期权定价中地蒙特卡洛模拟方法
期权定价的蒙特卡罗模拟方法精选 课件

90.66702 2.667019
49
81.99887
0
25
77.86832
0
50
100.5379 12.53786
计算模拟所得的期权价值的平均值后, 再计算现值得期权价格的一个估计
C E[CT ]erT 7.000053 e0.11 6.27 用布莱克—舒尔斯模型计算期权的价格
从 S0开始模拟得 ST Sn
CT max{ST SX ,0} 或 PT max{ S X ST ,0}
(3)计算 E[CT ]或 E[PT ]及期权的价格.
4). 注意事项
A. 模拟次数和计算精度之间的考量。 理论上的要求,在模拟时,时段的长度 应小,模拟次数应尽可能的多,以便使 所得的资产价格估计尽可能涵盖资产价 格的真实分布,这会大大增加模拟的计 算工作量。
2). 基本过程
例:设有这样一个股票,其现行的市场 价格为80元,已知该股票对数收益的均 值为8%,对数收益的波动性为25%, 无风险资产的收益率为11%。现在有以 该股票为标的资产, 执行期限为1年的买 入期权,确定的股票执行价格为88元, 用模拟法确定该期权的价格。
设一年有250个工作日,将其分为250
0
18
66.88669
0
43
93.91685 5.916854
19
75.17505
0
44
ห้องสมุดไป่ตู้
81.63916
0
20
70.62426
0
45
81.54932
0
21
74.25586
0
46
74.15813
0
22
70.2892
蒙特卡罗模拟方法在期权定价中的应用

=
1 σ
St 1 ln X + r − q + 2 σ τ
2
τ
d 2 = d1 − σ τ ;N(χ)是标准正态变量的累 ,
积分布函数,即 N ( x ) = P ( X ≤ x ), 其中X ~ N (0,1)。 计算所用参数包括:S0=20,X=20, r=5%,q=8%,σ=25%,T=2,模拟次数 tsim=10000。通过式(2)和以上参数 值,可得到欧式看涨期权价格的解析解 c0=1.9734。下表给出了三种模拟所得的 计算结果及误差。
总第322期■西南金融
61
观察思考 OBSERVER
券价格进行模拟估计,得到了比直接模 拟更小的估计方差。同时,根据KoksmaHlawka定理可知,这种模拟结果具有一 个确定的误差边界。Paskov(1995)使 用Sobol、Fature和Haoton三种序列对 低押债券的价格进行了模拟估计,结果 表明,这三种序列的使用都改进了模拟 估计的效率。Sobol序列的应用效果最明 显。但是使用低偏差率序列存在以下几 个主要问题:首先,模拟估计的方差难 以确定。虽然Koksma-Hlawka定理及其修 正定理能够确定这种模拟估计的误差边 界,但是在许多情况下,得到的实际模 拟误差往往要比这一边界低得多,从而 使得确定的边界失去了意义。其次,在 处理高维数问题时,很可能会出现效率 降低的情况。 (三)随机化的拟蒙特卡罗模拟技术 这种技术是在综合蒙特卡罗模拟与 拟蒙特卡罗模拟优点的基础上发展起来 的一种复合模拟技术。体现这一思想较 早的研究工作主要有Cranley(1976)提 出的所谓的“好格子点”方法、Braaten (1979)提出的随机攀登的Halton序列 和Joe(1990)提出的随机化一般的格子 点方法等等。近几年来,这种技术又有 了新的发展,最主要的有Owen(1997) 提出的基于攀登的(t、m、s)网与(t、s) 序列的随机模拟技术。 罗模拟。常见的转换法有Box-Muller算 法、Moro算法(1995)等。Moro算法 较Box-Muller算法更快捷,而且最大 的误差为3×10 。Moro算法对于满足 10 10≤N(x)≤1-10 10的正态分布函数有相 当高的精确度。 为了比较拟蒙特卡罗模拟和蒙特卡 罗模拟的优劣,下面以欧式看涨期权定 价为例,比较了几种模拟的计算结果。 三种模拟的特点如下:(1)MC+NormInv (基于普通蒙特卡罗序列和标准正态分 布的分布函数的反函数),实现从[0,1] 均匀分布到标准正态分布的转换;(2) MC+Moro(基于普通蒙特卡罗序列和Moro 算法),实现从[0,1]均匀分布(随机 序列)到标准正态分布的转换;(3) QMC+Moro(基于Halton序列和Moro算 法),实现从Halton序列到标准正态分 布的转换。 设S1为期权定价日标的股价;X为买 权合同执行价格;r为连续复利计算的 无风险利率;q为连续复利计算的股票 红利率;T为到期日;t为当前定价日; t=T-1为定价日到到期日的时间(单位: 年);σ为标的股价波动率。并且有标 的股票价格S1服从对数正态分布,即: (1) 2
5蒙特卡洛方法模拟期权定价

材料五:蒙特卡洛方法模拟期权定价1.蒙特卡洛方法模拟欧式期权定价利用风险中性的方法计算期权定价:ˆ()rt Tf e E f -= 其中,f 是期权价格,T f 是到期日T 的现金流,ˆE是风险中性测度 如果标的资产服从几何布朗运动:dS Sdt sdW μσ=+则在风险中性测度下,标的资产运动方程为:20exp[()]2T S S r T σ=-+对于欧式看涨期权,到期日欧式看涨期权现金流如下:2(/2)max{0,(0)}r T S e K σ-+-其中,K 是执行价,r 是无风险利率,σ是标准差, ε是正态分布的随机变量。
对到期日的现金流用无风险利率贴现,就可知道期权价格。
例1 假设股票价格服从几何布朗运动,股票现在价格为50,欧式期权执行价格为52,无风险利率为0.1,股票波动标准差为0.4,期权的到期日为5个月,试用蒙特卡洛模拟方法计算该期权价格。
下面用MA TLAB 编写一个子程序进行计算:function eucall=blsmc(s0,K,r,T,sigma,Nu)%蒙特卡洛方法计算欧式看涨期权的价格%输入参数%s0 股票价格%K 执行价%r 无风险利率%T 期权的到期日%sigma 股票波动标准差%Nu 模拟的次数%输出参数%eucall 欧式看涨期权价格%varprice 模拟期权价格的方差%ci 95%概率保证的期权价格区间randn('seed',0); %定义随机数发生器种子是0,%这样保证每次模拟的结果相同nuT=(r-0.5*sigma^2)*Tsit=sigma*sqrt(T)discpayoff=exp(-r*T)*max(0,s0*exp(nuT+sit*randn(Nu,1))-K)%期权到期时的现金流[eucall,varprice,ci]=normfit(discpayoff)%在命令窗口输入:blsmc(50,52,0.1,12/5,0.4,1000)2. 蒙特卡洛方法模拟障碍期权定价障碍期权,就是确定一个障碍值b S ,在期权的存续期内有可能超过该价格,也可能低于该价格,对于敲出期权而言,如果在期权的存续期内标的资产价格触及障碍值时,期权合同可以提前终止执行;相反,对于敲入价格,如果标的资产价格触及障碍值时,期权合同开始生效。
蒙特卡洛模拟算法

蒙特卡洛模拟算法蒙特卡洛模拟算法是一种基于随机抽样的数值计算方法,常用于求解复杂的数学问题。
它的核心思想是通过生成大量的随机样本来近似计算某个问题的解。
蒙特卡洛模拟算法的应用领域非常广泛,包括金融、物理、工程、生物等多个领域。
蒙特卡洛模拟算法的基本步骤如下:1. 定义问题:首先需要明确要解决的问题是什么,例如计算一个复杂函数的积分、估计一个金融衍生品的价格等。
2. 确定随机变量:根据问题的特点,确定需要模拟的随机变量,这些随机变量通常是与问题相关的参数或输入。
3. 生成随机样本:根据所选的随机变量,生成一组符合其分布的随机样本。
这里的样本数目通常很大,以保证结果的精确性。
4. 计算问题的解:利用生成的随机样本,通过对样本进行某种运算或计算,得到问题的解。
这个运算方式根据问题的不同而不同,可以是简单的求和、平均值,也可以是复杂的模型拟合等。
5. 分析结果:最后,需要对得到的结果进行统计分析,包括计算均值、方差、置信区间等,以评估结果的可靠性和精确度。
蒙特卡洛模拟算法的优点在于它的灵活性和可扩展性。
通过增加样本数目,可以提高结果的精确性。
而且,蒙特卡洛模拟算法并不要求问题的解具有解析表达式,因此适用于各种复杂的问题。
下面以金融衍生品定价为例,来说明蒙特卡洛模拟算法的应用。
假设我们需要估计某个期权的价格,期权的价格受到多个因素的影响,包括标的资产价格、波动率、无风险利率等。
这些因素通常都是随机的,因此我们可以使用蒙特卡洛模拟算法来估计期权的价格。
我们需要确定模型的参数和随机变量。
假设期权的价格可以通过Black-Scholes模型来计算,我们需要确定标的资产价格的初始值、波动率、无风险利率等参数,并生成这些参数的随机样本。
然后,我们根据所选的参数,生成一组符合其分布的随机样本。
例如,可以使用正态分布来生成标的资产价格的随机样本,使用波动率的历史数据来估计波动率的分布。
接下来,我们利用生成的随机样本,通过Black-Scholes模型来计算期权的价格。
期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法期权定价是金融市场中的一个重要问题。
近年来,蒙特卡洛模拟方法在期权定价中得到了广泛的应用。
蒙特卡洛模拟方法是一种基于随机模拟的数值计算方法,通过生成大量的随机样本来估计某些数量的数值。
下面将介绍蒙特卡洛模拟方法在期权定价中的基本原理及应用。
蒙特卡洛模拟方法采用随机数生成器生成大量的随机数,并利用这些随机数进行模拟计算。
在期权定价中,蒙特卡洛模拟方法可以用来估计期权的价格以及其他相关的风险指标,例如风险价值和概率分布等。
在蒙特卡洛模拟方法中,首先需要确定期权定价模型。
常用的期权定价模型包括布朗运动模型和风险中性估计模型等。
然后,根据期权定价模型,生成一个或多个随机数来模拟期权价格的变动。
通过对多个随机样本进行模拟计算,我们可以获得期权价格的分布情况及其他相关指标的估计值。
在期权定价中,蒙特卡洛模拟方法的精确度主要取决于两个方面:模拟路径的数量和模拟路径的长度。
路径的数量越多,模拟结果的精确度越高。
路径的长度越长,模拟结果的稳定性越好。
蒙特卡洛模拟方法在期权定价中的应用非常广泛。
例如,在欧式期权定价中,可以使用蒙特卡洛模拟方法来估计期权的风险价值和概率分布等指标。
在美式期权定价中,由于存在提前行权的可能性,蒙特卡洛模拟方法可以用来模拟期权的提前行权时机并确定最佳行权策略。
此外,在一些复杂的期权定价中,例如亚式期权和障碍期权等,蒙特卡洛模拟方法也可以提供有效的定价方法。
总之,蒙特卡洛模拟方法是期权定价中一种重要的数值计算方法。
它通过生成大量的随机样本来估计期权的价格及相关指标,具有较高的灵活性和精确度。
蒙特卡洛模拟方法在期权定价中广泛应用,为金融市场中的投资者和交易员提供了重要的决策工具。
蒙特卡洛模拟方法在期权定价中的应用非常广泛,下面将进一步介绍其在不同类型期权定价中的具体应用。
首先是欧式期权定价。
欧式期权是指在未来某个特定时间点(到期日)才能行使的期权。
蒙特卡洛模拟方法可以用来估计欧式期权的价格和概率分布等指标。
蒙特卡洛方法和拟蒙特卡洛方法在期权定价中应用的比较研究

σ2 ) T lg ( S0 / K ) + ( r + 1 / 2 σ T σ T
[5 ]
; ;
σ2 ) T lg ( S0 / K ) + ( r - 1 / 2 。
2 期权定价
期权按照买者的权利划分 , 期权可分为看涨期 权和看跌期权 。凡是赋予期权买者购买标的资产 权利的合约 , 就是看涨期权 ; 而赋予期权买者出售 标的资产权利的合约就是看跌期权 。显然看涨期 权的购买者预期标的资产价格上涨 , 而看跌期权的 购买者预期标的资产价格下跌 。期权按照买者执 行期权的时限划分 , 期权可分为欧式期权和美式期 权 . 欧式期权的买者只能在期权到期日才能执行期 权 。而美式期权允许买者在期权到期前的任何时 间执行期权 。尽管欧式期权更易于定价 , 但实际交 易的期权大多都是美式期权
63180图1欧式看涨期权模拟结果误差比较从表1和图1中所示的实验结果可以清晰的看出传统的伪随机数模拟的方法产生的结果误差远远大于低差异序列模拟的结果虽然增加模拟次数可以提高精确度但同时计算时间也相应的延长从精确度上来看拟随机序列的表现要远远优于伪随机序列的表现用超均匀序列来修正蒙特卡洛模拟改进效果是明显的
1926
科 学 技 术 与 工 程
32 32
9卷
的值有 m = 2 或者 M ersenne 素数 m = 2 - 1。为满
1 基本概念与随机数的生成原理
蒙特卡洛方法 (Monte Carlo method 又称 MC ) , 也称统计模拟方法 , 是 20 世纪 40 年代中期由于科 学技术的发展和电子计算机的发明 , 而被提出的一 种以概率统计理论为指导的一类非常重要的数值 计算方法 。它把问题看成一个黑箱 , 输入伪随机数 流 ,通过分析输出 ,得到感兴趣的估计值 。 随着拟随机序列的出现 , 蒙特卡洛方法也已经 发展到拟蒙特卡洛方法 ( Quasi2 Monte Carlo m ethod 又称 QMC ) 。两者虽然方法相似但理论基础不同 。 拟蒙特卡洛方法对估计效果的改进取决于拟随机 序列在抽样样本空间中分布的均匀性 。序列分布 得越均匀 ,其改进效果越明显 。通常用偏差率来表 示这种均匀性 , 均匀程度越高 , 其偏差率越低 。因 此拟随机序列有时也称为低偏差率序列 , 拟随机序 列的模拟也可称为低偏差率序列的模拟 。 蒙特卡洛方法成功与否 , 很大程度上取决于随 机数序列的选取 。产生随机数序列有多种不同的 方法 。这些方法被称为随机数发生器 。随机数最 重要的特性是它产生的后面的那个数与前面的那 个数毫无关系 。现实生活中不可能产生绝对随机 的随机数 , 计算机也只能生成相对的随机数 , 即伪 随机数 。
蒙特卡罗模拟在期权定价中的应用研究

蒙特卡罗模拟在期权定价中的应用研究蒙特卡罗模拟是一种重要的金融工程方法,广泛应用于期权定价、风险管理、金融衍生品估值等领域。
蒙特卡罗模拟的核心思想是通过随机模拟,计算所需的数学期望值,从而得出目标结果。
在期权定价领域,蒙特卡罗模拟能够帮助投资者更好地理解市场风险与收益,减少不确定性,提高投资收益。
一、期权定义与定价模型期权是一种金融工具,它赋予购买者在未来某个时间内买入或卖出某种资产的权利,而不是义务。
期权的价格由多种因素决定,如股票价格、剩余到期时间、波动率等。
根据期权价格与未来股票价格的关系,期权被分为两类,即认购期权和认沽期权。
认购期权是指购买者有权在未来固定时间内以固定价格购买股票,认沽期权则是指购买者有权在未来固定时间内以固定价格出售股票。
根据期权定价的模型,我们可以将其分为两类:基于风险中性定价理论的模型和基于实证数据的模型。
前者通过假设市场上不存在套利空间,以确定的无风险利率对期权进行定价;后者则基于市场实际数据,逐步优化模型参数,通过历史数据预测未来。
二、蒙特卡罗模拟在期权定价中的应用蒙特卡罗模拟在期权定价中的应用较为广泛。
它通过生成大量随机序列,利用随机样本点的模拟结果,来计算期权的价值。
具体来说,这个过程可以分为以下几步:1. 生成随机序列随机序列是蒙特卡罗模拟的核心。
在期权定价中,我们常常采用随机变量模拟股票价格随时间变化的情况,从而得出期权价格。
以欧式期权为例,我们可以根据股票的风险中性测度构造几何布朗运动随机过程,通过此过程生成随机序列。
2. 计算随机路径下的收益/损失随机序列产生后,我们需要计算每个随机路径下对应的期权价格。
具体来说,也依靠几何布朗运动过程,计算在这一路径下期权实际收益/损失的数值。
3. 取期望值估算期权价格我们通过模拟得到多个随机序列的期权收益/损失,然后将所有结果求和取平均值,得出期望值。
而期望值即为期权在当前股票价格等因素下的市场价格,也是蒙特卡罗模拟得出的期权价格。
蒙特卡洛定价方法

蒙特卡洛定价方法蒙特卡洛定价方法是一种金融工程中常用的定价方法,广泛应用于期权定价、风险管理等领域。
它基于蒙特卡洛模拟,通过大量的随机模拟来计算出期权的预期价值,从而得出期权的定价结果。
蒙特卡洛定价方法的原理是通过随机模拟资产价格的未来走势,然后根据这些模拟结果计算出期权的预期收益,最终通过对这些预期收益进行加权平均来得到期权的定价。
具体步骤如下:1. 建立资产价格模型:首先,需要根据所研究的资产类型,建立一个适当的资产价格模型。
常见的资产价格模型包括布朗运动模型、几何布朗运动模型等。
2. 随机模拟价格路径:根据资产价格模型,使用随机数生成器模拟资产价格的未来走势。
一般情况下,可以根据资产价格的历史波动率和随机数生成器生成一系列符合资产价格模型的随机价格路径。
3. 计算期权收益:对于每条随机价格路径,根据期权的执行条件和收益规则,计算出期权在该价格路径下的收益。
4. 加权平均:对所有随机价格路径下计算得到的期权收益进行加权平均,得到期权的预期收益。
5. 折现:将期权的预期收益折现到当前时点,得到期权的预期价值。
蒙特卡洛定价方法的优点是可以考虑多种不确定性因素,并且相对于传统的解析解方法,它更加灵活,适用于各种复杂的金融产品。
然而,蒙特卡洛定价方法也存在一些缺点,比如计算量大、收敛速度慢等。
在实际应用中,蒙特卡洛定价方法可以用于期权定价、风险管理等领域。
例如,在期权定价中,可以使用蒙特卡洛定价方法来计算欧式期权的价格;在风险管理中,可以使用蒙特卡洛模拟来评估投资组合的风险暴露度。
蒙特卡洛定价方法是一种重要的金融工程方法,通过随机模拟和加权平均的方式,可以较为准确地计算出期权的预期价值。
它在期权定价、风险管理等领域有着广泛的应用前景。
随着计算机技术的不断进步,蒙特卡洛定价方法将会在金融领域发挥更加重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,为独立同分布的随机变量序列,若2,则有pξ是由同一总体中得到的抽样,那么由,,n,为独立同分布的随机变量序列,若,[2,D μξ<∞则有k =∑1)exp(x=⎰η,并计算样本均值,,nKolmogorov强大数定律有,,)]T S ,,,)T S 是关于标的资产价格路径的预期n t T <<=2,)n,1,2,n),则如果用日数据计算波动率,+,并令其解为2,) 2,,}k,跳跃尺度()2()(,)()!N t W S r N t λτλτσ-exp(λλμ=,()(exp()1)(N t r r λ=--+1σσστ=+例2. 标的资产价格遵从跳扩散过程如下()(1)dSdt dW Y dN Sμλνσ=-++- 1.5(0)20, 2.5%,20%,0.5,1,500,0.004,0.8S t v Y n t Y μσλ=====-=∆==用蒙特卡洛模拟的资产价格路径如下图所示:◆无形资产——专利池的期权定价模问题专利池的市场价值V 依赖于企业使用专利池技术前后生产产品所获得的收益S 和成本C 及时间t ,这三个变量均可用跳扩散模型:()(1)dXdt dW Y dN Xμλνσ=-++-通过构造由V 和它所依赖的两个变量S 、C 组成的资产组合,利用带跳的伊藤引理获得V 与S 、C 所遵循的带跳的随机微分方程,并根据实际情况在一些假设条件下给出该方程的终边值条件,最终获得V 的求解公式。
构造无风险资产组合S S C V V S V C ∏=--一方面V∏的微分的期望为:()()V S C E d r V V S V C dt ∏=--时也不排除在一段时间后出现其他更好技术的可能性,一方面时间越长,这种可能性越大。
另一方面该技术使用寿命越长,这种可能性越小(l=l(t))。
并且,其他同类技术的出现使该专利池技术的收益下降, 下降幅度为LnY 。
因为设备的经济使用寿命是20年,根据市场需求,计划建成一条年生产100吨的生产线,其20年的成本,包括设备的直接制造成本和运营期间的管理费、工资等。
若在期初计划投资1000万,以后20年每年的生产量不变,生产成本按每年的通货胀率 10%递增。
假设在初期预计该项技术20年总收益为4000万,其收益率为25%,方差为20%。
1.3()0.02,25%,10%,0.6S S C S t t r Y λμμ=====(0)4000,(0)1000,4000,0.005S C n t ===∆=新产品发明专利池的市场价值 V=8050●在一次付清许可费用情况下的价格模型:新产品发明专利池的价格P所遵循的方程为:222211()22((,,)(,,))0t S S S C S SS C CCS C SC S SP r v P S rP C S P C PSCP E P Y S C t P S C t rPλσσσσλ+-+++++--=(,,)max((()()),0)(,,)0 as 0(,,)0 as C(,,) asP S C T S T C TP S C t SP S C tP S C t S Sαα=-→→→→∞→→∞在一次付清许可费用情况下的新产品发明专利池的价格为:(,,)(,,)P S C t V S C tα=1.3()0.02,25%,10%,0.5,0.6(0)4000,(0)1000,4000,0.005S S C St t r YS C n tλμμα=========∆=在一次付清许可费用情况下新产品发明专利池的价格 P=5450。
●在首付加每期按收益固定比率支付许可费用情况下的价格模型新产品发明专利池技术产生的收益S遵循模型()(1)S S S S S S SdSq dt dW Y dNSμλνσ=--++-引进新产品发明专利池技术后的成本 C 遵循模(, NμσSY在首付加每期按收益固定比率支付许可费用情况下新产品发明专利池的价格P=855。
§6. 最小二乘蒙特卡洛模拟与美式期权定价运用最小二乘蒙特卡洛模拟方法为美式期权定价的基本原理与蒙特卡洛模拟方法基本相同,并且用最小二乘回归同时还可解决各样本时点上继续持有期权价值的确定和各样本路径的最优停时的确定。
其基本思路是:在期权的有效期,将其标的资产价格过程离散化,随机模拟出标的资产价格的多条样本路径,从而得到每个时刻资产价格的截面数据。
选取以某时刻资产价格为变量的一组基函数作为解释变量,下一时刻期权价值的贴现值作为被解释变量,进行最小二乘法回归求得该时刻期权的持有价值,并与该时刻期权的在价值作比较,若后者较大,则应该立即执行期权,否则,就应继续持有期权。
最小二乘蒙特卡洛模拟方法定价的基本实现步骤:首*,,,,)]T t S S*,,,,Tt S S 为标的资产价格的路径,*,,,,)T t S S 的期权价值。
上式定义的用最小二乘蒙特卡洛方法进行模拟的期权价值。
{0,1,,}N ,随机变量,,NS ,重复执行3,,0 N执行,或是永不执行。
具体设计程序时,令初{0,1,,}执行期权,则t*1,2,,}M也不同,所以应分别进行贴现求均值,最终得到初,,,)]j T t S S *=∑已知股票价格为50,美式看跌期权执行价为R=[ones(size(X1)) (1-X1) 1/2*(2-4*X1+X1.^2)];a=R\Y;C=R*a;Jdx=max(K-X,0)>C;nIdx=setdiff((1:M),Idx(Jdx));CF(ii,Idx(Jdx))=max(K-X(Jdx)',0);ExTime(Idx(Jdx))=ii;CF(ii,nIdx)=exp(-r*dt)*CF(ii+1,nIdx);endPrice=mean(CF(2,:))*exp(-r*dt)%%%%% 绘制标的股票价格模拟图 %%%%%x1=[0:N];y1=S';y2=mean(S');subplot(2,1,1)plot(x1,y1)subplot(2,1,2)plot(x1,y2)xlabel('期权存续期间')ylabel('股价的模拟路径')%%%%% 绘制期权价值模拟图 %%%%%figure;x2=[1:N];y3=CF(2:end,:)';for i=1:My4(i)=y3(i,ExTime(i));endplot(x2,y3,ExTime,y4,'*')xlabel('期权的最优停止时间')ylabel('期权价值的模拟路径')模拟的美式看跌期权的价格路径如下图所示:模拟的期权价值路径及其最优停时如下图:本例中的美式看跌期权价格为:price=AmericanOptLSM(50,50,0.1,5/12,0.4,50,1000 00)Price=4.2654§7. 改进蒙特卡洛方法计算效率的常用几种方2,,mj T S 也是股票价格终值的{}exp()max 0,,1,2,,j j T C rT S K j m =--=的平均值也能得到期权价格的无偏估计量。
因此,由对偶变量技术得到的jC 。
[]j C ,所以1](])2jj C Var C =;并且,令()Z φ=,对于标是单调递]0j C ≤,从而1](jC Var ≤122,,,,,m m C C C C C 并122,,,222m mC C C C C ++才是独立同分布的抽样,故122,,,22m mC C C C C ++而非2n 122,,,,,m m C C C C C 来,,n Y 是期权到期回报贴现的1,,n 独立同分布,则对于确定的数(),,)d TX并且i1,,n独立同分布,(),,d X 之()[]2i X -∑2,,d 将bY 。
,,X,从而将n,,X作为多元控制变量可得相应的控制变量估计值为n)b=∑m,,m Z 。
由于对这些样本进行调整,使其一阶矩、二阶矩乃至高阶矩与总,2,,j j Z Z Z m =-,~(0,1)j Z N j Z 生成的股票价格终jT S ,从期回报现的一次{}exp()max 0,j j T C rT S K=--,利用矩匹配技术得到的蒙特卡洛估计量为1m jC ∑。
和对偶变量技术一样,12,,,m Z Z Z 并不独立,导致12,,,m C C C 也不独立,所以不能直接应用中心极限定理估计误差。
一个解决方案是将抽样分隔为不同批次,对每个批次分1,2,,j j ZZ Z Z m S -=。
j Z 不再服从标准正态分布,故相应j C 将是期权价格的有偏估计。
这个偏差在极端情况下可能2,,j j Z Z Z m =-(2,,j j ZZ Z Z m S -=其中Z 与S 的定义同上。
仍以标准欧式看涨股票期权为例,若股价服从风险中性的几何布朗运动,则股价终值的均j T S 运用矩匹配技术。
,,m Z ,其经验分布不会完全与总体分布相吻合,尤的经验分布加以改进。
,,m U 是在21],,[,1]m m-2,,m 。
显然,1()j j Z V φ-=分位数之间,故由,,m V 可得标准正态分布的一个分层,,m V 的高度相关性使得标准误差的估(),,),1,2,,d j U j m =是[0,1]d 上均匀分布随机,,d π是1,2,,}m 上的随机排1,1,2,,1,2,,k dj m m-==上服匀分布的随机向量,并且的第,,mV ,,m V 不独立,故,,m X 均为服从1(m j h m θ=∑()g x ⇒>,,m X 是服从1m g h m θ=∑g θ是θ的无偏估计量。
重要性抽样技术的方差减少效果:由于1,2,,d 监测,1,,},1,,},d d 使得均有,i X 是独,,d S ,故减少了模拟工作量,提高了效率。
如果对此期权综合应用条件蒙特卡洛与重要性抽样两11((),,)(,,)[()(,,)(,,),,)[()()],,),,),,)g d d d d r T g X X f X X E I S S X g X X X E I S S K S X X e X τττττττττ+++--那么结合了重要性抽样的标的资产服从风险中性几何布朗运动的下敲入看涨期权的到期回报贴现的条件蒙特卡,,),,)r X e X τττ-。