数学发展史结课论文终审稿)
[论文]数学发展历史
![[论文]数学发展历史](https://img.taocdn.com/s3/m/329e68265b8102d276a20029bd64783e08127d5c.png)
数学史数学是一门古老的学科,它伴随着人类文明的产生而产生,至少有四、五千年的历史.但它不是某一个民族或某一个地区的产物,而是世界许多民族、诸多地区世世代代的产物,是人们在生产斗争和科学实践中逐渐形成和发展而成的。
数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。
第一节发展历史一般认为,从远古到现在,数学经历了五个历史阶段.一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算.他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
中国是最早使用十进位值制记数法的国家。
早在三千多年前的商代中期,在甲骨文中产生了一套十进制数字和记数法,最大的数字为三万.与此同时,殷人用十个天干和十二个地支组成六十甲子,用以记日、记月、记年。
用阴(——)、阳(一)符号构成八卦表示8种事物,后来发展为64卦。
春秋战国之际,筹算已普遍应用,其记数法是十进位值制。
数的概念从整数扩充到分数、负数,建立了数的四则运算的算术系统。
几何方面,4500年前就有测量工具规、矩、准、绳,有圆方平直的概念。
公元前1100年左右的商高知道“勾三股四弦五”的勾股定理.春秋末战国初的墨子在《墨经》中给出了一些数学定义,包含有许多算术、几何方面的知识和无穷、极限的概念。
数学的发展历史范文

数学的发展历史范文数学是一门研究数量、结构、空间以及变化等概念和现象的学科。
它是人类文明发展的重要组成部分,对人类社会的进步和科学技术的发展起到了至关重要的作用。
下面,我将为大家介绍数学的发展历史。
数学的历史可以追溯到古埃及和古巴比伦时代,当时人们在实际应用中开始探索数字和运算规则。
古埃及人使用简单的四则运算,并开发了一种计数系统,使用简单的直线代表数字。
古巴比伦人在商业交易和土地测量中使用了分数和角度,并解决了一些简单的方程。
古希腊是数学发展的重要时期。
毕达哥拉斯学派提出了著名的毕达哥拉斯定理,建立了几何学,开创了用证明方法进行推理的先河。
欧几里得发表了《几何原本》,被视为几何学的集大成者,他提出了许多几何定理和推理方法,对数学的发展有着深远的影响。
在古印度,人们对无限和无窮小的概念进行了深入的研究。
印度数学家开发了一种十进制数制,并提出了二次方程的解法。
古印度的数学家布拉马格普塔发展了一些现代代数的基本概念和符号,奠定了代数学的基础。
文艺复兴时期,数学得到了更大的发展。
意大利数学家费拉里奥·博洛尼亚开创了代数学的新领域,他通过创新的符号表示法,引入了负数和复数的概念,并在代数学和几何学中应用了变量。
他的工作对后来的数学研究产生了深远的影响。
17世纪,英国科学家牛顿和莱布尼茨发现了微积分学。
微积分学集合了代数学和几何学的思想,成为现代数学的重要组成部分。
此外,伽罗瓦理论、群论和导数的引入,使代数学迈向了新的境界。
20世纪,数学的发展发生了巨大的跨越。
克莱因和希尔伯特提出了几何学的公理化方法,为数学建立了严密的基础。
图论、概率论、统计学、数值计算和逻辑学等新的数学分支不断涌现。
总结起来,数学的发展历史经历了几千年的演变。
从最初的实际应用到几何学、代数学、微积分学以及现代数学的各个分支,数学经历了不断的创新和发展。
它不仅为其他科学领域和技术的发展提供了必要的工具和方法,而且也对人类思维和认知方式产生了深远的影响。
数学研究性学习数学发展史论文

数学研究性学习数学发展史论文数学发展史是一个广阔的领域,涵盖了几千年的时间和各种各样的数学思想和进展。
研究这个领域可以帮助我们了解数学的起源、发展和应用,并揭示出一些数学家们在历史上所做的伟大贡献。
本文将通过分析数学发展史中的两个里程碑事件来探讨数学研究的重要性,以及如何将数学发展史与现代数学研究相结合。
数学发展史中的一个重要事件是公元前3000年左右古巴比伦人发明了数学。
古巴比伦人是世界上最早掌握数学的文明之一、他们用60进位制的数字系统,开创了代数和几何学的基础,从而为未来的数学发展铺平了道路。
古巴比伦人的数学知识主要用于解决土地测量、商业交易和天文学方面的问题。
通过研究他们的著作和记录,我们可以了解他们当时的数学知识和应用范围,从而更好地理解他们对数学的贡献。
另一个重要的数学发展历史事件是公元前6世纪的希腊数学。
希腊数学家发展了几何学,并建立了公理化的几何系统,奠定了几何学的基础。
其中最著名的数学家是毕达哥拉斯和欧几里德。
毕达哥拉斯定理和欧几里德几何学对现代数学的发展有着深远的影响。
希腊数学家的贡献推动了数学的进一步发展,并开启了数学与哲学的相互关系。
通过研究数学发展史,我们可以发现几个重要的趋势。
首先,数学的发展是逐步的,每一代数学家都在前人的基础上进行扩展和改进。
这种积累性的发展为现代数学提供了坚实的基础。
其次,数学的发展几乎与人类的其他科学和文化领域的进展同时进行。
数学在天文学、物理学、工程学等领域发挥了重要作用,并为这些领域的科学研究提供了数学模型和工具。
最后,数学的发展历程中还存在许多未解决的问题和新的研究方向。
数学研究永远不会停止,每一代数学家都会为之前未能解决的问题提供新的解决方案。
要进行数学研究,我们可以通过阅读历史文献、研究数学家的传记和著作,以及参与数学研究项目来深入了解数学发展史。
此外,还可以参加数学研讨会和学术会议,与其他数学爱好者和专业人士交流和分享研究成果。
通过这些研究方法,我们可以更好地了解数学的发展历史,并为数学研究的未来贡献自己的力量。
数学系毕业论文:无穷的发展史

数学系毕业论文:无穷的发展史无穷的发展史内容摘要无穷的探索在数学史的发展上有着举足轻重的作用。
本文从历史发展的角度展示了无穷的发展历程。
从古希腊时期的初步探索,到在微积分中大放异彩,再到集合论的惊世骇俗。
无穷的每一次新的探索都伴随着数学思想的跳跃性的发展。
通过对无穷史的展示,引发对无穷本质的思考。
最初,无穷对于人们来说是不可理解的是,甚至是恐惧的,正因为如此人们才会如此惧怕以至于不敢承认无理数??无限不循环小数的存在。
然而好奇心促使人们开始了解它,应用它。
尤其是微积分的出现,使得无穷走进数学的大舞台,但最初的微积分显然没有解决无穷小的问题,也因此引发了第二次数学危机。
经过后期的完善特别是分析的严格化,无穷小终于有了自己精确的定义。
然而无穷的探究仍未停止,康托尔提出集合论,指出了无穷大的谱系,构建了数学大厦的根基。
但集合论也存在着致命的硬伤??罗素悖论,这引发了第三次数学危机,并至今未被完全解决。
对于无穷,仍然存在着太多的未知。
【关键词】:无穷极限微积分集合论Infinite historyAbstractEndless exploration in the history of mathematics in development has a pivotal role. This paper, from the perspective of the development of history shows the endless development process. From the ancient Greece's preliminary exploration, to topping in calculus, again to set theory of pedophilia. Boundless each time the new exploration are accompanied with mathematical thought the development of the narrative.Through the history of the infinite show, leading to the nature of the infinite thinking. At first, it is not infinite for people to understand is, and even fear, because of this people will be so afraid that can't admit that irrational Numbers-not the existence of infinite repeating decimals. However curiosity makes people begin to understand it, use it. Especially the emergence of calculus, which went into the stage of infinite math, but the first of the infinitesimal calculus obviously not solve the problem, which, therefore, the second mathematical crisis. Through the analysis of the late perfect especially the strict, an infinitesimal finally had a precise definition. But endless explore is still not stop, cantor's proposed set theory, and points out that the infinite genealogy, constructed the mathematical building foundation. But set theory, there are also took a deadly-Russell paradox, which prompted a third mathematical crisis, and has not been fully resolved. For endless, there are still a too much of the unknown.【Key words】:Infinite limit calculus set theory目录引言 (1)恐惧??关于无穷的悖论和无理数的发现 (1)发展??穷竭法、无穷级数和微积分 (3)危机??第二次数学危机和分析的严格化 (5)改革??康托尔的集合论和第三次数学革命 (7)结束语 (10)参考文献 (11)致谢 (12)无穷的发展史引言数学是门严谨的学科。
数学发展历史研究论文

数学发展历史研究论文摘要:数学是一门古老而深奥的学科,对人类文明的发展起到了重要的推动作用。
本文通过对数学发展历史的研究,探讨了数学的起源、发展和影响。
引言:数学是一门研究数量、结构、变化以及空间等概念的学科,是科学和技术发展的重要基石。
数学的发展历史可以追溯到古代文明时期,早在5000年前,古代埃及和巴比伦就开始使用几何学和算术。
一、数学的起源和发展数学的起源可以追溯到古代文明时期。
古埃及人和古巴比伦人是最早开始研究数学的文明之一、他们通过观察自然现象和社会实践,逐渐发现了一些基本的数学原理和概念,例如算术运算和几何规则。
这些发现为后来数学的发展打下了基础。
在古希腊时期,伟大的数学家欧几里得发表了《几何原本》,系统整理了前人的几何研究成果,建立了几何学的基本原理和公理体系。
这个体系对后来的几何学发展产生了深远的影响。
中世纪是数学发展的低谷时期,随着对古代科学文化的遗忘和学术研究的衰退,数学的研究进展十分有限。
直到文艺复兴时期,数学才再次得到重视。
二、数学的重要发展阶段文艺复兴时期是数学发展的重要阶段。
数学家们开始重新研究古希腊的数学著作,并提出了新的数学理论。
例如,意大利数学家费马提出了“费马大定理”,奠定了数论的基石。
17世纪是数学发展的黄金时期,这一时期出现了一批伟大的数学家和数学著作。
例如,牛顿和莱布尼兹独立发明了微积分学,并创立了现代微积分的基本原理。
这一发现对现代物理学、工程学和经济学等学科的发展产生了深远的影响。
20世纪是现代数学的发展时期。
数学的发展逐渐向抽象、推理和形式化的方向转变。
出现了一批重要的数学家,如哥德尔、图灵、泽尔尼克等,他们为数学研究提供了重要的理论支持,推动了数学的快速发展。
三、数学对人类文明的影响数学在人类文明的发展中起到了重要的推动作用。
数学不仅为其他学科提供了理论工具和方法,而且在工程技术、经济学和计算机科学等领域发挥了重要作用。
例如,数学在工程技术领域的应用可以帮助设计和解决复杂的工程问题。
中国数学发展史论文

中国的数学文化史鲍是吉学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥、难学。
数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其它学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。
日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。
而数学历史上的三大危机分别是古希腊时期的不可公度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。
学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。
纵观中国数学发展史总体就用一句话来概括“中国数学起源早到时发展缓慢”一、中国古代数学家数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,着有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。
从她遗留下来的着作可以看出,她是一位从事天文和筹算研究的女数学家。
算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。
一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。
数学史论文有关数学史的论文数学发展史论文 (1)

数学史论文有关数学史的论文数学发展史论文用好数学史教好数学课【摘要】初、高中和大学阶段的数学史教育应体现不同的侧重点。
在利用数学史进行爱国主义教育时,应谨防一些片面看法和简单做法。
【关键词】数学史教育;学习兴趣;数学思维;爱国主义教育“数学史主要研究数学科学发生发展及其规律”,由于数学是一门积累性很强的学科,“研究与学习数学史,可以……研究数学科学发展的规律与文化本质,帮助我们掌握数学的思想、方法、理论和概念,认识数学科学与人类社会的互动关系”。
如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分的认可。
但是,有关数学史的教学中仍有一些问题值得继续探讨,例如学校教学各阶段对数学史教学的侧重点以及容易出现的一些“片面看法和简单做法”等。
以下提出本人对这些问题的粗浅看法。
一、学校教学各阶段的侧重点一般来说,数学史教育的作用主要有:1。
提高学生学习数学的兴趣;2了解数学结论的来历;3。
启发学生的数学思维;4。
培养学生的良好品质如吃苦耐劳精神、爱国情操等根据初中学生的年龄特点和接受能力,初中阶段的数学史教育应更多地注意趣味性。
初中生的逻辑和自控能力没有发展成熟,数学教学内容、体系也不严密,因此,在初中阶段的数学史教育应更注重通过数学史培养学生的学习兴趣和良好的思想品质。
即突出数学史教育的外在功能。
例如,“负数的产生”其重要原因之一即解方程的需要,但在学科发展历史中虽然经历了长时间的曲折但“负数”这一概念仍不能为人们接受,因此在教学处理上就吸取了教训,不以解方程人手而从“表示相反意义的量”人手引入负数(可参看初一年级上册的有关数学教材),从这样的历史背景出发,教学中就应提供大量的直观背景和现实模型以使小学刚升初中的学生在趣味中理解“一”号的现实意义。
高中阶段的数学史教育应将重点放在了解数学结论的来历和启发学生的数学思维上。
高中数学内容的逻辑性较强,知识体系也渐趋严密,对于某些抽象程度较高的数学知识(如虚数、极限等),如果缺乏一定的背景材料,不但会给学生造成理解上的困难,也会让学生有“天外来物”的困惑感。
数学的发展历史论文

数学的发展历史论文数学作为一门科学领域的学科,在人类文明的发展中扮演着重要的角色。
数学的发展历史可追溯至古代文明,古希腊时期的数学家如毕达哥拉斯、欧几里德和阿基米德等人对数学的发展产生了深远影响。
随着时间的推移,数学逐渐演变成为一门独立的学科,涵盖了代数、几何、数论、分析等多个领域,并在科学、工程、经济等多个领域发挥着重要作用。
古代数学的发展可以追溯至古埃及和美索不达米亚文明,这些古代文明的数学成就在计算、测量和建筑等方面发挥了重要作用。
古希腊数学的发展则奠定了几何和数论的基础,毕达哥拉斯的毕达哥拉斯定理和欧几里德的几何原理成为了古典几何学的基石。
在古代印度和中国,数学家们也做出了重要的贡献,如印度的零和十进制系统以及中国的算术和代数等方面都具有重要意义。
随着文艺复兴的到来,数学进入了一个新的发展阶段。
伽利略和牛顿的研究为物理学和天文学奠定了基础,而他们的成就也推动了数学的发展。
18世纪的数学革命则为微积分学、分析学和概率论等领域的发展奠定了基础。
而19世纪末和20世纪初的集合论、拓扑学和数理逻辑等领域的发展,则为现代数学的形成打下了基础。
在当代,数学已经成为了一门独立的学科,并不断涌现出新的理论和方法。
逻辑学、数学物理学、数值计算和离散数学等新的数学领域的出现,为数学的发展提供了新的动力。
而计算机的发展也推动了数学在人工智能、密码学和信息安全等领域的应用。
总的来说,数学的发展历史是一部不断创新和探索的历史,而现代数学的发展也将继续推动人类社会的进步和发展。
抽象代数、拓扑学和微分几何等新的数学分支的发展,引领了数学新的发展方向,为现代数学的发展提供了新的思想和方法。
数学在现代科学、工程和技术领域发挥着不可替代的作用,从探索宇宙的奥秘到解决社会问题,数学无处不在。
除了在纯粹数学领域的取得的成就之外,数学在应用领域也有着广泛的影响。
例如,在金融领域,数学模型和方法被广泛应用于风险管理、投资组合优化和金融衍生品定价等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学发展史结课论文文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-
数学发展史结课论文
交通运输学院
1502班
刘文涛
2016年6月
浅谈古代和近代数学发展史
摘要:数学发展的历史是悠久的,在几千年前就已经有先贤开始对无穷无尽的数学世界进行探究,很多数学方法的研究都是来自于社会生活。
数学发展中的很多思想也体现了人类不断发展的历程,很多数学结晶是用无数汗水与经验总结出的。
通过研究数学发展的历史,文章对数学的发展历程和思想尽可能全面的进行了简单的概括和论述,指出研究数学发展史的重要意义,并将这数学思想运用到我们的生活中,提高思维分析能力,增强对数学的理解,对今后数学的研究与发展做出更大的贡献。
中华民族是一个具有悠久历史和灿烂文化的民族,在灿烂的文化瑰宝中数学在世界数学发展史中也同样具有许多耀眼的光环。
研究中国的数学发展历程有着重要的现实意义,这对未来数学发展的规律也许会有一点启发。
关键词:数学发展史古代数学
1.中国古代数学的发展史
起源与早期发展。
数学是研究数和形的科学,是中国古代科学中一门重要的学科。
中国数学发展的萌芽期可以追溯到先秦时期,最早的记数法在殷墟出土的甲骨文卜辞中可以找到记数的文字。
如独立的记数符号一到十,百、千、万,最大的数字为三万,还有十进制的记数法。
在春秋时期出现中国最古老的计算工具——算筹,使用算筹进行计算称为筹算,中国古代数学的最大特点就是建立在筹算基础之上。
古代的算筹多为竹子制成的同样长短和粗细的小棍子,用算筹记数有纵、
横两种方式,个位用纵式,十位用横式,以此类推,并以空位表示零。
这与西方及阿拉伯数学是明显不同的。
在几何学方面,在《史记·夏本记》中记录到夏禹治水时已使用了规、矩、准、绳等作图和测量工具,勾股定理中的“勾三股四弦五”已被发现。
中国数学体系的形成与奠基时期。
这一时期包括秦汉、魏晋、南北朝,共 400 年间的数学发展历史。
中国古代的数学体系形成在秦汉时期,随着数学知识的不断系统化、理论化,相应的数学专书也陆续出现,如西汉初的《算数书》、西汉末年的《周髀算经》、东汉初年的《九章算术》以及南北朝时期的《孙子算经》、《夏侯阳算经》、《张丘建算经》等一系列算学着作。
《周髀算经》编纂于西汉末年,提出勾股定理的特例及普遍形式以及测太阳高、远的陈子测日法;《九章算术》成书于东汉初年,以问题形式编写,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章,特点在于注重理论联系实际,形成了以筹算为中心的数学体系。
中国数学在魏晋时期有了较大的发展,其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端。
赵爽证明了数学定理和公式,详尽注释了《周髀算经》,其中一段 530 余字的“勾股圆方图”注文是数学史上极有价值的文献。
刘徽的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
在南北朝时期数学的发展依然蓬勃,出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》
等算学着作。
最具代表性的着作是祖冲之、祖父子撰写的《缀术》,圆周率精确到小数点后六位,推导出球体体积的正确公式,发展了二次与三次方程的解法。
中国古代数学发展的盛衰时期。
宋、元两代是中国古代数学空前繁荣,硕果累累的全盛时期。
出现了一批着名的数学家和数学着作,其中最具代表性的数学家是秦九韶和杨辉。
秦九韶在其着作的《数学九章》中创造了 " 大衍求 1 术 "(整数论中的一次同余式求解法),被称为“中国剩余定理”,在近代数学和现代电子计算设计中起到重要的作用。
他所论的“正负开方术”(数学高次方程根法),被称为“秦九韶程序”。
现在世界各国从小学、中学、大学的数学课程,几乎都接触到他的定理、定律、解题原则。
杨辉,中国南宋时期杰出的数学家和数学教育家,他在1261 年所着的《详解九章算法》一书中,给出了二项式系数在三角形中的一种几何排列,这个三角形数表称为杨辉三角。
“杨辉三角”在西方又称为“帕斯卡三角形”,但杨辉比帕斯卡早 400 多年发现。
随后从十四世纪中叶明王朝建立到明末的 1582 年,数学除了珠算外出现全面衰弱的局面。
明代最大的成就是珠算的普及,出现了许多珠算读本,珠算理论已成系统,标志着从筹算到珠算转变的完成。
在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。
但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。
2.近现代数学的发展史
中国近现代数学发展时期是指从 20 世纪初至今的一段时间,开始
于清末民初的大批留学生的回国后,各地大学的数学教育有了明显的
起色,很多回国人员后成为着名的数学家和数学教育家,在世界都具有重要的影响,为中国近现代数学发展做出了重要贡献,这些着名的数学家及其贡献主要有:陈景润及其代表作。
陈景润是世界着名解析数论学家之一。
1966 年,陈景润攻克了世界着名数学难题“哥德巴赫猜想”中的(1+2),在哥德巴赫猜想的研究上居世界领先地位,距摘取这颗数论皇冠上的明珠(1+ 1)只是一步之遥,于 1978 年和 1982 年两次收到国际数学家大会的
邀请,在其他数论问题的成就在世界领域也是遥遥领先的。
华罗庚及其贡献。
华罗庚是近代世界着名的中国数学家,对数学的贡献是多方面的。
在数论、矩阵几何学、典型群、自守函数论、多个复变函数论、偏微分方程及高维数值积分等领域都做出了卓越的贡献。
他解决了高斯完整三角和的估计,推进华林问题、塔里问题的结果,在圆法与三角和估计法方面的结果长期居世界领先地位,着作有《堆垒素数论》、《数论导引》、《典型域上的多元复变量函数论》及合着《数论在近似分析中的应用》。
他在普及应用数学方法、培养青年数学家等上都有特殊贡献。
苏步青及其成就。
苏步青是中国科学院院士,国内外享有成名的数学家。
主要从事微分几何学和计算几何学等方面的研究。
他在仿射微分几何学和射影微分几何学研究方面取得出色成果,在一般空间微分几何学、高维空间共轭理论、几何外型设计、计算机辅助几何设计等方面取得突出成就,对培养中国早期的数学人才曾起了巨大的推进作用。
吴文俊及其贡献。
吴文俊是数学界的战略科学家,现任中国科学院院士,第三世界科学院院士。
曾获得首届国家自然科学一等奖(1956)、中国科学院自然科学一等奖(1979)、第三世界科学院数学奖(1990)、陈嘉庚数理科学奖(1993)、首届香港求是科技基金会杰出科学家奖(1994)、首届国家最高科技奖(2000)、第三届邵逸夫数学奖(2006)。
他在拓扑学、自动推理、机器证明、代数几何、中国数学史、对策论等研究领域均有杰出的贡献,他的“吴方法”在国际机器证明领域产生巨大的影响,有广泛重要的应用价值。
3 研究中国数学发展史的重要意义
师都对数学史都有着深远的研究。
研究数学发展史可以为我们提供
经验教训和历史借鉴,使我们的科学研究方向少走弯路或错路。
从数学发展史中,我们要明白数学是一种文化,是形成现代文化的主要力量,是文化极其重要的因素。
数学的概念来源于经验,与自然科学的生活世纪密不可分,在经过数学家严格的加工与推理后形成数学这门科学。
研究数学的发展历史,弄清一个概念的来龙去脉,一个理论的兴旺和衰落,
影响一种重要思想的产生的历史因素,有利于了解数学的现状,指导数学的未来,更好地接受以及学习数学,从历史的发展中获得借鉴和汲取教益,促进现实的科学研究,从而使数学与我们的生活更加贴切。
4.数学科学与社会发展
5.
从历史上看,远在巴比伦、埃及时代,由于人类生活和劳动生产的需要积累了一系列算术和几何的知识。
经过希腊时代,将这些比较零散的知识上升为理论的系统。
西方文艺复兴时期,在数学方面,创立了解析几何,发明了微积分,使数学由常量数学发展到变量数学的新阶段。
从17世纪到19世纪时期,人们以极大的热情将数学应用到很多领域,取得了重大的成就,积累了大量新的数学知识和方法。
为了使成果可靠并且取得进一步发展的基础,人们在19世纪又建立起微积分的理论基础和严格体系。
这一系列数学理论进展催生了20世纪前期纯粹数学的大发展。
数学理论得到空前发展,其中数学的形式主义和结构主义产生了广泛的影响,直至影响到基础数学教育的教学内容和方法。
从20世纪后半期开始,纯粹数学还在迅速地发展,并进入更加广泛深入应用于科学、技术、经济、管理等众多领域的时代,数学发展史课程论文。
数学与数学的应用在更高层次上结合,特别是在高新技术领域方面的进展层出不穷,甚至出乎人们的预料,展现出它对社会发展的巨大推动作用。