一元二次方程根的判别式教案(完美版)
一元二次方程根的判别式优秀教案

用公式法解一元二次方程(3)----根的判别式一、教学目标根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:1、知识与技能目标:(1) 能运用根的判别式,判别方程根的情况和进行有关的推理论证.(2)能运用根的判别式求字母的取值范围。
2、过程与方法目标:经历思考、探究过程,发展总结归纳能力,能有条理地、清晰地阐述自己的观点.体会通过数学活动,探索归纳获得数学结论的过程,通过对问题解决的过程的反思,获得解决问题的经验,积累解决问题的方法。
同时,要善于表达自己的想法,并能与同伴交流。
3、情感态度和价值观目标:通过积极参与数学活动,让学生学会在独立思考的基础上,积极参与对数学问题的讨论,享受运用知识解决问题的成功的体验,增强学好数学的自信心。
二、教学重点、难点、关键重点:能运用根的判别式,判别方程根的情况和进行有关的推理论证.难点:从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.突破重、难点的关键及策略:教学中充分利用学生自主探究,小组合作,采用例题讲解,规范板书,习题由易到难,从而突破重、难点。
三、教法设计及学法指导1、教法设计本节课采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
2、学法指导苏霍姆林斯基说“教给学生能借助已有的知识去获取新的知识,这是最高的教学技巧之所在。
”讲课时,我利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中发现问题、分析问题、得出结论、应用结论,从而理解和掌握本节课的内容。
四、教学媒体:多媒体ppt五、课时安排:1课时六、教学过程1.本节教学将按以下五个流程展开检测→探究→点拨→评价→导学2.教学过程= (k+1)∴方程有两个不相等的实数根。
一元二次方程的根的判别式(一)教案人教版

五、总结回顾(用时5分钟)
今天的学习,我们了解了一元二次方程的根的判别式的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对判别式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
七、课后拓展
1. 拓展内容:
- 阅读材料:《一元二次方程的应用案例解析》、《复数根在实际问题中的应用》等文章,帮助学生了解一元二次方程在实际生活中的应用和复数根的实用价值。
- 视频资源:《一元二次方程的根的判别式讲解》、《一元二次方程解法演示》等视频,为学生提供直观的教学演示和实ቤተ መጻሕፍቲ ባይዱ分析。
2. 拓展要求:
五、教学流程
一、导入新课(用时5分钟)
同学们,今天我们将要学习的是《一元二次方程的根的判别式(一)》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断一元二次方程根的情况?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元二次方程根的判别式的奥秘。
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的根的判别式的基本概念。判别式是……(详细解释概念)。它能帮助我们判断一元二次方程的根的情况,即判断方程有几个实数根、几个虚数根或者无实数根。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了判别式在实际中的应用,以及它如何帮助我们解决问题。
- 鼓励学生进行小组合作学习,共同探讨一元二次方程的应用案例和实际问题解决方案。学生可以分享自己的思路和方法,互相学习和借鉴。
一元二次方程的根的判别式教案

22.2.4 一元二次方程的根的判别式教案
教学任务分析
教学目标知识目标
1.了解根的判别式的概念,
2.能用判别式判别根的情况。
能力目标
1.培养学生从具体到抽象的观察、分析、归纳的能力。
2.进一步考察学生思维的全面性。
情感目标
1.通过了解知识之间的内在联系,培养学生的探索精神。
2.进一步渗透转化和分类的思想方法。
重点会用判别式判定根的情况
难点利用判别式确定一元二次方程中的参数值
教法学法采用“引导探究式”及“合作交流式”的教学方法,注重培养学生的独立思考能力、推理能力和综合运用能力.
教学流程安排
活动流程图活动内容和目的
活动1 复习引入
活动2 新课学习
活动3 课堂分层训练活动4 课堂小结
活动5 课堂小结
1.让学生能把新知识当旧知识来理解,在学习新知前,先让学生解方程,通过练习来复习用公式法解方程,
2.让学生明确学习根的判别式的作用,学会怎样借助根的判别式解决有关的问题。
3.安排分层练习,满足不同层次学生的学习需求。
4.学生独立进行小测,同桌互相检查、纠正,并梳理本节所学的知识点.教师巡回检查,个别辅导.
5.回顾梳理本节知识,巩固、提高、发展.
- 1 -。
一元二次方程根的判别式-教学教案

一元二次方程根的判别式-教学教案一、教材分析1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。
它的作用在于让学生能尽快判定一元二次方程根的情况。
2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+ )2 = 2 的观察,分析,讨论,发现,最后得出结论:只有当 2b2-4ac≥ 0 时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。
3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。
4、教学目标:(1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。
在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。
(2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。
5、数学思想:由感性认识到理性认识。
6、教学重点:(1)发现根的判别式。
(2)用根的判别式解决实际问题。
7、教学难点:根的判别式的发现8、教法:启导、探究9、学法:合作学习与探究学习10、教学模式:引导——发现式二、教学过程(一)自习回顾,引入新课1、师生共同回顾:一元二次方程的解法2、解下列一元二次方程。
(1)x2 -1=0 (2)x2 -2x = -1(3)(x+1)2- 4=0 (4)x2 +2x+2=03、为什么会出现无解?(二)探索1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。
ax2+bx+c= -cx2+ x = -x2+ x+( )2=( )2 —2(x+ ) 2= 222、观察(x+ ) 2= 2 在什么情况下成立?3、学生分组讨论。
4、猜测?5、发现了什么?6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当b2-4ac≥ 0时,才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。
九年级数学上册《一元二次方程的根的判别式》教案、教学设计

(三)情感态度与价值观
1.激发学生对一元二次方程根的判别式的好奇心,培养他们主动学习、乐于探究的良好习惯。
2.引导学生认识数学在现实生活中的广泛应用,增强他们学习数学的信心和责任感。
3.培养学生面对问题时的积极态度,使他们学会在困难面前不退缩,勇于挑战,形成正确的价值观。
4.成果展示:每组选派一名代表展示讨论成果,其他组员进行补充。
(四)课堂练习
1.练习题设计:设计不同难度的练习题,涵盖本节课的知识点,让学生进行即时巩固。
2.练习过程:学生在规定时间内独立完成练习题,教师巡回指导,解答学生疑问。
3.反馈与评价:学生互相批改练习题,教师对共性问题进行讲解,提高学生的解题能力。
(五)总结归纳
1.知识点回顾:对本节课的重点知识点进行回顾,如判别式的定义、性质和应用。
2.方法总结:引导学生总结运用判别式判断一元二次方程根的情况的方法。
3.情感态度与价值观:强调数学在现实生活中的应用,激发学生学习数学的兴趣和责任感。
4.课后作业布置:布置适量的课后作业,让学生巩固所学知识,提高解题能力。
(二)过程与方法
在教学过程中,注重启发式教学,引导学生通过自主探究、合作交流的方式,培养他们的逻辑思维能力和解决问题的方法。
1.采用问题驱动的教学策略,激发学生的学习兴趣,引导他们主动探究一元二次方程根的判别式的规律。
2.通过举例、练习和讨论,帮助学生掌握判别式的应用方法,培养他们分析问题、解决问题的能力。
九年级数学上册《一元二次方程的根的判别式》教案、教学设计
一、教学目标
(一)知识与技能
1.了解一元二次方程的一般形式,理解判别式的定义及其数学意义。
21.2.2公式法一元二次方程根的判别式(教案)

(3)Δ<0,方程没有实数根。
本节课将结合教材内容,引导学生理解并掌握一元二次方程根的判别式的计算与应用,为解决实际问题奠定基础。
二、核心素养目标
《21.2.2公式法一元二次方程根的判别式》:本节课核心素养目标如下:
1.培养学生逻辑推理能力:通过判别式的推导与应用,使学生理解一元二次方程根的性质,提高逻辑推理能力;
c.应用判别式解决实际问题,培养学生的实际应用能力。
2.教学难点
本节课的难点内容பைடு நூலகம்下:
a.判别式的推导过程:学生需要理解判别式的来源,掌握推导过程;
-突破方法:采用图示、动画等辅助教学手段,让学生直观地理解判别式的推导过程。
b.判别式的计算方法:学生在计算过程中容易出错,特别是符号、平方等运算;
-突破方法:通过典型例题,强调计算过程中的注意事项,培养学生细心、严谨的运算习惯。
3.重点难点解析:在讲授过程中,我会特别强调一元二次方程的一般形式和判别式的计算方法这两个重点。对于难点部分,如判别式的推导和与方程根的关系,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程根的判别式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过计算不同判别式值对应的方程根,演示判别式的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元二次方程根的判别式的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对判别式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
《一元二次方程根的判别式》备课教案

《一元二次方程根的判别式》备课教案
一、教学内容分析
“一元二次方程的根的判别式”一节,在整个中学数学中占有重要的地位,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究不等式,二次三项式,二次函数,二次曲线等奠定基础,并且用它可以解决许多其它综合*问题。
通过这一节的学习,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论*能力,并向学生渗透分类的数学思想,渗透数学的简洁美。
教学重点:根的判别式定理及逆定理的正确理解和运用
教学难点:根的判别式定理及逆定理的运用。
教学关键:对根的判别式定理及其逆定理使用条件的透彻理解。
二、学情分析
学生已经学过一元二次方程的四种解法,并对的作用已经有所了解,在此基础上来进一步研究作用,它是前面知识的深化与总结。
从思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。
所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论*能力。
三、教学目标
依据教学大纲和对教材的分析,以及结合学生已有的知识基础,本节课的教学目标是:
知识和技能:
1、感悟一元二次方程的根的判别式的产生的过程;
2、能运用根的判别式,判别方程根的情况和进行有关的推理论*;
3、会运用根的判别式求一元二次方程中字母系数的取值范围;
过程和方法:
1、培养学生的探索、创新精神;
2、培养学生的逻辑思维能力以及推理论*能力。
情感态度价值观:
1、向学生渗透分类的数学思想和数学的简洁美;
2、加深师生间的交流,增进师生的情感;
3、培养学生的协作精神。
一元二次方程根的判别式教学设计

一元二次方程根的判别式教学设计
一元二次方程根的判别式教学设计
目标
学生能够理解一元二次方程根的判别式,并能够根据判别式的值判断方程有几个实根或无实根。
教学内容
1.什么是一元二次方程根的判别式
2.判别式的公式及含义
3.判别式的值与方程根的关系
教学步骤
步骤一:引入
•介绍一元二次方程及其解的概念
•引出一元二次方程根的判别式的概念
步骤二:判别式的公式及含义
•列出一元二次方程ax2+bx+c=0的判别式公式:D=b2−4ac
•解释判别式的含义:判别式表示方程的根的性质,可以通过判别式的值来判断方程的解的情况
步骤三:判别式的值与方程根的关系
•当判别式D>0时,方程有两个不相等的实根
•当判别式D=0时,方程有两个相等的实根
•当判别式D<0时,方程没有实根,有两个共轭复根
步骤四:例题演练
•给出一些一元二次方程,让学生根据判别式的值判断方程的解的情况
•引导学生利用判别式的公式计算判别式的值,并根据值的情况判断方程的解的情况
步骤五:练习
•提供一定数量的练习题,让学生自主进行解答并判断方程的解的情况
•鼓励学生在解答时利用判别式的公式计算判别式的值,并根据值的情况判断方程的解的情况
总结
•复习判别式的公式及其含义
•强调判别式与方程根的关系
参考资料•无。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
据它来判断一元二次方程的根的情况,又可以为今后研究不等式,二次三项式,二次函数,二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。
通过这一节的学习,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,渗透数学的简洁美。
教学重点:根的判别式定理及逆定理的正确理解和运用
教学难点:根的判别式定理及逆定理的运用。
教学关键:对根的判别式定理及其逆定理使用条件的透彻理解。
二、教学目标
依据教学大纲和对教材的分析,以及结合学生已有的知识基础,本节课的教学目标是:
知识和技能:
1、感悟一元二次方程的根的判别式的产生的过程;
2、能运用根的判别式,判别方程根的情况和进行有关的推理论证;
3、会运用根的判别式求一元二次方程中字母系数的取值范围;
过程和方法:
1、培养学生的探索、创新精神;
2、培养学生的逻辑思维能力以及推理论证能力。
情感态度价值观:
1、向学生渗透分类的数学思想和数学的简洁美;
2、加深师生间的交流,增进师生的情感;
3、培养学生的协作精神。
三、教学策略:
本着“以学生发展为本”的教育理念,同时也为了使学生都能积极地参与到课堂教学中,发挥学生的主观能动性,本节课主要采用了引导发现、讲练结合的教学方法,按照“实践——认识——实践”的认知规律设计,以增加学生参与教学过程的机会和体验获取知识过程的时间,从而有效地调动了学生学习数学的积极性。
具体如下:
四、教学流程:。