第5章 刚体的定轴转动 习题解答

合集下载

大学物理刚体的定轴转动习题及答案

大学物理刚体的定轴转动习题及答案

第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化答:当刚体作匀变速转动时,角加速度β不变;刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变;又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化;2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩;()2z i iL m l I ωω==∑,其中()2i iI m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====;既 z M I β=; 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式; 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:1如果它们的角动量相同,哪个轮子转得快2如果它们的角速度相同,哪个轮子的角动量大答:1由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;2如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大; 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒;5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求:(1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度; 解:1由题意飞轮的初角速度为飞轮作均减速转动,其角加速度为故从开始制动到停止转动,飞轮转过的角位移为 因此,飞轮转过圈数为/2θπ∆=100圈;2开始制动后5秒时飞轮的角速度为6.如图所示, 一飞轮由一直径为2()d m ,厚度为()a m 的圆盘和两个直径为1()d m ,长为()L m 的共轴圆柱体组成,设飞轮的密度为3(/)kg m ρ,求飞轮对轴的转动惯量;解:如图所示,根据转动惯量的可加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;由此可得7. 如图所示,一半径为r,质量为m 1的匀质圆盘作为定滑轮,绕有轻绳,绳上挂一质量为m 2的重物,求重物下落的加速度;解:设绳中张力为T对于重物按牛顿第二定律有22m g T m a -= 1对于滑轮按转动定律有212Tr mr β=2 由角量线量关系有a r β= 3联立以上三式解得8. 如图所示,两个匀质圆盘同轴地焊在一起,它们的半径分别为r 1、r 2,质量为1m 和2m ,可绕过盘心且与盘面垂直的光滑水平轴转动,两轮上绕有轻绳,各挂有质量为3m 和4m 的重物,求轮的角加速度β;解:设连接3m 的绳子中的张力为T1,连接4m 的绳子中的张力为T2; 对重物3m 按牛顿第二定律有3133m g T m a -= 1 对重物4m 按牛顿第二定律有2444T m g m a -= 2对两个园盘,作为一个整体,按转动定律有112211221122T r T r m r m r β⎛⎫-=+ ⎪⎝⎭3aLd 1d 2由角量线量之间的关系有 31a r β=442a r β= 5联立以上五式解得9. 如图所示,一半径为R,质量为m 的匀质圆盘,以角速度ω绕其中心轴转动;现将它平放在一水平板上,盘与板表面的摩擦因数为μ;1求圆盘所受的摩擦力矩;2问经过多少时间后,圆盘转动才能停止 解:分析:圆盘各部分的摩擦力的力臂不同,为此,可将圆盘分割成许多同心圆环,对环的摩擦力矩积分即可得总力矩;另由于摩擦力矩是恒力矩,由角动量定理可求得圆盘停止前所经历的时间;1圆盘上半径为r 、宽度为dr 的同心圆环所受的摩擦力矩为负号表示摩擦力矩为阻力矩;对上式沿径向积分得圆盘所受的总摩擦力矩大小为2由于摩擦力矩是一恒力矩,圆盘的转动惯量212I mr =,由角动量定理可得圆盘停止的时间为10. 飞轮的质量m =60kg,半径R =0.25m,绕其水平中心轴O 转动,转速为900rev ·min -1.现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速.已知闸杆的尺寸如题4-10图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算.试求:1设F =100 N,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转2如果在2s 内飞轮转速减少一半,需加多大的力F解: 1先作闸杆和飞轮的受力分析图如图b .图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力.杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有对飞轮,按转动定律有I R F r /-=β,式中负号表示β与角速度ω方向相反.∵ N F r μ=N N '=∴F l l l N F r 121+='=μμ 又∵ ,212mR I = ∴ F mRl l l I R F r 121)(2+-=-=μβ ① 以N 100=F 等代入上式,得由此可算出自施加制动闸开始到飞轮停止转动的时间为 这段时间内飞轮的角位移为可知在这段时间里,飞轮转了1.53转. 210s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 用上面式1所示的关系,可求出所需的制动力为11. 如图所示,主动轮A 半径为r 1,转动惯量为1I ,绕定轴1O 转动;从动轮B 半径为r 2,转动惯量为2I ,绕定轴2O 转动;两轮之间无相对滑动;若知主动轮受到的驱动力矩为M ,求两个轮的角加速度1β和2β;解:设两轮之间摩擦力为f 对主动轮按转动定律有:111M fr I β-= 1对从动轮按转动定律有222fr I β= 2由于两个轮边沿速率相同,有1122r r ββ= 3联立以上三式解得12. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如题4-12a 图所示.设R =0.20m, r =0.10m,m =4 kg,M =10 kg,1m =2m =2 kg,且开始时1m ,2m 离地均为h =2m .求:1柱体转动时的角加速度; 2两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度方向题4-12b图.(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ① 1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,,而 222121mr MR I += 由上式求得 2由①式 由②式13. 一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动.另一质量为0m 的子弹以速度0v 射入轮缘如题2-31图所示方向. 1开始时轮是静止的,在质点打入后的角速度为何值2用m ,0m 和θ表示系统包括轮和质点最后动能和初始动能之比. 解: 1射入的过程对O 轴的角动量守恒 ∴ Rm m v m )(sin 000+=θω2020*********sin 21])(sin ][)[(210m m m v m R m m v m R m m E E k k +=++=θθ14. 如图所示,长为l 的轻杆,两端各固定质量分别为m 和2m 的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为13l 和23l .轻杆原来静止在竖直位置.今有一质量为m 的小球,以水平速度0υ与杆下端小球m 作对心碰撞,碰后以021υ 的速度返回,试求碰撞后轻杆所获得的角速度.解:碰撞过程满足角动量守恒:而 222212()2()333I m l m l ml =+=2m m O21 0vl l 31l所以 2023mv l ml ω=由此得到:032vlω=15. 如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J A =10 kg ·m2 和 J B =20 kg ·m2.开始时,A 轮转速为600 rev/min,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:1 两轮啮合后的转速n ;2 两轮各自所受的冲量矩.解:1 两轮啮合过程满足角动量守恒: 所以 A AA BI I I ωω=+ 因为 2n ωπ= 故 10600200/min 1020A A AB I n n r I I ⨯===++ 2 两轮各自所受的冲量矩: 末角速度:2200202/603n rad s ππωπ⨯=== A 轮各所受的冲量矩:202060040010(2) 4.1910()3603A A L I I N m s ππωωπ∆=-=⨯-⨯=-=-⨯⋅⋅B 轮各所受的冲量矩:16. 有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为0T .如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.球体对于通过直径的轴的转动惯量为J =2mR2 / 5,式中m 和R 分别为球体的质量和半径.解:1 球体收缩过程满足角动量守恒:所以17. 一质量均匀分布的圆盘,质量为M,半径为R,放在一粗糙水平面上圆盘与水平面之间的摩擦系数为,圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求1 子弹击中圆盘后,盘所获得的角速度.2 经过多少时间后,圆盘停止转动.解:1 子弹击中圆盘过程满足角动量守恒: 所以 002211()22mRv mv mR MR m M Rω==++ 2圆盘受到的摩擦力矩为 由转动定律得 M Iβ'=。

大学物理 第5章刚体定轴转动

大学物理 第5章刚体定轴转动

赵 承 均
转动平面 某质点所在的圆周平面,称为转动平面。
参考线
转心 矢径
转动平面内任一过转轴的直线,如选 x 轴。
某质点所在的轨迹圆的圆心,称为转心。 某质点对其转心的位矢,称为该质点的矢径。
第一篇
力学
重 大 数 理 学 院
显然:转动刚体内所有点有相同的角量,故用角量描述刚体 的转动更方便,只需确定转动平面内任一点的角量即可。 1.角坐标— 描写刚体转动位臵的物理量。 角坐标 转动平面内刚体上任一点 P 到转轴 O 点的连线与 参考线间的夹角 。
赵 承 均
第二类问题:已知J和力矩M:求出运动情况和 b及 F 。
第三类问题:已知运动情况和力矩M,求刚体转动惯量 J 。
第一篇
力学
重 大 数 理 学 院
第一类问题:已知运动情况和 J ,确定运动学和动力学的联 系 例 :长为 l,质量为 m 的细杆,初始时的角速 度为 ωo ,由于细杆与 桌面的摩擦,经过时间 t 后杆静止,求摩擦力 矩 Mf 。
Fi cos i Fi cos i mi ain mi ri 2 法向:
e i


第一篇
力学
重 大 数 理 学 院
由于法向力的作用线穿过转轴,其力矩为零。可在切向 方程两边乘以 ri ,得到:
Fi e ri sin i Fi i r i sin i mi ri 2
4.角加速度— 描写角速度变化快慢和方向的物理量。 ⑴ 平均角加速度 t
即:刚体的角速度变化与发生变化所用的时间之比。
赵 承 均
⑵ 角加速度 ①用平均角加速度代替变化的角加速度; ②令 t 0 取极限;
d d lim 2 t 0 t dt dt

第五章刚体定轴转动典型题型

第五章刚体定轴转动典型题型

• 例3一质量为m,半径为R的均匀圆盘,求 通过中心o并与盘面垂直的轴的转动惯量
• 例4一半径为R的光滑置于竖直平面内,一 质量为m的小球穿在圆环上,并可在圆环 上滑动,小球开始 时静止于圆环上的电 A(该点在通过环心o的水平面上),然 后从A点开始下滑,设小球与圆环间的摩 擦略去不计。求小球滑到点B时对环心o 的角动量和角速度。


质点运动与钢体定轴转动对照表
质点运动
速度
v dr / dt
加速度 a dv / dt


钢体定轴转动
角速度 d / dt
角加速度 d / dt
力矩

质量 m
转动惯量 J
动量 p mv
角动量 L J
牛二律 F m a
F dp / dt
转动定律 M J
M dL / dt
第五章 刚体定轴转动
• 例1一飞轮半径为0.2m,转速为150r/min, 因受到制动二均匀减速,经30s停止转动, 试求:
1)角加速度和在此时间内飞轮所转的圈数
2)制动开始后t=6s时飞轮的角速度
3) t=6s时飞轮边缘上一点的线速度,切线 加速度和法线加速度。
• 例2一质量为m,长为的均匀细长棒,求 1)通过其中心并于棒垂直的转动惯量 2)通过棒端点并与棒垂直的轴的转动惯量
角加速度( )
• 例8 质量为M,半径为R的转台,可绕过 中心的竖直轴无摩擦的转动。质量为m的 一个人,站在距离中心r处(r<R),开 始时,人和台处于静止状态。如果这个人 沿着半径为r的圆周匀速走一圈,设它相 对于转台的运动速度为u,求转台的旋转 角速度和相对地面的转过的角度。


• 5)角动量守恒定律和机械能守恒定律的综 合应用

刚体的定轴转动习题解答

刚体的定轴转动习题解答

- 第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为,角加速度为,则其转动加快的依据是:( )A. > 0B. > 0,> 0C. < 0,> 0D.> 0,< 0解:答案是B 。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线- 作定轴转动,则在2秒F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。

05刚体的定轴转动习题解答.

05刚体的定轴转动习题解答.

第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。

若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。

简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。

4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

第05章 角动量 角动量守恒定律(参考答案)

第05章 角动量 角动量守恒定律(参考答案)

m 1v 1 m 2v 2
v1 v2
9
爬与不爬,两小孩同时到达滑轮! 5.19 由一根长为 l,质量为 M 的静止的细长棒,可绕其一 端在竖直面内转动。若以质量为 m,速率 v0 的子弹沿与棒 垂直的方向射向棒的另一端。 (1)若子弹穿棒而过,速度为 v,求棒的旋转角速度 (2)若子弹嵌入棒中,求棒的最大旋转角 答案: (1)以 m , M 为系统,以 O 为参考点。
O
M
l
v m
碰撞时刻,角动量守恒
1 mlv0 J mlv Ml 2 mlv 3
解得:

3m(v0 v) Ml
(2)碰撞时刻,角动量守恒
得:
1 mlv0 J ml 2 M m l 2 3 3mv0 M 3m l
1 2 1 2 1 J mv Mg l 1 cos mgl 1 cos 2 2 2
(3)设碰后角速度为 ω’
' L ' 2mv 1
a a ' a mv 2 3 2 6

2m 1 a a 2 a ' a m '( )2 ma 2 ' 3 3 2 6 3
1 2 L' L ma2 ma 2 ' 2 3 根据角动量守恒,有
解得
'
3 4
5.17 质量为 m 的小球, 以速度 v0 在水平冰面 上滑动,撞在与小球运动方向垂直的一根细木棍 的一端,并粘附在木棍上。设木棍的质量为 M , 长度为 l。试求: (1 )忽略冰的摩擦,定量地描述 小球附在木棍上后,系统的运动情况。 (2 )刚刚 发生碰撞之后,木棍上有一点 p 是瞬时静止的, 问该点在何处?

上海理工大学 大学物理 第五章_刚体力学答案

上海理工大学 大学物理 第五章_刚体力学答案

一、选择题[ C ] 1、基础训练(2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断.参考答案:逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T >[ B ] 2、基础训练(5)如图5-9所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A)MLm v . (B)MLm 23v . (C)MLm 35v . (D)MLm 47v .图5-9[ C ] 3、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变. (C) 减小. (D) 不能确定.图5-7m图5-11v21v俯视图[ C ] 4、自测提高(2)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为 .如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于 . (B) 大于 ,小于2 . (C) 大于2 . (D) 等于2 .[ A ] 5、自测提高(7)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=R J mR v 2ω,逆时针.(C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.二、填空题6、基础训练(8)绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad ω=,t =20s 时角速度为00.8ωω=,则飞轮的角加速度β=-0.05 rad/s 2 ,t =0到 t =100 s 时间内飞轮所转过的角度θ= 250rad .7、基础训练(9)一长为l ,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m 的小球,如图5-12所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度β0= g/l ,杆与水平方向夹角为60°时的角加速度β= g/2l .图 5-128、基础训练(10)如图5-13所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O '轴的转动惯量为 50ml 2 。

第五章 刚体的定轴转动

第五章 刚体的定轴转动
第5章 刚体的转动
5.1 刚体运动的描述
平动
平动:刚体中所 有点的运动轨迹都保 持完全相同.
特点:各点运动
状态一样,如:v、a
等都相同.
刚体平动 质点运动
2
转动 刚体的平面运动
刚体的一般运动可看作:
随质心的平动 + 绕质心的转动 的合成
z
O
y
x
刚体的定轴转动
z
P
z
0
z
0
绕定轴转动刚体内各点的速度和加速度
y
y
x
dA
dy
hy
x
O
Q
O
L
y
h dF O
dy
y
Q
5.3 转动惯量的计算
例2.等长的细木棒和细铁棒绕端点轴转动 惯量。
z
M
L
O
dx
x
例3. 圆环绕中心轴旋转的转动惯量。
dl m
R O
例4. 圆盘绕中心轴旋转的转动惯量。
Rm dr
r O
例5. 细棒绕通过中点的垂直于棒的轴的转动 惯量。
z
M
L
Jo 3mR 2 / 2 Jx J y mR2 / 4
Jc m R12 R22 / 2
常见刚体的转动惯量
刚体 球壳 球体 立方体
转轴 过中心轴 过切线 过中心轴 过切线 过中心轴 过棱边
转动惯量
Jc 2mR 2 / 3 Jo 5mR 2 / 3 Jc 2mR 2 / 5 Jo 7mR 2 / 5 J c ml 2 / 6 Jo 2ml 2 / 3
o'

锥 摆
T
m oR
p v
圆锥摆系统 动量不守恒; 角动量守恒; 机械能守恒.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得

以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动

2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度

(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2

1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1

t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。
6(2 3) M J 1 Ml l 3 6
m2 哪个先落地?它落地前瞬间的速率为多少? 解:(1)设 a1 , a2 和 分别为 m1 , m2 和柱体的加速度及角加速度,方向如图(如图 b). m1 , m2 和柱体
的运动方程如下:
T2 m2 g m2 a2 m1 g T1 m1a1 T '1 R T '2 r J 1 1 2 2 又 T1 T1 , T2 T2 , a2 r , a1 R ,而 J MR mr 2 2
2 1
而弹簧处于自然状态。(1)当质量 m 6.0 kg 的物体落下 h 0.40m 时,它的速率为多大? (2)物体最低 可以下落到什么位置? 解:(1)以重物、滑轮、弹簧、地球为一系统,重物下落的过程中,机械能守恒,以最低点为重力 势能零点,弹簧原长为弹性势能零点,则有
1 2 1 1 mv J 2 kh 2 2 2 2 2 取重力加速度 g 9.8m s ,又 v / R ,故有 mgh 2mgh kh 2 2 6.0 9.8 0.4 200 0.42 v 1.14m s 1 J 0.5 m 2 6.0 2 R 0.3 (2)设物体从初始位置开始最低可以下落 H ,此时物体速度为零。由机械能守恒,有 1 mgH kH 2 2
m2 g T2 m2 a2 T1 m1a1
对滑轮运用转动定律,有
FN a 1 m1 T1 m1g T1 '

M T2 ' T2 m2 a2 m2g
T2 ' r T1 ' r J 1 J Mr 2 2

a1 a2 r T2 ' T2 T1 ' T1
联立求解以上方程,得 题 5-4 解图
5-2. 一飞轮 的质量 m 60kg ,半 径 R 0.25m ,绕 其水平 中心 轴 O 无摩 擦转动 ,转 速为
900rev min 1 。现利用一制动闸杆 AB,可使飞轮减速,闸杆可绕一端 A 转动,在闸杆的另一端 B 加 一竖直方向的制动力 F ,已知闸杆的尺寸如图所示,闸瓦与飞轮之间的摩擦系数 0.4 ,飞轮可看做 匀质圆盘。 (1)设制动力的大小 F 100 N ,可使飞轮在多长时间内停止转动?在这段时间里飞轮转了 几转?(2)若使飞轮在 2s 内转速减小一半,需加多大的力 F ?
a
m2 g m1 m2
M 2

200 9.8 7.6m s 2 15 5 200 2
5-5. 如图所示,一匀质细杆质量为 m ,长为 l ,可绕过一端 O 的水平光滑固定轴转动,杆于水 平位置由静止开始摆下。求:(1)初始时刻的角加速度;(2)杆转过 角时的角加速度和角速度。 解:(1)由转动定律,有
1 l J 2 m1 g (1 cos m ) 2 2
解得
5-5
第 5 章 刚体的定轴转动
3m2 2 v1 v2 2 l 2 m arccos 1 arccos 1 2 3g glm 1
5-9. 弹簧、 定滑轮和物体的连接如图所示, 弹簧一端固定在墙上, 其劲度系数为 k 200N m , 定滑轮的转动惯量是 0.5kg m ,其半径为 0.30m 。假设定滑轮轴上摩擦忽略不计,刚开始时物体静止
由③式得
3g 3 2 Mgl (1 cos 30) (1 ) 2 J l
5-4
1 2
1
《大学物理学》习题解答
由①式
v v0
由②式
2 v 2 v0
J ml J 2 m


所以
( v0
解得
J 2 1 2 ) v0 2 ml m gl
5-7. 如图所示,质量为 M ,长为 l 的均匀直棒,可绕垂直于棒一端的水平轴 O 无摩擦地转动, 它原来静止悬挂在平衡位置上。现有一质量为 m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞。 相撞后,使棒从平衡位置处摆动到最大角度 30 处。(1)设这碰撞为完全弹性碰撞,试计算小球初速 v0 的值;(2)相撞时小球受到多大的冲量? 解:(1)设小球的初速度为 v0 ,棒经小球碰撞后得到的初角速度为 ,而小球的速度变为 v ,按题 意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:
题 5-5 图
题 5-7 图
5-6. 一长为 1m 的均匀直棒可绕其一端与棒垂直的水平光滑固定轴转动, 抬起另一端使棒向上与 水平面成 60 角,然后无初转速地将棒释放,求:(1)放手时棒的角加速度;(2)棒转到竖直位置时的角 速度。 解:(1)由转动定律,有

l 1 mg cos ( ml 2 ) 2 3
gl
5-8. 有一质量为 m1 、长为 l 的均匀的细棒 OA,可绕一端的水平固定轴 O 自由转动,初始时静 止悬挂。一水平运动的质量为 m2 的小球,从侧面垂直于棒和轴与棒的另一端 A 相碰撞,设碰撞时间极 短。已知小球在碰撞前后的速度分别为 v1 和 v2 ,方向如图。求:(1)碰撞后瞬间细棒的角速度;(2)细棒 能够摆动的最大摆角 m 。


(2) 由机械能守恒定律,有
3g 3 9.8 cos cos60 7.35 rad s 2 2l 2 1 mg l 1 1 1 sin ( ml 2 ) 2 2 2 3
所以

3 g 1 sin 3 9.8 1 sin 60 1.98 rad s 1 l 1
由此可算出自施加制动闸开始到飞轮停止转动的时间为
0 900 2 3 7.06 s 60 40
这段时间内飞轮的角位移为
1 900 2 1 40 0t t 2 7.06 7.062 53.1 2 rad 2 60 2 3 可知在这段时间里,飞轮转了 53.1 转。 2 (2) 0 900 rad s 1 ,要求飞轮转速在 t 2 s 内减少一半,可知 60
A
B
题 5-2 图 解: (1)先作闸杆和飞轮的受力分析图(如图).图中 N 、 N 是正压力,Fr 、Fr 是摩擦力,Fx 和 Fy 是杆在 A 点转轴处所受支承力, P 是轮的重力, R 是轮在 O 轴处所受支承力。 杆处于静止状态,所以对 A 点的合力矩应为零,设闸瓦厚度不计,则有
F (l1 l2 ) N l1 0 Fr R J Fr N N N 1 J mR 2 2
《大学物理学》习题解答
习题 5
5-1. 以 M 20N m 的恒力矩作用在有固定轴的转轮上,在 10s 内该轮的转速由零均匀增大到
100rev min 1 。此时移去力矩 M ,转轮因摩擦力矩 M f 的作用经过 100s 而停止。试推算此转轮的转
动惯量。 解 恒力矩 M 作用时,根据转动定律,有 其中 1
(3) m1 先落地。它落地前瞬间的速率为
5-2
《大学物理学》习题解答
m
O
r M m2
h
R
O'Βιβλιοθήκη m1Mm1
m2
题 5-3 图 题 5-4 图
5-4. 计 算 如 图 所 示 系 统 中 物 体 的 加 速 度 大 小 。 设 滑 轮 为 质 量 均 匀 分 布 的 圆 柱 体 , 半 径 为 r 0.1m ,轻绳不可伸长,且与滑轮之间无相对滑动,滑轮轴上摩擦不计,且忽略桌面与物体 m1 间的 摩擦,已知 m1 50kg , m2 200kg ,滑轮质量 M 15kg 。 解:分别以 m1 、 m2 和滑轮为研究对象,受力如图所示.对 m1 、 m2 运用牛顿定律,有
mg
解得
l 1 ( ml 2 ) 2 3

(2) 由转动定律,有
3g 2l
l 1 mg cos ( ml 2 ) 2 3
相关文档
最新文档