眼性状的隐性基因w位于X染色体上.Y染色体上不带有这个基因的显性等位基因。
关键的问题解决了,果蝇白眼性状遗传的特殊情况都得到了圆满的解释.摩尔根的假设不仅合理地解释了他的实验结果,而且可以预计白眼雌蝇与白眼雄蝇交配时,F1应全为白眼,而且永远是真实遗传的.实验的结果与假设相符,假设得到了证实。
像果蝇白眼性状这样由性染色体所携带的基因在遗传时与性别相联系的遗传方式称为伴性遗传(sex-linked inheritance)或称X连锁遗传。
分子遗传学的发展本科论文

分子遗传学的发展1. 生化遗传学摩尔根曾经正确地指出:“种质必须由某种独立的要素组成,正是这些要素我们叫做遗传因子,或者更简单地叫做基因”。
尽管由于摩尔根及其学派的广大科学工作者的努力,使基因学说得到了学术界的普遍的承认,然而当时人们对基因本质的认识还相当肤浅,并不知道基因与蛋白质及表型之间究竟存在着什么样的内在联系。
虽然说早在1909年,英国的医生兼生物化学家加罗德(A.Garrod)就己指出,特定酶的表达是由野生型基因控制的假说。
而且这个假说在二十世纪30年代,经过众多遗传学家的努力已经获得了很大的发展与充实。
遗憾的是,由于当时人们掌握的酶分子结构的知识相当贫乏,没有认识到大部份基因的编码产物都是蛋白质,也不知道是否所有的蛋白质都是由基因编码的。
在这样的知识背景下,要进一步研究分析基因与蛋白质之间的内在联系,显然是难以做到的。
值得庆幸的是到了二十世纪40年代初期,孟德尔-摩尔根学派的遗传学家便已经清醒地认识到,如果继续沿用经典遗传学的研究方法和实验体系,是难以有效地揭示基因控制蛋白质合成及表型特征的遗传机理。
因此他们便广泛地转而使用诸如红色面包霉(Neurospora crassa)和肺炎链球菌(Streptococcus pneumpniae)等微生物为研究材料,并着力从生物化学的角度,探索基因与蛋白质及表型之间内在联系的分子本质。
所以人们称这个阶段的遗传学为生化遗传学(biochemical genetics),或微生物遗传学(microbial genetics)。
由于微生物具有个体小、细胞结构简单、繁殖速度快、世代时间短和容易培养、便于操作等许多优点,因此便极大地加速了生化遗传学的研究,在短短的二三十年间就取得了丰硕的成果,主要的有如下三项。
第一,1941年两位美国科学家比德尔(G.Beadle)和塔特姆(E.Tatum),通过对红色面包霉营养突变体的研究,提出了“一种基因一种酶”(后来修改为“一种基因一种多肽”)的假说。
2021医学遗传学论文(最新期刊范文8篇)范文2

2021医学遗传学论文(最新期刊范文8篇)范文 医学遗传学是医学研究的热点,主要以出生缺陷生命科学为主要研究课题,通过DNA技术,进行基因诊断、基因治疗、预防出生缺陷,是一种新型又有效的诊断技术和治疗方法。
本文汇总了8篇“医学遗传学论文范文”,供医学工作者们参考阅读。
医学遗传学论文(最新期刊范文8篇)之第一篇:基于医学遗传学的抑郁症研究 摘要:抑郁症作为常见精神障碍,给患者造成了极大的负担。
目前,人们对抑郁症遗传机制的理解远不如精神分裂症、双相障碍等其他常见精神障碍透彻。
近年来,随着临床样本量的不断积累以及研究方法与技术的进步,抑郁症的遗传学研究取得了一定的进展。
该文从抑郁症的候选基因、常见变异位点、罕见变异位点以及染色体结构变异等方面对该病的遗传学研究进展作一综述。
关键词:抑郁症,遗传学,研究进展;医学遗传学 抑郁症是一类以情绪低落为主要表现的常见精神障碍,全球约3.5亿人罹患抑郁症;从伤残调整生命年来看,抑郁症在全球疾病总负担中所占比例高达10.2%,是当今社会重要的健康问题[1]。
但经过几十年的研究,科学家们仍难以阐明抑郁症的分子机制,因此抑郁症的治疗并未取得突破性的进展。
其他复杂疾病如肿瘤的遗传学研究进展所带来的靶向治疗取得了瞩目的成就,提示抑郁症的遗传学研究拥有巨大潜力,有望为抑郁症的治疗提供新方向。
相比于遗传度较高的自闭症、双相情感障碍以及精神分裂症,抑郁症的遗传度为31%~42%[2],遗传学研究发现的变异位点数目也远不及上述精神障碍,揭示抑郁症的遗传机制需要更大的样本量研究。
近年来随着诸如精神障碍基因组学研究合作组织(PsychiatricGenomics Consortium,PGC)、CONVERGE(China,Oxford,and Virginia Commonwealth University Experimental Research on Genetic Epidemiology)等组织的抑郁症临床队列样本数的增加,抑郁症的遗传学研究将迎来新的曙光。
动物遗传学论文(8篇无删减范文)-医学遗传学论文-基础医学论文-医学论文

动物遗传学论文(8篇无删减范文)-医学遗传学论文-基础医学论文-医学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——动物遗传学不仅是生物学领域中最基本的科学之一,还是畜牧兽医专业基础课程的理论来源。
动物遗传学主要研究各种动物,如:家畜、昆虫、鱼类、鸟类等。
本文整理了8篇动物遗传学论文范文,以供参考。
动物遗传学论文(8篇无删减范文)之第一篇:基于动物遗传学的育种与繁殖研究摘要:近年来动物遗传育种与繁殖技术已经取得了一定的进展与突破。
首先总结了动物育种发展的创新点,之后以生物信息学的发展为例对动物遗传育种与繁殖技术的发展成果进行了总结,如良种繁育基因组数据库、动物功能组的研究、对于动物生长发育的有效调节、基因组学的运用,展望了其在未来的发展前景。
关键词:动物遗传学,动物系列,生物信息学近年来畜牧业的重要性得到了人们的重新审视,其对于食品食物质量以及人们的身体健康状况的影响愈发突显,相应地,人们对于畜牧动物品种提出了更高的要求。
结合当前生物技术的发展,动物育种得到了一定的发展,尤其是计算机与网络技术的推广与普及更让生命科学与信息科学实现了更为紧密的关联。
1 动物遗传育种与繁殖的创新点动物食品需求量与生物品种改良之间有密切关联,同时随着人们生活水平的提高与饮食结构的变化,动物产品的质量也会直接关系到经济发展与人们的生活质量。
就总产量的对比情况来看,我国的肉类与禽蛋类均为世界首位,乳制品的产量则为世界第三位,均居于世界前列,但是在畜牧产品的人均占有量上仍然与发达国家有一定的差距,动物性食品来源仍然较为匮乏,无法满足于人们日益增长的需求,而积极进行品种与繁殖技术的创新可以有效地提高畜产品的质量。
发展动物品种,对于生物领域新兴技术的检验来说极为有利,分子标记辅助选择、全基因组选择与人工授精、冷冻胚胎、干细胞技术、基因组编辑等一系列新技术都在一定程度上提高了动物育种与繁殖的效率,让该领域形成了一套完整可持续的产业体系,而包括基因组最佳纯属无偏估测与超声波、无线射频自动化技术的问世也在相应地提高了生产效率,进一步提高畜牧业的经济效益。
遗传学论文3(1)

Cu2+对泥鳅红细胞微核的影响张晋,王馨【摘要】采用硫酸铜对泥鳅进行染毒试验,用常规方法制备血涂片,以研究其不同浓度范围(0.05mg/L—0.4mg/L)对泥鳅红细胞核异常和微核的诱导效应。
结果表明:硫酸铜能不同程度地引起泥鳅红细胞核异常率的升高,各处理组泥鳅红细胞微核的出现率随铜离子浓的增加先增加后减少再增加的趋势,不具有一定的剂量-效应关系。
【关键词】Cu2+;泥鳅;红细胞微核;核异常近年来,大量工农业生产的废弃物被排到江河湖泊,其中的重金属在水体中不易被降解,重金属通过食物链在鱼体中积累,会对鱼类产生毒害作用。
微核试验是20世纪70年代由Heddle(1973)和Schmid(1975)分别独自创立的,是检测细胞遗传损伤的指标和检测化学物质毒性的一种常规方法。
该方法已经被广泛应用于检测和监察各种理化因子对机体的致癌、致突变效应。
泥鳅的血红细胞具核,在外来诱变剂的作用下会出现微核和各种核畸变现象。
近年来学者将泥鳅作为研究水体污染的材料,取得较好效果。
泥鳅在实验室易于饲养,分布广泛,取材容易,易于涂片,且具有较高的敏感性等优点,因而常被用于检测水体的污染情况。
因此,可用泥鳅作为评价水体污染和化学物质对水生生物遗传损害及毒理效应的指示生物。
泥鳅对环境中低浓度的污染物较为敏感,微核试验已广泛应用于化学物质、重金属、除草剂及食品添加剂等对泥鳅遗传毒性的影响的研究。
实验以泥鳅为研究对象,探讨Cu2+对泥鳅红细胞微核、核异常等遗传指标的影响,为环境监测提供参考和数据。
1 材料与方法1.1 材料1.1.1 实验动物泥鳅30条(泥鳅购大学城永辉超市,体长10±2.0)cm,在曝气的自来水中暂养3 d,实验时选用体重相近、体表无损、健康活泼的个体作为试验材料。
1.1.2 主要试剂分析纯CuSO4·5H2O用蒸馏水配置成10 mg/L母液,再稀释成所需的浓度;吉姆瑞氏混合染液,使用前用0.2 mol/L 磷酸缓冲液(pH值6.8)稀释10倍。
遗传学论文

谈谈中学生物之遗传学入门摘要:针对遗传生命现象如“种瓜得瓜,种豆得豆”和变异生命现象如“一树结果,有酸又甜”,高中生物必修2【遗传与进化】给我们做了遗传学的基础概括。
我们知道,遗传和变异是生物界普遍存在的生命现象,也是生命活动的基本特征之一,它们是一对矛盾,相互依存,相互制约,相互促进。
本文主要由微观到宏观,由实质到表象构造中学生物之遗传学基础的结构路线。
关键词:遗传变异遗传物质遗传学的基本任务是认识和掌握生物的遗传和变异的规律,从而主动的控制和改造生物,使其为人类服务。
遗传学的深入研究,不仅直接关系到生命本质、生命起源和生物进化等重大理论问题,而且对于生产实践、社会生活以至推动整个生物科学的发展和控制、改造自然都有巨大的作用。
一历史回顾遗传学发展至今虽然只有100多年的历史,但却取得辉煌的成就。
根据各阶段的主要特点和成就,可粗略划分为5个阶段,分别是18世纪下半叶19世纪上半叶的启蒙遗传阶段,19世纪下半叶开始的孟德尔遗传学建立,细胞遗传学的建立以及微生物遗传学和生化遗传学的发展,分子遗传学建立和发展,遗传工程的发展。
其中中间三大阶段是遗传史上的重大突破。
1.1. 孟德尔遗传学建立1866年,孟德尔(Mendel GJ)发表“植物杂交试验”论文,首次提出分离和独立分配两个遗传基本规律,认为性状遗传是受细胞内遗传因子控制的。
1900年,孟德尔遗传规律的重新发现,该年被公认为遗传学建立和开始的年份。
发现者为狄·弗里斯(de Vris H)、柴马克(Tschermak E)和柯伦斯(Correns,Carl)。
1909年,约翰生(Johannsen WL)发表了“纯系学说”,并最先提出“基因”一词,以代替孟德尔的遗传因子概念。
在这个时期细胞学和胚胎学已有很大的发展,细胞学与遗传学相结合开始。
1910年以后,摩尔根(Morgan TH)同样发现性状连锁现象,并提出遗传的第三定律--连锁遗传规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
朱尔靓 032010122 10级一临中西七1班
遗传学论文——血友病
血友病是一组遗传性凝血因子缺乏引起的出血性疾病。
在我国,血友病的社会人群发病率为5~10/10万,婴儿发生率约1/5000。
典型血友病患者常自幼年发病、自发或轻度外伤后出现凝血功能障碍,出血不能自发停止;从而在外伤、手术时常出血不止,严重者在较剧烈活动后也可自发性出血。
血友病依其缺乏凝血因子种类之不同,可分为:
(1). 甲型血友病:是由于凝血因子八(即Ⅷ)缺乏引起,亦称作血友病A,是临床上最常见的血友病,约占血友病人数的80%-85%,在某些高发地区甚至更高。
(2). 乙型血友病:是由于凝血因子九(即IX)缺乏引起,亦称作血友病B,临床较甲型血友病少见,约占血友病人数的15%左右。
(3). 丙型血友病:缺乏凝血因子十一(即Ⅺ缺乏,国外又称作Rosenthal综合征)。
(4).获得性血友病(即后天性凝血因子缺乏):常由于自身因素导致某些凝血因子水平下降,或活性降低,如获得性凝血因子八(Ⅷ)缺乏症,常由于自身产生Ⅷ因子抗体,导致凝血功能障碍,导致获得性血友病(甲型血友病)。
血友病A、B均属于性连锁隐性遗传性疾病(即伴X隐性遗传病),而丙型血友病(遗传性Ⅺ缺乏症)则为常染色体隐性遗传性疾病。
在欧洲早期有一种被称为“皇
室病”的疾病,其实就是A型血友
病。
1840年2月,21岁的维多利亚
女王(血友病患者)和她的表哥(舅
舅的儿子,健康)阿尔伯特结婚,
他们一共生下了9个孩子,四男五
女,4个男孩子有3个患有血友病,
女孩子也是血友病基因的携带者。
她的3位王子都是两岁左右发病。
当时的医学界对此毫无办法,连最
高明的医生也束手无策,结果一个
个都短命早夭。
所幸的是5位公主
却都美丽健康聪明,于是不少国家
的王子都前来求婚。
然而当她们先
后嫁到了西班牙、俄国和欧洲的其
他王室后,她们所生下的小王子也
都患上了血友病。
为什么会出现这种传男不传女的现象呢?又为什么健康的公主和健康的王子还是会生下患病的小王子呢?到底是什么原因导致了家庭的悲剧呢?【事例引用自小精灵网站】
原来维多利亚女王患的就是A型血友病,这是一种伴X隐性遗传病,也就是说这种病与人的性别有关,该病的基因就位于细胞中的X染色体上。
男性的性染色体是XY型,于是会发病。
而女性的性染色体是XX,病变的X染色体被另外一条健康的X染色体所代偿,
所以并不发病。
但是尽管她个人不发病,但这条有病变的染色体会继续遗传下去,遗传给她们的子女。
在下一代中,男性中有1/2的人会发病,而她们的女儿中又有1/2的人成为血友病的基因携带者,于是就会继续向下遗传,也就是隔代遗传,这就是伴性遗传病的遗传规律。
造成遗传病的原因,主要还是近亲结婚。
王室血统的"纯洁",带来的却是家庭的悲剧。
那又是什么原因导致血友病如此可怕呢?
因为因子Ⅷ、Ⅸ、Ⅺ缺乏均可使凝血过程的第一阶段中的凝血活酶生成减少,凝血酶原不能转变为凝血酶,纤维蛋白原也不能转变为纤维蛋白而易发生出血。
血友病的出血也非常具有特点,可以很明显得鉴别出,如:(1)出血不止:多为轻度外伤、小手术后;(2)与生俱来,伴随终身;(3)常表现为软组织或深部肌肉内血肿;(4)负重关节膝、踝关节等反复出血甚为突出,最终可致关节畸形,可伴骨质疏松、关节骨化及相应肌肉萎缩(血友病关节)。
(5)出血的轻重与血发病类型及相关因子缺乏程度有关。
而根据血友病严重程度的不同又可以进行以下的分类(以甲型血友病为例):
此外,可以出现血肿压迫症状及体征, 常见的有:(a)血肿压迫周围神经可致局部疼痛、麻木及肌肉萎缩;(b)压迫血管、输尿管引起症状;(c)压迫胸腹腔等脏器,影响内脏功能。
【关于血友病的部分学术性内容引用自百度百科】
血友病如此可怕,对于一个家族的伤害如此深,那么在医学如此发达的如今,又有哪些治疗方法呢?
血友病是一种遗传疾病,必须针对基因进行治疗,才有可能根治。
基因治疗仍然处在研究阶段,而且目前的成果,还谈不上根治。
目前的治疗,仍停留在补充凝血因子,来预防或是治疗血友病的出血症状(即替代治疗)。
依照病人的症状,决定如何提升凝血因子的水平。
譬如:,至少需要提升凝血因子的水平到40%;治疗肠胃道内出血,则需要提升到60%。
预防性治疗,则是不论有无症状,以一定的频次(一般是一周三次)固定注射凝血因子,预防关节出血。
因为各种凝血因子都有其半衰期,其中第八因子的半衰期是8至12小时,第九因子的半衰期是18至24小时,因此补充凝血因子的疗法,只能暂时解除患者症状。
凝血因子来源:一是血浆成分,二是凝血因子浓缩制剂(Coagulation factor concentrate)
血浆成分治疗
o使用成分
▪新鲜冷冻血浆(Fresh frozen plasma, FFP)
▪冷冻沈淀品(Cryoprecipitate)
o效力:一单位冷冻沈淀品约含第八因子50单位,一个体重50Kg的病人,接受注射之后,凝血因子水平可以提升到2个百分点(原来小于1%)。
以治
疗关节出血为例,一次至少需要20单位的冷冻沈淀品。
o优点:
▪紧急时容易在医疗机构取得。
▪使用经由无偿捐血取得的新鲜冷冻血浆或是冷冻沈淀品,病人负担的医疗费用较低。
o缺点:
▪为了达到治疗效果,大量输注血浆,会造成体内水分过多。
▪血浆成分在制备过程中,容易产生细胞激素,诱发病人输血反应。
▪由于病人需要大量使用,若是遇到血库库存不足时,将无法提供治疗。
▪血浆来自多位捐赠者,甚至是有偿的捐赠者,增加经血液传染疾病的感染机会。
▪必须进行输血程序,无法在家自行进行治疗。
∙凝血因子制剂
o来源:
▪血浆浓缩:收取有偿或无偿捐血者的血浆,加工浓缩消毒而成。
▪基因工程技术制备:利用基因克隆的技术,利用微生物制造凝血因子,再加工浓缩消毒。
o效力:针对病人缺乏的凝血因子,依照需要的剂量来补充。
▪甲型(A型)血友病为例,一个体重50Kgw的病人,接受一瓶500
单位的第八因子浓缩制剂,注射之后,凝血因子水平可以提升到接
近20个百分点。
▪乙型(B型)血友病患者,一个体重50Kgw的病人,接受一瓶500单位的第九因子浓缩制剂,注射之后,凝血因子水平可以提升到接近
10个百分点。
o优点:
▪效价高,体积小,无须担心体液过多的问题。
▪在制造过程进行精制,消毒,减少感染经血液传染疾病的机会。
▪医疗机构无须担忧血库库存问题。
▪给药较输血来得容易,病人可以学习自行在家注射。
o缺点:
▪价格昂贵
∙凝血因子制剂的选择
o基因工程制剂:制剂纯度高,感染疾病机会低,但是制备技术要求高,同时全世界的供应厂商屈指可数。
o血液制剂:依照等级,可制备高纯度,中纯度的制剂,提供不同类型的患者使用。
血浆来源的安全性,以及制备过程的消毒过程,必须十分完备。
【治疗的内容引用自维基百科】
但是治疗总归是无奈之举,一般而言预防出血比替代治疗更重要,例如:(1)加强宣教,避免剧烈活动,鼓励适当体力活动;(2)避免使用抗血小板药物;(3)避免肌肉注射;(4)如需手术应在术前补充所缺乏的凝血因子;(5)有条件者应
定期预防性补充相应凝血因子等。
(6) 血友病是许多有创操作的禁忌症,如拔牙、骨穿、外科手术等。
在未给予凝血因子输注干预前,避免盲目进行操作。
对于血友病的治疗仍然处在研究阶段,现在想要根治还比较难,但是通过一定的预防和治疗已经可以保障一定的生活质量。
而且医学水平不断进步,相信在不久的将来人类一定能够克服这种疾病,让不幸的家庭过上幸福的生活。