期权定价数值方法讲解

合集下载

期权定价数值方法

期权定价数值方法

期权定价数值方法期权定价是金融学和衍生品定价的重要研究领域之一。

相对于传统的基于解析公式的定价方法,数值方法在期权定价中发挥了重要作用。

本文将介绍几种常用的期权定价数值方法。

第一种方法是蒙特卡洛模拟法。

这种方法通过生成大量的随机路径,从而模拟出期权的未来价格演化情况。

蒙特卡洛模拟法能够处理各种复杂的衍生品,尤其适用于路径依赖型期权的定价。

其基本思想是通过随机游走模拟资产价格的变化,并在到期日计算期权的收益。

蒙特卡洛方法的优点在于简单易懂,适用于任意的收益结构和模型。

缺点是计算复杂度高,需要大量的模拟路径,同时计算结果存在一定的误差。

第二种方法是二叉树模型。

二叉树模型将时间离散化,并用二叉树结构模拟资产价格的变化。

每一步的价格变动通过建立期权价格的递归关系进行计算。

二叉树模型适用于欧式期权的定价,特别是在波动率较低或资产价格较高时效果更好。

二叉树模型的优点在于计算速度快,容易理解,可以灵活应用于各种不同类型的期权。

缺点是对期权到期日的分割存在一定的限制,复杂的期权结构可能需要更多的分割节点。

第三种方法是有限差分法。

有限差分法将连续时间和连续空间离散化,通过有限差分近似式来计算期权价格。

其基本思想是将空间上的导数转化为有限差分的形式,然后通过迭代的方法求解有限差分方程。

有限差分法适用于各种不同类型的期权定价,特别是美式期权。

它是一种通用的数值方法,可以处理多种金融模型。

缺点是计算复杂度高,特别是对于复杂的期权结构和高维度的模型,需要更多的计算资源。

综上所述,期权定价的数值方法包括蒙特卡洛模拟法、二叉树模型和有限差分法。

不同的方法适用于不同类型的期权和市场情况。

在实际应用中,可以根据具体的问题选择合适的数值方法进行期权定价。

期权定价是金融学中一个重要的研究领域,它的核心是确定期权合理的市场价值。

与传统的基于解析公式的定价方法相比,数值方法在期权定价中有着重要的应用。

本文将进一步介绍蒙特卡洛模拟法、二叉树模型和有限差分法,并探讨它们的优缺点及适用范围。

期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法期权定价是金融市场中的一个重要问题。

近年来,蒙特卡洛模拟方法在期权定价中得到了广泛的应用。

蒙特卡洛模拟方法是一种基于随机模拟的数值计算方法,通过生成大量的随机样本来估计某些数量的数值。

下面将介绍蒙特卡洛模拟方法在期权定价中的基本原理及应用。

蒙特卡洛模拟方法采用随机数生成器生成大量的随机数,并利用这些随机数进行模拟计算。

在期权定价中,蒙特卡洛模拟方法可以用来估计期权的价格以及其他相关的风险指标,例如风险价值和概率分布等。

在蒙特卡洛模拟方法中,首先需要确定期权定价模型。

常用的期权定价模型包括布朗运动模型和风险中性估计模型等。

然后,根据期权定价模型,生成一个或多个随机数来模拟期权价格的变动。

通过对多个随机样本进行模拟计算,我们可以获得期权价格的分布情况及其他相关指标的估计值。

在期权定价中,蒙特卡洛模拟方法的精确度主要取决于两个方面:模拟路径的数量和模拟路径的长度。

路径的数量越多,模拟结果的精确度越高。

路径的长度越长,模拟结果的稳定性越好。

蒙特卡洛模拟方法在期权定价中的应用非常广泛。

例如,在欧式期权定价中,可以使用蒙特卡洛模拟方法来估计期权的风险价值和概率分布等指标。

在美式期权定价中,由于存在提前行权的可能性,蒙特卡洛模拟方法可以用来模拟期权的提前行权时机并确定最佳行权策略。

此外,在一些复杂的期权定价中,例如亚式期权和障碍期权等,蒙特卡洛模拟方法也可以提供有效的定价方法。

总之,蒙特卡洛模拟方法是期权定价中一种重要的数值计算方法。

它通过生成大量的随机样本来估计期权的价格及相关指标,具有较高的灵活性和精确度。

蒙特卡洛模拟方法在期权定价中广泛应用,为金融市场中的投资者和交易员提供了重要的决策工具。

蒙特卡洛模拟方法在期权定价中的应用非常广泛,下面将进一步介绍其在不同类型期权定价中的具体应用。

首先是欧式期权定价。

欧式期权是指在未来某个特定时间点(到期日)才能行使的期权。

蒙特卡洛模拟方法可以用来估计欧式期权的价格和概率分布等指标。

期权定价数值方法

期权定价数值方法
期权定义
期权是一种合约,赋予其持有人在一定时期内以指定价格买卖标的资产的权 利。
期权类型
按行权时间可分为欧式期权和美式期权,按交易场所可分为场内期权和场外 期权。
期权定价模型
Black-Scholes模型
基于无套利原则,通过随机过程和偏微分方程等方法,推导出标的资产价格和波 动率的关系。
二叉树模型
将连续的时间和空间离散化为有限个元素,通过建立线性方程组来求解期权价格。优点是 适用于处理不规则区域和复杂边界条件,精度较高。缺点是对于某些复杂期权或边界条件 ,需要使用高阶元素,计算量较大。
蒙特卡洛模拟法(Monte Carlo Si…
通过随机抽样来模拟期权价格的波动过程,并利用此模拟结果来估算期权价格。优点是适 用于各种类型的期权和边界条件,计算速度快。缺点是对于某些特殊期权或边界条件,需 要设计特定的抽样方法,精度相对较低。
风险中性概率
在蒙特卡洛模拟中,使用风险中性概率来计算标的资产价格在未 来的可能性,该概率将风险中性概率和实际概率联系起来。
估计期权收益
通过模拟标的资产价格路径,可以估计期权的收益,从而得到期 权的预期价格。
蒙特卡洛模拟法的实现步骤
定义参数
确定影响期权价格 的因素,如标的资 产价格、行权价、 剩余期限、波动率 和无风险利率等。
05
偏微分方程法在期权定价 中的应用
偏微分方程的推导
基于无套利原则
通过无套利原则,推导出偏微分方程,该方程描述了资产价格变 化的随机过程,以及投资者对风险和收益的权衡。
风险中性概率
在风险中性概率下,衍生品的价格可以表示为标的资产价格和相 应期限的贴现值之积。
标的资产价格动态
标的资产价格的变化受到多种因素的影响,如市场利率、波动率 、股息等。

第12章 期权定价的数值方法

第12章  期权定价的数值方法

S it S it De

r it
其中, D 表示红利。
26

因此,我们需要先构造不含红利的价格树图,之 后再加上未来红利的现值。在 it 时刻: ◦ 当 it 时,这个树上每个节点对应的证券价 格为: * j i j
S0 u d j 0,1......i
t pd 12 2 t pu 12 2
2 pm 3
32


基本原理:期权 A 和期权 B 的性质相似,我们 可以得到期权 B 的解析定价公式,而只能得到 期权 A 的数值方法解,这时就可以利用期权 B 解析法与数值法定价的误差来纠正期权 A 的数 值法的定价误差。 用 f B 代表期权 B 的真实价值(解析解),f A ˆ 和 ˆ 表 表示关于期权 A 的较优估计值, f fB A 示用同一个二叉树、相同的蒙特卡罗模拟或是同 样的有限差分过程得到的估计值。
e

r q t
pu 1 p d
e
r q t
相应有
p
d ud

式( 12.5 )和( 12.6 )仍然成立:
u e d e
t t
21


可通过调整在各个节点上的证券价格,算出期权 价格; 如果时刻 i∆t 在除权日之前,则节点处证券价 格仍为:
为了模拟路径
dS r q Sdt Sdz
我们把期权的有效期分为 N 个长度为 ∆t 的时 间段,则上式的近似方程为:
S t t S t (r q )S t t S t t (12.9)
(12.10)


2 ln S t t ln S t r q t t 2

期权定价的数值方法

期权定价的数值方法

随机抽样值
0.52 1.44 -0.86 1.46 -0.69 -0.74
该时间步长中的 股票价值变化 0.236
0.611 -0.329
0.628 -0.262 -0.280
19
(二)、单个变量和多个变量的蒙特卡罗模拟
▪ 蒙特卡罗模拟的优点之一在于无论回报结果依赖于标的变量S所遵循 的路径还是仅仅取决于S的最终价值,都可以使用这一方法。同时, 这个过程也可以扩展到那些回报取决于多个标的市场变量的情况。
期权定价的数值方法
1
二、基本二叉树方法的扩展
▪ 支付连续红利率资产的期权定价 ▪ 支付已知红利率资产的期权定价 ▪ 已知红利额 ▪ 利率是时间依赖的情形
2
连续红利率资产的期权定价
▪ 当标的资产支付连续收益率为q的红利时,在风 险中性条件下,证券价格的增长率应该为r-q, 因此:
e (rq)t pu (1 p)d
其中
p e(rq)t d ud
u, d表达式仍然适用
3
支付已知红利率资产的期权定价
▪ 若标的资产在未来某一确定时间将支付已知红利率(红 利与资产价格之比),只要调整在各个结点上的证券价 格,就可算出期权价格。调整方法如下:
▪ 如果it 时刻在除权日之前,则结点处证券价格仍为: Su j d i j , j 0,1, , i
S t t S t r qS t t S t t

ln
ห้องสมุดไป่ตู้
S
t
t
ln
S
t
r
q
2
2
t
t
S
t
t
S
t exp
r
q
2
2

金融工程学期权定价的数值方法课件

金融工程学期权定价的数值方法课件
erf (T t) d p
ud
PPT学习交流12来自同样,在风险中性世界中,股票期权未来 价格的期望值按无风险利率贴现的现值必须等 于该期权当前的价格,即
fe rf(T t) p fu (1 p )fd
其中
erf (T t) d p
ud
PPT学习交流
13
例:
假设一种不支付红利股票目前的市价为10 元,我们知道在3个月后,该股票价格要么是11 元,要么是9元。假设现在的无风险年利率等于 10%,则一份3个月期以该股票为标的资产,且 执行价格为10.5元的欧式看涨期权的价值是多少?
ud
fd
E S T p S u 1 p S d S 0 e r fT t
f0p fu 1 pfde r fT t
PPT学习交流
11
风险中性定价原理 假定股票的上升概率为p。在风险中性世界 中,股票未来价格的期望值按无风险利率贴现 的现值必须等于该股票目前的价格,因此有
S e r f( T t)u S p d S ( 1 p )
构造无风险组合:
S0 : c :1
因为无风险,则有
u S T c u d S T c d
2 2 1 1 8 0 0.25
S0
c0
uST cu
1rf Tt
c0 0.631068
S 0 c 0 d S T c de rfT t
c0 0.632995
PPT学习交流
2
例:S020;Xc 21;u110%;
7
⒋ 美式期权的两步二叉树定价法
定价的过程从二叉树的末端开始倒推到起 始点,在每个节点上必须检验期权是否会被提 前执行,如果会被提前执行,则以行权收益为 该节点的期权价格,否则按照标准公式计算期 权价格,末端节点的价格均按照欧式期权计算。

B-S期权定价模型、公式与数值方法

B-S期权定价模型、公式与数值方法
P124的例子
B-S期权定价公式:假设条件
1.证券价格遵循几何布朗运动,,为常数 2.允许卖空标的证券 3.没有交易费用或税收 4.所有证券都是无限可分的 5.标的证券在有效期内没有红利支付 6.不存在无风险套利机会 7.交易是连续的 8.无风险利率为常数
B-S期权定价公式
经典的B-S期权定价公式是对于欧式股票期权给出的。
期权的价值正是来源于签订合约时,未来标的资产价格与合约执 行价格之间的预期差异变化,在现实中,资产价格总是随机变化 的。需要了解其所遵循的随机过程。
研究变量运动的随机过程,可以帮助我们了解在特定时刻,变量 取值的概率分布情况。在下面几节中我们会用数学的语言来描述 这种定价的思想。
6.1 证券价格的变化过程
**随机微积分与非随机微积分的差别 d ln S dS
S
变量x和t的函数G也遵循Ito 过程:
dG ( G xa G t1 2 2 x G 2b2)d t G xbdz
dSSdtSdz
根据Ito引理,衍生证券的价格G应遵循如下过程:
d G ( G SS G t1 2 S 2 G 22 S2)d t G SSdz
但是当人们开始采用分形理论研究金融市场时,发现它的运行并 不遵循布朗运动,而是服从更为一般的分数布朗运动。
对于标准布朗运动来说:设t 代表一个小的时间
间隔长度,z代表变量z在 t 时间内的变化,遵循标
准布朗运动的 z 具有两种特征:
特征1:z和 t 的关系满足:
z = t
其中, 代表从标准正态分布中取的一个随机值。
的普通布朗运动:
Ito过程
dxadb t dz d xa (x,t)d tb (x,t)dz
or:x( t)x0a t bz(t)x(t)x00 tad s0 tbd

期权定价的数值方法1

期权定价的数值方法1

S 2
2. BS定价公式可用于欧式期权、美式看涨期权定价。对美式 看跌期权定价只能用二叉树、蒙特卡罗模拟等求出。
3. 二叉树图方法用离散的随机游走模型模拟资产价格的连续 运动在风险中性世界中可能遵循的路径,每个小的时间间 隔中的上升下降概率和幅度均满足风险中性原理。从二叉 树图的末端开始倒推计算出期权价格。
期权定价
作业1
16
1. 列出影响期权价格的6个因素。
期权定价
作业2
17
1. 设c1、c2和c3分别表示协议价格为X1、X2、X3的欧式看涨期 权的价格,其中X3>X2>X1且X3-X2=X2-X1,所有期权的到 期日相同,请证明:
c2 ≤0.5(c1 + c3)
2. 某一协议价格为25元,有效期6个月的欧式看涨期权价格为 2元,标的股票价格为24元,该股票预计在2个月和5个月 后各支付0.50元股息,所有期限的无风险连续复利年利率 均为8%,请问该股票协议价格为25元,有效期6个月的欧 式看跌期权价格等于多少?
若n→∞,即每个阶段所对应的长度无穷小,则完全有理由用两状 态的二叉树来近似表示标的资产价格的连续变化过程
数学意义:用无穷期的二叉树模型来逼近一个标的资产价格连续 变化的期权定价模型
2. 思路:推导出n期的二叉树模型,然后令n趋于无穷
Su4 Su3Su2 SuSu2 SuS
S
S
Sd
Sd
Sd2 Sd2
可能值,直到当前时刻 4. 对美式期权,需在每个结点处进行比较
该结点提前执行时期权的回报 VS 不提前执行时后一结点 期权价值到该点的贴现值
取较大者作为该结点的期权价值
期权定价
8
1. 假设标的资产为不付红利股票,其当前市场价为50元,波动 率为每年40%,无风险连续复利年利率为10%,该股票5个 月期的美式看跌期权协议价格为50元,求该期权的价值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p ,下降的概率假设为
相应地,期权价值也会有所不同,分别为 fu
和 fd 。
无套利定价法:
份股票多头和1份看涨期权空头 当 Su u Sd fd 。则组合为无风险组合
构造投资组合包括 此时

fu f d Su Sd
因为是无风险组合,可用无风险利率贴现,得
S f Su fu ert
f N , j max(S0u j d N j K ,0)
假定期权不被提前执行,则:
其中
j 0,1,
,N
fij ert [ pfi1, j 1 (1 p) fi1, j ] (0 i N ,0 j i)
(表示在时间 it 时第j个结点处的欧式看涨期权的价值)
e
( r q ) t
pu (1 p)d
t
e ( r q ) t d p ud
u e
d e
t
Derivagem求解例20-3,20-4
20.3 对于支付股息股票的二叉树模型
20.3.1 股息收益率是已知的情形
假设股息离散支付,股息收益率已知
可通过调整在各个结点上的股票价格,算出期权价格;
f 2,1 f 0, 0 2 t
f* f
20.2 采用二叉树对股指、货币与期货期权进行定 价
当对股指、货币和期货上的期权定价时,可以将这些标的资产看作是提供已 知收益率的资产。对于股指而言,收益率就是股指中股票组合的股息收益率;对 于货币而言,收益率等于外币无风险利率;对于期货合约而言,收益率等于无风 险利率。
若有提前执行的可能性,则:
fi, j max{ S0u j d N j K , ert [ pfi !, j 1 (1 p) fi 1, j ]}
20.1.6 估计Delta与其他希腊值
f1,1 f1, 0 S 0u S 0 d


[( f 2, 2 f 2,1 ) /(S0u 2 S0 )] [( f 2,1 f 2,0 ) /(S0 S0 d 2 )] 0.5 (S0u 2 S0 d 2 )
,i
1 u 由于 d ,使得许多结点是重合的,从而大大简化了树图。
20.1.4 通过树形倒推计算
得到每个结点的资产价格之后,就可以在二叉树模型中采用倒推定价法, 从树型结构图的末端T时刻开始往回倒推,为期权定价。
t 时间长度
如果是欧式期权,可通过将 内以无风险利率
T时刻的期权价值的预期值在
贴现求出每一结点上的期权价值; r
d e
t
以上可知,无套利定价法和风险中性定价法具有内在一致性。
20.1.3 资产价格的树形
Su4 Su3 Su2 Su S Sd Sd2 Sd3 Sd4 S S Sd Sd2 Su Su2
一般而言,在 it 时刻,证券价格有 i 1 种可能,它们可用符号表示为:
S0u j d i j 其中 j 0,1,
如果是美式期权,就要在树型持有
时间,到下一个时刻再执行期权,选择其中较 t
大者作为本结点的期权价值。
例20-1
DerivaGem示范
20.1.5 代数表达式
j i j 假设把一期权有效期划分成N个长度为 t 的小区间,同时用 S0u d
表示结点 (i, j ) 处的证券价格可得(以看涨期权为例):
20.1.2 确定p,u,d
在风险中性的条件下, 参数值满足条件:
Se
rt
pSu (1 p)Sd
e rt pu (1 p)d
假设证券价格遵循几何布朗运动,则:
2 t pu2 (1 p)d 2 pu (1 p)d 2
Rubinstein所用的条件)
i t 时刻结点的相应的证券价格
( i 为0时刻到 it 时刻之间所有除权日的总红利支付率)
20.3.2 已知股息数量的情形
在某些情形下,尤其是当期权的期限很短时,最符合现实的做法是假设已 知股息支付的数量而不是股息收益率。假设股票波动率 为常数,二叉树的 形状如下图所示。

f e r t pf u 1 p f d
其中
fu f d Su Sd 代入上式就可得到:
e rt d p ud
20.1.1 风险中性定价
在对衍生产品定价时,可以假定世界是风险中性的。
在风险中性世界里:
(1)所有可交易证券的期望收益都是无风险利率; (2)未来现金流可以用其期望值按无风险利率贴现。
基本数值方法
第20章
第20章 基本数值方法
20.1 二叉树 20.2 采用二叉树对股指、货币与期货期权定价 20.3 对于支付股息股票的二叉树模型
20.4 构造树形的其他方法
20.5 参数依赖于时间的情形 20.6 蒙特卡罗模拟法 20.7 方差缩减程序 20.8 有限差分法
20.1 二叉树
Su p S 1-p Sd
如果时刻 it 在除权日之前,则结点处股票价格仍为: Su j d i j , j 0,1, , i 如果时刻 it 在除权日之后,则结点处证券价格相应调整为:
S (1 )u j d i j
j 0,1,
,i
若在期权有效期内有多个已知红利率,则 为:S (1 i )u j d i j
S 2 2t pS 2u 2 (1 p)S 2d 2 S 2 [ pu (1 p)d ]2
u 1/ d(第三个条件的设定则可以有所不同, 这是Cox、Ross和 再设定:
e rt d p 由以上三式可得,当 t 很小时: ud
u e
t
从而
f e r t pf u 1 p f d
把期权的有效期分为很多很小的时间间 隔 ,并假设在每一个时间间隔 t 内证 t
券价格只有两种运动的可能: 1、从开始的 S 上升到原先的 2、下降到原先的 d 倍,即 Sd
u 倍,即到达 Su


t 时间内资产价格的变动
d 1 .如图所示。价格上升的概率假设为 其中 u 1, 1 p 。
相关文档
最新文档