(定价策略)期权定价中的蒙特卡洛模拟方法

合集下载

期权定价的蒙特卡罗模拟方法精选 课件

期权定价的蒙特卡罗模拟方法精选 课件

90.66702 2.667019
49
81.99887
0
25
77.86832
0
50
100.5379 12.53786
计算模拟所得的期权价值的平均值后, 再计算现值得期权价格的一个估计
C E[CT ]erT 7.000053 e0.11 6.27 用布莱克—舒尔斯模型计算期权的价格
从 S0开始模拟得 ST Sn
CT max{ST SX ,0} 或 PT max{ S X ST ,0}
(3)计算 E[CT ]或 E[PT ]及期权的价格.
4). 注意事项
A. 模拟次数和计算精度之间的考量。 理论上的要求,在模拟时,时段的长度 应小,模拟次数应尽可能的多,以便使 所得的资产价格估计尽可能涵盖资产价 格的真实分布,这会大大增加模拟的计 算工作量。
2). 基本过程
例:设有这样一个股票,其现行的市场 价格为80元,已知该股票对数收益的均 值为8%,对数收益的波动性为25%, 无风险资产的收益率为11%。现在有以 该股票为标的资产, 执行期限为1年的买 入期权,确定的股票执行价格为88元, 用模拟法确定该期权的价格。
设一年有250个工作日,将其分为250
0
18
66.88669
0
43
93.91685 5.916854
19
75.17505
0
44
ห้องสมุดไป่ตู้
81.63916
0
20
70.62426
0
45
81.54932
0
21
74.25586
0
46
74.15813
0
22
70.2892

期权定价数值方法

期权定价数值方法

期权定价数值方法期权定价是金融学和衍生品定价的重要研究领域之一。

相对于传统的基于解析公式的定价方法,数值方法在期权定价中发挥了重要作用。

本文将介绍几种常用的期权定价数值方法。

第一种方法是蒙特卡洛模拟法。

这种方法通过生成大量的随机路径,从而模拟出期权的未来价格演化情况。

蒙特卡洛模拟法能够处理各种复杂的衍生品,尤其适用于路径依赖型期权的定价。

其基本思想是通过随机游走模拟资产价格的变化,并在到期日计算期权的收益。

蒙特卡洛方法的优点在于简单易懂,适用于任意的收益结构和模型。

缺点是计算复杂度高,需要大量的模拟路径,同时计算结果存在一定的误差。

第二种方法是二叉树模型。

二叉树模型将时间离散化,并用二叉树结构模拟资产价格的变化。

每一步的价格变动通过建立期权价格的递归关系进行计算。

二叉树模型适用于欧式期权的定价,特别是在波动率较低或资产价格较高时效果更好。

二叉树模型的优点在于计算速度快,容易理解,可以灵活应用于各种不同类型的期权。

缺点是对期权到期日的分割存在一定的限制,复杂的期权结构可能需要更多的分割节点。

第三种方法是有限差分法。

有限差分法将连续时间和连续空间离散化,通过有限差分近似式来计算期权价格。

其基本思想是将空间上的导数转化为有限差分的形式,然后通过迭代的方法求解有限差分方程。

有限差分法适用于各种不同类型的期权定价,特别是美式期权。

它是一种通用的数值方法,可以处理多种金融模型。

缺点是计算复杂度高,特别是对于复杂的期权结构和高维度的模型,需要更多的计算资源。

综上所述,期权定价的数值方法包括蒙特卡洛模拟法、二叉树模型和有限差分法。

不同的方法适用于不同类型的期权和市场情况。

在实际应用中,可以根据具体的问题选择合适的数值方法进行期权定价。

期权定价是金融学中一个重要的研究领域,它的核心是确定期权合理的市场价值。

与传统的基于解析公式的定价方法相比,数值方法在期权定价中有着重要的应用。

本文将进一步介绍蒙特卡洛模拟法、二叉树模型和有限差分法,并探讨它们的优缺点及适用范围。

基于蒙特卡洛方法的期权定价模型研究

基于蒙特卡洛方法的期权定价模型研究

基于蒙特卡洛方法的期权定价模型研究在金融市场中,期权的定价一直是一个广受关注的问题。

传统的期权定价方法,例如Black-Scholes模型,是基于对未来股票价格的预测以及等价套利原理的假设。

然而,在实际的市场中,股票价格的波动性往往是一个无法预测的随机过程。

为了更准确地预测期权的价格,基于蒙特卡洛方法的期权定价模型被提出。

蒙特卡洛方法是一种基于大量随机模拟的计算方法。

在期权定价问题中,蒙特卡洛方法可以通过大量模拟随机股票价格的变化来估计期权的价格。

其原理是,通过对未来股票价格的大量模拟,计算出每一种价格变化的可能性以及其对应的收益,再通过加权平均来估计期权的价格。

具体来说,基于蒙特卡洛方法的期权定价模型可以分为以下几个步骤:第一步,随机模拟股票价格的变化。

在这一步中,需要确定股票价格的随机变化过程,通常使用黑-斯科尔斯模型或几何布朗运动模型进行模拟。

第二步,计算期权的收益。

通过对股票价格变化的每个模拟结果进行计算,得出期权的每个模拟结果下的收益。

第三步,对所有模拟结果的收益进行加权平均,并折现到现在的价值。

这一步需要考虑到期权的时间价值和无风险利率等因素。

第四步,通过加权平均后的结果得出期权的估计价格。

基于蒙特卡洛方法的期权定价模型相比传统模型,具有更强的灵活性和准确性。

通过蒙特卡洛方法,可以模拟出股票价格任何可能的变化,并计算出每一种变化下的期权收益。

这一点在预测波动性较大的市场中尤为重要。

当然,基于蒙特卡洛方法的期权定价模型也存在一些局限性。

首先,随机模拟的数量越多,计算量就越大,所需的计算资源也越多。

其次,模型所依据的股票价格随机变化过程可能与实际情况存在一定的差异,这会对模型的准确性造成一定的影响。

最后,这种模型并不能完全避免市场风险的影响,因此投资者在决策时仍需谨慎。

总之,基于蒙特卡洛方法的期权定价模型是一个重要的工具,可以帮助投资者更准确地预测期权价格,并在期权投资中做出更明智的决策。

期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法期权定价是金融市场中的一个重要问题。

近年来,蒙特卡洛模拟方法在期权定价中得到了广泛的应用。

蒙特卡洛模拟方法是一种基于随机模拟的数值计算方法,通过生成大量的随机样本来估计某些数量的数值。

下面将介绍蒙特卡洛模拟方法在期权定价中的基本原理及应用。

蒙特卡洛模拟方法采用随机数生成器生成大量的随机数,并利用这些随机数进行模拟计算。

在期权定价中,蒙特卡洛模拟方法可以用来估计期权的价格以及其他相关的风险指标,例如风险价值和概率分布等。

在蒙特卡洛模拟方法中,首先需要确定期权定价模型。

常用的期权定价模型包括布朗运动模型和风险中性估计模型等。

然后,根据期权定价模型,生成一个或多个随机数来模拟期权价格的变动。

通过对多个随机样本进行模拟计算,我们可以获得期权价格的分布情况及其他相关指标的估计值。

在期权定价中,蒙特卡洛模拟方法的精确度主要取决于两个方面:模拟路径的数量和模拟路径的长度。

路径的数量越多,模拟结果的精确度越高。

路径的长度越长,模拟结果的稳定性越好。

蒙特卡洛模拟方法在期权定价中的应用非常广泛。

例如,在欧式期权定价中,可以使用蒙特卡洛模拟方法来估计期权的风险价值和概率分布等指标。

在美式期权定价中,由于存在提前行权的可能性,蒙特卡洛模拟方法可以用来模拟期权的提前行权时机并确定最佳行权策略。

此外,在一些复杂的期权定价中,例如亚式期权和障碍期权等,蒙特卡洛模拟方法也可以提供有效的定价方法。

总之,蒙特卡洛模拟方法是期权定价中一种重要的数值计算方法。

它通过生成大量的随机样本来估计期权的价格及相关指标,具有较高的灵活性和精确度。

蒙特卡洛模拟方法在期权定价中广泛应用,为金融市场中的投资者和交易员提供了重要的决策工具。

蒙特卡洛模拟方法在期权定价中的应用非常广泛,下面将进一步介绍其在不同类型期权定价中的具体应用。

首先是欧式期权定价。

欧式期权是指在未来某个特定时间点(到期日)才能行使的期权。

蒙特卡洛模拟方法可以用来估计欧式期权的价格和概率分布等指标。

蒙特卡洛方法和拟蒙特卡洛方法在期权定价中应用的比较研究

蒙特卡洛方法和拟蒙特卡洛方法在期权定价中应用的比较研究
M atlab 可以使用相应函数实现 , 在此不再累述 。
σ2 ) T lg ( S0 / K ) + ( r + 1 / 2 σ T σ T
[5 ]
; ;
σ2 ) T lg ( S0 / K ) + ( r - 1 / 2 。
2 期权定价
期权按照买者的权利划分 , 期权可分为看涨期 权和看跌期权 。凡是赋予期权买者购买标的资产 权利的合约 , 就是看涨期权 ; 而赋予期权买者出售 标的资产权利的合约就是看跌期权 。显然看涨期 权的购买者预期标的资产价格上涨 , 而看跌期权的 购买者预期标的资产价格下跌 。期权按照买者执 行期权的时限划分 , 期权可分为欧式期权和美式期 权 . 欧式期权的买者只能在期权到期日才能执行期 权 。而美式期权允许买者在期权到期前的任何时 间执行期权 。尽管欧式期权更易于定价 , 但实际交 易的期权大多都是美式期权
63180图1欧式看涨期权模拟结果误差比较从表1和图1中所示的实验结果可以清晰的看出传统的伪随机数模拟的方法产生的结果误差远远大于低差异序列模拟的结果虽然增加模拟次数可以提高精确度但同时计算时间也相应的延长从精确度上来看拟随机序列的表现要远远优于伪随机序列的表现用超均匀序列来修正蒙特卡洛模拟改进效果是明显的
1926
科 学 技 术 与 工 程
32 32
9卷
的值有 m = 2 或者 M ersenne 素数 m = 2 - 1。为满
1 基本概念与随机数的生成原理
蒙特卡洛方法 (Monte Carlo method 又称 MC ) , 也称统计模拟方法 , 是 20 世纪 40 年代中期由于科 学技术的发展和电子计算机的发明 , 而被提出的一 种以概率统计理论为指导的一类非常重要的数值 计算方法 。它把问题看成一个黑箱 , 输入伪随机数 流 ,通过分析输出 ,得到感兴趣的估计值 。 随着拟随机序列的出现 , 蒙特卡洛方法也已经 发展到拟蒙特卡洛方法 ( Quasi2 Monte Carlo m ethod 又称 QMC ) 。两者虽然方法相似但理论基础不同 。 拟蒙特卡洛方法对估计效果的改进取决于拟随机 序列在抽样样本空间中分布的均匀性 。序列分布 得越均匀 ,其改进效果越明显 。通常用偏差率来表 示这种均匀性 , 均匀程度越高 , 其偏差率越低 。因 此拟随机序列有时也称为低偏差率序列 , 拟随机序 列的模拟也可称为低偏差率序列的模拟 。 蒙特卡洛方法成功与否 , 很大程度上取决于随 机数序列的选取 。产生随机数序列有多种不同的 方法 。这些方法被称为随机数发生器 。随机数最 重要的特性是它产生的后面的那个数与前面的那 个数毫无关系 。现实生活中不可能产生绝对随机 的随机数 , 计算机也只能生成相对的随机数 , 即伪 随机数 。

蒙特卡罗模拟方法在金融衍生品定价中的应用

蒙特卡罗模拟方法在金融衍生品定价中的应用

蒙特卡罗模拟方法在金融衍生品定价中的应用金融衍生品定价是金融领域中一个重要的课题,为了准确地计算衍生品的价格,需要运用适当的定价模型和方法。

蒙特卡罗模拟方法作为一种常用的计算方法,经常被应用于金融衍生品的定价中。

本文将介绍蒙特卡罗模拟方法的原理,以及在金融衍生品定价中的应用。

一、蒙特卡罗模拟方法原理蒙特卡罗模拟方法是一种基于随机数的数值计算方法,主要用于计算无法直接得到解析解的问题。

其基本思想是通过生成符合一定概率分布的随机数,通过重复实验进行求解。

蒙特卡罗模拟方法主要包括以下几个步骤:1. 确定模型和参数:首先,需要确定适用于定价的模型和相应的参数。

根据不同类型的金融衍生品,选择不同的模型来描述其价格变动的随机过程。

2. 设定初始条件:根据实际情况,设定衍生品定价的初始条件,例如初始价格、到期时间等。

3. 生成随机数:通过随机数生成器生成符合预设概率分布的随机数,用于模拟金融资产价格的随机波动。

4. 计算衍生品价格:利用生成的随机数和模型参数,进行多次模拟实验,得到多个可能的价格路径。

通过对这些价格路径进行处理,得到衍生品的合理价格估计。

5. 统计分析:对多次模拟实验的结果进行统计分析,计算平均值、方差以及其他感兴趣的统计指标。

6. 评估风险:利用蒙特卡罗模拟方法可以对衍生品价格的不确定性进行评估,帮助投资者、企业和金融机构更好地管理金融风险。

二、 1. 期权定价:蒙特卡罗模拟方法在期权定价中广泛应用。

通过模拟资产价格的随机波动,可以计算出期权的价值。

特别是对于欧式期权,可以通过模拟实验得到价格路径,再通过回归方法计算出期权的理论价格。

2. 固定收益衍生品定价:蒙特卡罗模拟方法也可以应用于固定收益衍生品的定价。

例如,通过模拟随机利率的变动,可以计算出利率互换的价格。

同时,也可以通过模拟随机到期收益率来估算信用违约掉期的价格。

3. 商品期货定价:对于商品期货的定价,蒙特卡罗模拟方法同样具有一定的优势。

蒙特卡罗模拟在期权定价中的应用研究

蒙特卡罗模拟在期权定价中的应用研究

蒙特卡罗模拟在期权定价中的应用研究蒙特卡罗模拟是一种重要的金融工程方法,广泛应用于期权定价、风险管理、金融衍生品估值等领域。

蒙特卡罗模拟的核心思想是通过随机模拟,计算所需的数学期望值,从而得出目标结果。

在期权定价领域,蒙特卡罗模拟能够帮助投资者更好地理解市场风险与收益,减少不确定性,提高投资收益。

一、期权定义与定价模型期权是一种金融工具,它赋予购买者在未来某个时间内买入或卖出某种资产的权利,而不是义务。

期权的价格由多种因素决定,如股票价格、剩余到期时间、波动率等。

根据期权价格与未来股票价格的关系,期权被分为两类,即认购期权和认沽期权。

认购期权是指购买者有权在未来固定时间内以固定价格购买股票,认沽期权则是指购买者有权在未来固定时间内以固定价格出售股票。

根据期权定价的模型,我们可以将其分为两类:基于风险中性定价理论的模型和基于实证数据的模型。

前者通过假设市场上不存在套利空间,以确定的无风险利率对期权进行定价;后者则基于市场实际数据,逐步优化模型参数,通过历史数据预测未来。

二、蒙特卡罗模拟在期权定价中的应用蒙特卡罗模拟在期权定价中的应用较为广泛。

它通过生成大量随机序列,利用随机样本点的模拟结果,来计算期权的价值。

具体来说,这个过程可以分为以下几步:1. 生成随机序列随机序列是蒙特卡罗模拟的核心。

在期权定价中,我们常常采用随机变量模拟股票价格随时间变化的情况,从而得出期权价格。

以欧式期权为例,我们可以根据股票的风险中性测度构造几何布朗运动随机过程,通过此过程生成随机序列。

2. 计算随机路径下的收益/损失随机序列产生后,我们需要计算每个随机路径下对应的期权价格。

具体来说,也依靠几何布朗运动过程,计算在这一路径下期权实际收益/损失的数值。

3. 取期望值估算期权价格我们通过模拟得到多个随机序列的期权收益/损失,然后将所有结果求和取平均值,得出期望值。

而期望值即为期权在当前股票价格等因素下的市场价格,也是蒙特卡罗模拟得出的期权价格。

(定价策略)期权定价中的蒙特卡洛模拟方法最全版

(定价策略)期权定价中的蒙特卡洛模拟方法最全版

(定价策略)期权定价中的蒙特卡洛模拟方法期权定价中的蒙特卡洛模拟方法期权作为最基础的金融衍生产品之一,为其定价一直是金融工程的重要研究领域,主要使用的定价方法有偏微分方程法、鞅方法和数值方法。

而数值方法又包括了二叉树方法、有限差分法和蒙特卡洛模拟方法。

蒙特卡洛方法的理论基础是概率论与数理统计,其实质是通过模拟标的资产价格路径预测期权的平均回报并得到期权价格估计值。

蒙特卡洛方法的最大优势是误差收敛率不依赖于问题的维数,从而非常适宜为高维期权定价。

§1.预备知识◆两个重要的定理:柯尔莫哥洛夫(Kolmogorov)强大数定律和莱维一林德贝格(Levy-Lindeberg)中心极限定理。

大数定律是概率论中用以说明大量随机现象平均结果稳定性的一系列极限定律。

在蒙特卡洛方法中用到的是随机变量序列同分布的Kolmogorov强大数定律:设为独立同分布的随机变量序列,若则有显然,若是由同一总体中得到的抽样,那么由此大数定律可知样本均值当n很大时以概率1收敛于总体均值。

中心极限定理是研究随机变量之和的极限分布在何种情形下是正态的,并由此应用正态分布的良好性质解决实际问题。

设为独立同分布的随机变量序列,若则有其等价形式为。

◆Black-Scholes期权定价模型模型的假设条件:1、标的证券的价格遵循几何布朗运动其中,标的资产的价格是时间的函数,为标的资产的瞬时期望收益率,为标的资产的波动率,是维纳过程。

2、证券允许卖空、证券交易连续和证券高度可分。

3、不考虑交易费用或税收等交易成本。

4、在衍生证券的存续期内不支付红利。

5、市场上不存在无风险的套利机会。

6、无风险利率为一个固定的常数。

下面,通过构造标的资产与期权的资产组合并根据无套利定价原理建立期权定价模型。

首先,为了得到期权的微分形式,先介绍随机微积分中的最重要的伊藤公式。

伊藤Ito公式:设,是二元可微函数,若随机过程满足如下的随机微分方程则有根据伊藤公式,当标的资产的运动规律服从假设条件中的几何布朗运动时,期权的价值的微分形式为现在构造无风险资产组合,即有,经整理后得到这个表达式就是表示期权价格变化的Black-Scholes 偏微分方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期权定价中的蒙特卡洛模拟方法期权作为最基础的金融衍生产品之一,为其定价一直是金融工程的重要研究领域,主要使用的定价方法有偏微分方程法、鞅方法和数值方法。

而数值方法又包括了二叉树方法、有限差分法和蒙特卡洛模拟方法。

蒙特卡洛方法的理论基础是概率论与数理统计,其实质是通过模拟标的资产价格路径预测期权的平均回报并得到期权价格估计值。

蒙特卡洛方法的最大优势是误差收敛率不依赖于问题的维数,从而非常适宜为高维期权定价。

§1. 预备知识◆两个重要的定理:柯尔莫哥洛夫(Kolmogorov)强大数定律和莱维一林德贝格(Levy-Lindeberg)中心极限定理。

大数定律是概率论中用以说明大量随机现象平均结果稳定性的一系列极限定律。

在蒙特卡洛方法中用到的是随机变量序列同分布的Kolmogorov 强大数定律:设12,,ξξ为独立同分布的随机变量序列,若[],1,2,k E k ξμ=<∞=则有11(lim )1nk n k p n ξμ→∞===∑ 显然,若12,,,n ξξξ是由同一总体中得到的抽样,那么由此大数定律可知样本均值11nk k n ξ=∑当n 很大时以概率1收敛于总体均值μ。

中心极限定理是研究随机变量之和的极限分布在何种情形下是正态的,并由此应用正态分布的良好性质解决实际问题。

设12,,ξξ为独立同分布的随机变量序列,若2[],[],1,2,k k E D k ξμξσ=<∞=<∞=(0,1)nkd n N ξμ-−−→∑其等价形式为211lim()exp(),2nxk k n t n P x dt x ξμσ=→∞-∞-≤=--∞<<∞∑⎰。

◆Black-Scholes 期权定价模型 模型的假设条件:1、标的证券的价格遵循几何布朗运动dSdt dW S μσ=+其中,标的资产的价格S 是时间t 的函数,μ为标的资产的瞬时期望收益率,σ为标的资产的波动率,dW 是维纳过程。

2、证券允许卖空、证券交易连续和证券高度可分。

3、不考虑交易费用或税收等交易成本。

4、在衍生证券的存续期内不支付红利。

5、市场上不存在无风险的套利机会。

6、无风险利率r 为一个固定的常数。

下面,通过构造标的资产与期权的资产组合并根据无套利定价原理建立期权定价模型。

首先,为了得到期权的微分形式,先介绍随机微积分中的最重要的伊藤公式。

伊藤Ito 公式:设(,)V V S t =,V 是二元可微函数,若随机过程S 满足如下的随机微分方程(,)(,)dSS t dt S t dW Sμσ=+则有22221((,)(,))(,)2V V V V dV S t S S t S dt S t S dW t S S Sμσσ∂∂∂∂=+++∂∂∂∂根据伊藤公式,当标的资产的运动规律服从假设条件中的几何布朗运动时,期权的价值(,)V V S t =的微分形式为22221()2V V V V dV S S dt S dW t S S Sσμσ∂∂∂∂=+++∂∂∂∂现在构造无风险资产组合V V S S∂∏=-∂,即有d r dt ∏=∏,经整理后得到2222102V V VS rS rV t S S σ∂∂∂++-=∂∂∂这个表达式就是表示期权价格变化的Black-Scholes 偏微分方程。

它同时适合欧式看涨期权、欧式看跌期权、美式看涨期权和美式看跌期权,只是它们的终值条件和边界条件不同,其价值也不相同。

欧式看涨期权的终边值条件分别为{}(,)max 0,T V S T S K =-,00(,)S V S T S S →⎧=⎨→∞⎩ 通过求解带有终边值条件的偏微分方程,得出欧式看涨期权的的解析解:()12(,)()()r T t V S t SN d Ke N d --=-其中,22()x dN d edx--∞=,21d =21d d =-T 为期权的执行日期,K 为期权的执行价格。

欧式看跌期权的终边值条件分别为{}(,)max 0,T V S T K S =-,(,)0K S V S T S →⎧=⎨→∞⎩ 此外,美式看涨期权的终值条件为(,)max{0,}V S t S K ≥-,美式看跌期权的终值条件为(,)max{0,}V S t K S ≥-。

然而,美式期权的价值没有解析解,我们一般可通过数值方法(蒙特卡洛模拟、有限差分法等)求得其近似解。

◆风险中性期权定价模型如果期权的标的资产价格服从几何布朗运动dSrdt dW S σ=+即标的资产的瞬时期望收益率μ取为无风险利率r 。

同理,根据伊藤公式可以得到2ln ()2d S r dt dWσσ=-+222ln ln ()()()~(()(),())22T t T t S S r T t W W N r T t T t σσσσ-=--+----2exp(()()())2T t T t S S r T t W W σσ=--+-对数正态分布的概率密度函数:设2~(,)N ξμσ,e ξη=,则η的密度函数为22(ln ))0()200x x P x x ημσ-- > = ≤ ⎩根据上述公式,得到标的资产T S 的密度函数如下222(ln()())2)0 ()2()00txr T tSxP xT txσσ⎧---⎪- >=-⎪ ≤⎩在风险中性概率测度下,欧式看涨期权定价为:(,)exp(())[max{0,}]QTV S t r T t E S K=---()()222222(ln()())2[max{0,}])2(ln()())2)2QT KKxr T tSE S K dxT txr T tS dxT tσσσσ+∞+∞----=--------⎰⎰接下来,求解以上风险中性期望。

首先,对上式的右边第一个广义积分分别作变量替换2ln()()xr T tyσ---=和u y=-,可以得到()2222222ln()()()()()221 ln()()(ln()())2)2() KSr T tu ur T t r T t r T tKr T txr T tS dxT tSe du Se du Se N dσσσσ+∞++-+∞------+------===⎰⎰再对等式的右边的第二个无穷积分,令2ln ln()()x S r T tuσ----=,可求得2222222ln ln()()2222 ln ln()(2(ln()())2)2()() KS K r T tu uK S r T txr T tS dxT tK du K du KN dσσσσ+∞-+--+∞-----------===⎰⎰将以上的计算结果代入期望等式中,得到欧式看涨期权的价格公式为:()()12(,)[max{0,}]()()r T t Q r T t T V S t e E S K SN d Ke N d ----=-=-其中,21ln ()()S r T t d σ++-=,21d d =-。

可以看出,对于欧式看涨期权的风险中性定价方法的结果与基于资产复制的偏微分方程定价方法的结果是一致的。

基于风险中性的期权定价原理在于:任何资产在风险中性概率测度下,对于持有者来说都是风险偏好中性的,便可用风险中性概率求取期权的期望回报再将其进行无风险折现便是初始时刻的期权价值。

蒙特卡洛模拟方法就是一种基于风险中性原理的期权数值定价方法。

§2. 蒙特卡洛模拟方法及其效率假设所求量θ是随机变量η的数学期望[]E η,那么近似确定θ的蒙特卡洛方法是对η进行n 次重复抽样,产生独立同分布的随机变量序列12,,,n ηηη,并计算样本均值11nn k k n ηη==∑。

那么根据Kolmogorov 强大数定律有(lim )1n n p ηθ→∞==。

因此,当n 充分大时,可用n η作为所求量θ的估计值。

由中心极限定理可得到估计的误差。

设随机变量η的方差2[]D ησ=<∞,对于标准正态分布的上2δ分位数Z δ,有22(exp()12Z n Z t p Z dt δδδηθδ--<≈-=-⎰这表明,置信水平1δ-对应的渐近置信区间是n Z δη±。

实际上,由此可确定蒙特卡洛方法的概率化误差边界,其误差为Z δ,误差收敛速度是12()O n -。

不难看出,蒙特卡洛方法的误差是由σ和决定的。

在对同一个η进行抽样的前提下,若想将精度提高一位数字,要么固定σ,将n 增大100倍;要么固定n 将σ减小10倍。

若两个随机变量12,ηη的数学期望12[][]E E ηηθ==,12σσ≠,那么无论从1η或2η中抽样均可得到θ的蒙特卡洛估计值。

比较其误差,设获得i η的一个抽样所需的机时为i t ,那么在时间T 内生成的抽样数i iT n t =,若使<,则需使1122t t σσ<。

因而,若要提高蒙特卡罗方法的效率,不能单纯考虑增加模拟的次数n 或是减小方差2σ,应当在减小方差的同时兼顾抽取一个样本所耗费的机时,使方差2σ与机时t 的乘积尽量的小。

§3. 蒙特卡洛模拟方法为期权定价的实现步骤期权定价的蒙特卡洛方法的理论依据是风险中性定价原理:在风险中性测度下,期权价格能够表示为其到期回报的贴现的期望值,即12[exp()(,,,)]QT P E rT f S S S =-,其中的QE 表示风险中性期望,r 为无风险利率,T 为期权的到期执行时刻,12(,,,)T f S S S 是关于标的资产价格路径的预期收益。

由此可知,计算期权价格即就是计算一个期望值,蒙特卡洛方法便是用于估计期望值,因此可以得到期权定价的蒙特卡洛方法。

一般地,期权定价的蒙特卡洛模拟方法包含以下几步(以欧式看涨期权为例):(l)在风险中性测度下模拟标的资产的价格路径 将时间区间[0,]T 分成n 个子区间0120n t t t t T =<<<<=,标的资产价格过程的离散形式是211()()21()()i i ir t t jji i S t S t eσσ+--++=,~(0,1)i z N(2)计算在这条路径下期权的到期回报,并根据无风险利率求得回报的贴现{}exp()max 0,j j T C rT S K =--(3)重复前两步,得到大量期权回报贴现值的抽样样本 (4)求样本均值,得到期权价格的蒙特卡洛模拟值{}11exp()max 0,1exp()mj T mj j MCj rT S K C rT C m m==--=-=∑∑另外,我们还可以得到蒙特卡洛模拟值与真值的概率化误差边界,这也是蒙特卡洛方法为期权定价的优势之一。

由于{}exp()max 0,j j T C rT S K =--,m 条路径的收益均值为11m jmeani C C m ==∑,m 条路径的方差为2var11()1m j mean i C C C m ==--∑,则可得95%的置信区间为[mean mean C C -+。

相关文档
最新文档