蒙特卡洛模拟原理及步骤
蒙特卡洛方法

蒙特卡洛方法1、蒙特卡洛方法的由来蒙特卡罗分析法(Monte Carlo method),又称为统计模拟法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。
由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。
第二次世界大战时期,美国曼哈顿原子弹计划的主要科学家之一,匈牙利美藉数学家约翰·冯·诺伊曼(现代电子计算机创始人之一)在研究物质裂变时中子扩散的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,因此他采用摩洛哥著名赌城蒙特卡罗来命名这种计算方法,为这种算法增加了一层神秘色彩。
蒙特卡罗方法提出的初衷是用于物理数值模拟问题, 后来随着计算机的快速发展, 这一方法很快在函数值极小化、计算几何、组合计数等方面得到应用, 于是它作为一种独立的方法被提出来, 并发展成为一门新兴的计算科学, 属于计算数学的一个分支。
如今MC 方法已是求解科学、工程和科学技术领域大量应用问题的常用数值方法。
2、蒙特卡洛方法的核心—随机数蒙特卡洛方法的基本理论就是通过对大量的随机数样本进行统计分析,从而得到我们所需要的变量。
因此蒙特卡洛方法的核心就是随机数,只有样本中的随机数具有随机性,所得到的变量值才具有可信性和科学性。
在连续型随机变量的分布中, 最基本的分布是[0, 1]区间上的均匀分布, 也称单位均匀分布。
由该分布抽取的简单子样ξ1,ξ2ξ3 ……称为随机数序列, 其中每一个体称为随机数, 有时称为标准随机数或真随机数, 独立性和均匀性是其必备的两个特点。
真随机数是数学上的抽象, 真随机数序列是不可预计的, 因而也不可能重复产生两个相同的真随机数序列。
真随机数只能用某些随机物理过程来产生, 如放射性衰变、电子设备的热噪音、宇宙射线的触发时间等。
实际使用的随机数通常都是采用某些数学公式产生的,称为伪随机数。
蒙特卡罗方法(MC)

蒙特卡罗方法(MC)蒙特卡罗(Monte Carlo)方法:蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。
传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
这也是我们采用该方法的原因。
蒙特卡罗方法的基本原理及思想如下:当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。
这就是蒙特卡罗方法的基本思想。
蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。
它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。
可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。
蒙特卡罗解题三个主要步骤:构造或描述概率过程:对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。
即要将不具有随机性质的问题转化为随机性质的问题。
实现从已知概率分布抽样:构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。
最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。
随机数就是具有这种均匀分布的随机变量。
随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。
蒙特卡洛模拟通俗理解

蒙特卡洛模拟通俗理解蒙特卡洛模拟通俗理解蒙特卡洛模拟是一种基于随机抽样的数值计算方法,它可以用来估计某些复杂系统的性质。
这种方法的基本思想是通过随机抽样来模拟系统的行为,从而得到对系统性质的估计。
下面将对蒙特卡洛模拟进行详细介绍。
一、蒙特卡洛模拟的基本原理1.1 随机抽样蒙特卡洛模拟的核心是随机抽样。
在进行蒙特卡洛模拟时,我们需要从所研究问题的所有可能情况中,随机地选取一些情况进行研究。
这些情况被称为“样本”,而从中选取样本的过程被称为“随机抽样”。
1.2 统计规律在进行随机抽样后,我们可以根据所得到的数据来推断整个系统的性质。
这种推断是基于统计规律进行的,即我们可以根据所得到数据中出现频率较高的情况来推断整个系统中该情况出现的概率。
二、蒙特卡洛模拟在实际问题中的应用2.1 金融领域在金融领域中,蒙特卡洛模拟被广泛应用于风险管理和衍生品定价。
例如,在进行股票期权定价时,我们可以通过随机抽样来模拟股票价格的未来走势,并根据所得到的数据来计算期权的价格。
2.2 物理领域在物理领域中,蒙特卡洛模拟被用于研究复杂系统的性质。
例如,在研究分子运动时,我们可以通过随机抽样来模拟分子的运动轨迹,并根据所得到的数据来计算分子的平均速度和能量。
2.3 生物领域在生物领域中,蒙特卡洛模拟被用于研究生物分子的结构和功能。
例如,在研究蛋白质折叠过程中,我们可以通过随机抽样来模拟不同构象之间的转换,并根据所得到的数据来推断蛋白质最稳定的构象。
三、蒙特卡洛模拟的优缺点3.1 优点(1)适用范围广:蒙特卡洛模拟可以用于研究各种类型的系统,包括物理、化学、生物等领域。
(2)精度高:通过增加样本量,蒙特卡洛模拟可以得到非常精确的结果。
(3)易于实现:蒙特卡洛模拟只需要进行随机抽样和统计分析,因此实现起来比较简单。
3.2 缺点(1)计算量大:蒙特卡洛模拟需要进行大量的随机抽样和数据处理,因此计算量比较大。
(2)收敛速度慢:在一些情况下,蒙特卡洛模拟需要进行很多次随机抽样才能得到收敛的结果。
蒙特卡洛模拟法求积分

蒙特卡洛模拟法求积分1. 引言蒙特卡洛模拟法是一种基于随机采样的数值计算方法,被广泛应用于求解各种数学问题。
其中之一便是利用蒙特卡洛模拟法求解积分。
本文将介绍蒙特卡洛模拟法的基本原理、步骤以及在求解积分中的应用。
2. 蒙特卡洛模拟法基本原理蒙特卡洛模拟法以概率统计为基础,通过生成大量的随机样本来近似计算一个问题的解。
其基本原理可以概括为以下几个步骤:•随机生成样本:根据问题的要求,生成符合一定概率分布的随机样本。
•计算函数值:将每个随机样本代入目标函数中进行计算,得到对应的函数值。
•统计平均:对所有函数值进行求和并取平均,得到近似解。
3. 求解积分的蒙特卡洛模拟法步骤在使用蒙特卡洛模拟法求解积分时,需要按照以下步骤进行操作:步骤1:确定积分范围需要明确要求解的积分范围。
假设要求解的积分为∫f(x)dx,其中x的范围从a到b。
步骤2:确定随机样本生成规则根据积分范围确定随机样本生成规则。
可以使用均匀分布或其他概率分布来生成随机样本,确保样本覆盖整个积分区间。
步骤3:生成随机样本使用确定的随机样本生成规则,生成足够数量的随机样本。
通常情况下,生成的样本数越多,计算结果越接近真实值。
步骤4:计算函数值将每个随机样本代入目标函数f(x)中进行计算,得到对应的函数值。
这相当于在积分区间上进行采样,并计算采样点处的函数值。
步骤5:统计平均对所有函数值进行求和并取平均,得到近似解。
根据大数定律,当样本数量充足时,平均值将趋近于真实解。
4. 蒙特卡洛模拟法求解积分示例以下是一个使用蒙特卡洛模拟法求解积分的示例:假设要求解的积分为∫x^2dx,积分范围为0到1。
步骤1:确定积分范围。
积分范围为0到1。
步骤2:确定随机样本生成规则。
使用均匀分布生成随机样本。
步骤3:生成随机样本。
生成足够数量的随机样本,例如10000个。
步骤4:计算函数值。
将每个随机样本代入目标函数f(x)=x^2中进行计算,得到对应的函数值。
步骤5:统计平均。
蒙特卡罗模拟方法在金融衍生品定价中的应用

蒙特卡罗模拟方法在金融衍生品定价中的应用金融衍生品定价是金融领域中一个重要的课题,为了准确地计算衍生品的价格,需要运用适当的定价模型和方法。
蒙特卡罗模拟方法作为一种常用的计算方法,经常被应用于金融衍生品的定价中。
本文将介绍蒙特卡罗模拟方法的原理,以及在金融衍生品定价中的应用。
一、蒙特卡罗模拟方法原理蒙特卡罗模拟方法是一种基于随机数的数值计算方法,主要用于计算无法直接得到解析解的问题。
其基本思想是通过生成符合一定概率分布的随机数,通过重复实验进行求解。
蒙特卡罗模拟方法主要包括以下几个步骤:1. 确定模型和参数:首先,需要确定适用于定价的模型和相应的参数。
根据不同类型的金融衍生品,选择不同的模型来描述其价格变动的随机过程。
2. 设定初始条件:根据实际情况,设定衍生品定价的初始条件,例如初始价格、到期时间等。
3. 生成随机数:通过随机数生成器生成符合预设概率分布的随机数,用于模拟金融资产价格的随机波动。
4. 计算衍生品价格:利用生成的随机数和模型参数,进行多次模拟实验,得到多个可能的价格路径。
通过对这些价格路径进行处理,得到衍生品的合理价格估计。
5. 统计分析:对多次模拟实验的结果进行统计分析,计算平均值、方差以及其他感兴趣的统计指标。
6. 评估风险:利用蒙特卡罗模拟方法可以对衍生品价格的不确定性进行评估,帮助投资者、企业和金融机构更好地管理金融风险。
二、 1. 期权定价:蒙特卡罗模拟方法在期权定价中广泛应用。
通过模拟资产价格的随机波动,可以计算出期权的价值。
特别是对于欧式期权,可以通过模拟实验得到价格路径,再通过回归方法计算出期权的理论价格。
2. 固定收益衍生品定价:蒙特卡罗模拟方法也可以应用于固定收益衍生品的定价。
例如,通过模拟随机利率的变动,可以计算出利率互换的价格。
同时,也可以通过模拟随机到期收益率来估算信用违约掉期的价格。
3. 商品期货定价:对于商品期货的定价,蒙特卡罗模拟方法同样具有一定的优势。
蒙特卡洛模拟原理及步骤

二、蒙特卡洛模拟原理及步骤(一)蒙特卡洛模拟原理:经济生活中存在大量的不确泄与风险问题,很多确定性问题实际上是不确定与风险型问题的特例与简化,财务笛理、管理会计中同样也存在大量的不确定与风险型问题,由于该问题比较复杂,一般教材对此问题涉及较少,但利用蒙特卡洛模拟可以揭示不确龙与风险型问题的统计规律,还原一个真实的经济与管理客观而貌。
与常用确龙性的数值计算方法不同,蒙特卡洛模拟是用来解决工程和经济中的非确定性问题,通过成千上万次的模拟,涵盖相应的可能概率分布空间,从而获得一左概率下的不同数据和频度分布,通过对大量样本值的统计分析,得到满足一左精度的结果,因此蒙特卡洛模拟是进行不确定与风险型问题的有力武器。
1、由于蒙特卡洛模拟是以实验为基础的,因此可以成为财务人员进行风险分析的“实验库”, 获得大呈:有关财务风险等方而的信息,弥补确左型分析手段的不足,避免对不确左与风险决策问题的误导;2、财务管理、笛理会计中存在大量的不确定与风险型问题,目前大多数教材很少涉及这类问题,通过蒙特卡洛模拟,可以对英进行有效分析,解决常用决策方法所无法解决的难题,更加全而深入地分析不确能与风险型问题。
(二)蒙特卡洛模拟步骤以概率型量本利分析为例,蒙特卡洛模拟的分析步骤如下:1、分析评价参数的特征,如企业经营中的销售数量、销售价格、产品生产的变动成本以及固泄成本等,并根据历史资料或专家意见,确左随机变量的某些统计参数;2、按照一左的参数分布规律,在计算机上产生随机数,如利用EXCEL提供的RAND函数, 模拟量本利分析的概率分布,并利用VLOOKUP寻找对应概率分布下的销售数量、销售价格、产品生产的变动成本以及固定成本等参数;3、建立管理会计的数学模型,对于概率型量本利分析有如下关系式,产品利润=产品销售数量X (产品单位销售价格-单位变动成本)-固左成本,这里需要说明的是以上分析参数不是确定型的,是依据某些概率分布存在的:4、通过足够数量的讣算机仿真,如文章利用RAND、VLOOKUP等函数进行30000次的模拟,得到30000组不同概率分布的各参数的排列与组合,由于模拟的数量比较大,所取得的实验数据具有一定的规律性;5、根据计算机仿真的参数样本值,利用函数MAX. MIN、AVERAGE等,求出概率型量本利分析评价需要的指标值,通过对大量的评价指标值的样本分析,得到量本利分析中的利润点可能的概率分布,从而掌握企业经营与财务中的风险,为财务决策提供重要的参考。
蒙特卡洛方法的原理和应用

蒙特卡洛方法的原理和应用1. 简介蒙特卡洛方法是一种基于随机采样的数值计算方法,被广泛应用于解决各种复杂的数学问题和科学工程中。
它的原理是利用随机抽样进行近似计算,通过大量的重复实验来逼近真实结果。
蒙特卡洛方法通常适用于无法通过解析方法或传统数值计算方法求解的问题,在金融、物理、计算机科学等领域都有重要应用。
2. 原理蒙特卡洛方法的核心思想是通过随机采样来模拟实际问题,并基于统计学原理对采样结果进行分析。
其基本步骤包括:2.1 随机采样蒙特卡洛方法通过随机生成符合特定概率分布的随机变量来模拟问题。
这些随机变量可以是在特定区间内均匀分布的随机数或服从其他概率分布的随机数。
通过生成大量的随机样本,可以在一定程度上表示整个概率分布或问题的特性。
2.2 模拟实验通过将生成的随机样本带入问题的模型或函数中,进行一系列的模拟实验。
模拟实验的目的是模拟真实情况下的不确定性和随机性,并通过大量实验的结果来近似问题的解。
2.3 统计分析在得到大量模拟实验的结果后,使用统计学方法对实验结果进行分析。
常见的统计分析方法包括均值估计、方差估计、置信区间计算等,来评估模拟实验的准确性和可靠性。
3. 应用蒙特卡洛方法在各个领域都有广泛的应用,以下列举几个典型的应用场景:3.1 金融领域在金融风险管理和衍生品定价中,蒙特卡洛方法被广泛用于评估投资组合的风险和收益。
通过模拟股票价格和市场变化,可以对不同投资策略的风险和收益进行评估,帮助投资者做出决策。
3.2 物理学领域在复杂的物理模型中,蒙特卡洛方法可以用来解决各种难以求解的问题。
例如,在高能物理中,蒙特卡洛方法被广泛用于模拟粒子的行为和相互作用,以及探测器的性能评估等。
3.3 计算机科学领域在计算机科学中,蒙特卡洛方法常被用于优化问题的求解。
通过随机搜索和采样,找到问题的可行解并进行优化。
此外,在机器学习中也有一些算法使用蒙特卡洛方法进行模型训练和推断。
3.4 工程领域在工程领域,蒙特卡洛方法可以用来模拟和优化不同的系统。
蒙特卡罗法生成服从正态分布的随机数

《蒙特卡罗法生成服从正态分布的随机数》一、引言“蒙特卡罗法”这一词汇,源自于蒙特卡罗赌场,是一种通过随机抽样和统计模拟来解决问题的方法。
而生成服从正态分布的随机数,是在数理统计、金融工程、风险管理等领域中常常遇到的问题。
在本文中,我们将探讨如何利用蒙特卡罗法生成服从正态分布的随机数,从而可以更深入地理解这一方法并应用于实际问题中。
二、蒙特卡罗法的基本原理蒙特卡罗法是一种基于随机抽样的方法,通过对概率模型进行模拟实验来获取近似解。
对于生成服从正态分布的随机数,我们可以利用蒙特卡罗法来模拟正态分布的概率密度函数,从而得到符合正态分布的随机数。
在生成正态分布的随机数时,我们可以采用以下步骤:1. 生成服从均匀分布的随机数2. 利用反函数法将均匀分布的随机数转化为正态分布的随机数3. 进行模拟实验,不断调整参数,直至生成的随机数符合所需的正态分布三、蒙特卡罗法生成正态分布的随机数的具体步骤1. 生成服从均匀分布的随机数我们可以利用随机数发生器生成服从均匀分布的随机数。
均匀分布的概率密度函数为f(x) = 1,x∈[0,1]。
我们可以生成若干个0到1之间的随机数作为初始值。
2. 利用反函数法将均匀分布的随机数转化为正态分布的随机数利用反函数法,我们可以将服从均匀分布的随机数转化为服从正态分布的随机数。
正态分布的累积分布函数为Φ(x) = ∫(-∞,x) (1/√(2π) * exp(-t^2/2)dt,而其反函数可以通过查表或近似计算得到。
利用反函数法,我们可以将生成的均匀分布的随机数通过正态分布的反函数转化为符合正态分布的随机数。
3. 进行模拟实验,不断调整参数,直至生成的随机数符合所需的正态分布在生成的随机数不符合所需的正态分布时,我们可以不断地调整参数、增加模拟实验的次数,直至得到符合所需的正态分布的随机数。
四、总结与回顾通过蒙特卡罗法生成服从正态分布的随机数,我们可以发现这一方法的灵活性和强大性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、蒙特卡洛模拟原理及步骤
(一)蒙特卡洛模拟原理:经济生活中存在大量的不确定与风险问题,很多确定性问题实际上是不确定与风险型问题的特例与简化,财务管理、管理会计中同样也存在大量的不确定与风险型问题,由于该问题比较复杂,一般教材对此问题涉及较少,但利用蒙特卡洛模拟可以揭示不确定与风险型问题的统计规律,还原一个真实的经济与管理客观面貌。
与常用确定性的数值计算方法不同,蒙特卡洛模拟是用来解决工程和经济中的非确定性问题,通过成千上万次的模拟,涵盖相应的可能概率分布空间,从而获得一定概率下的不同数据和频度分布,通过对大量样本值的统计分析,得到满足一定精度的结果,因此蒙特卡洛模拟是进行不确定与风险型问题的有力武器。
1、由于蒙特卡洛模拟是以实验为基础的,因此可以成为财务人员进行风险分析的“实验库”,获得大量有关财务风险等方面的信息,弥补确定型分析手段的不足,避免对不确定与风险决策问题的误导;
2、财务管理、管理会计中存在大量的不确定与风险型问题,目前大多数教材很少涉及这类问题,通过蒙特卡洛模拟,可以对其进行有效分析,解决常用决策方法所无法解决的难题,更加全面深入地分析不确定与风险型问题。
(二)蒙特卡洛模拟步骤以概率型量本利分析为例,蒙特卡洛模拟的分析步骤如下:
1、分析评价参数的特征,如企业经营中的销售数量、销售价格、产品生产的变动成本以及固定成本等,并根据历史资料或专家意见,确定随机变量的某些统计参数;
2、按照一定的参数分布规律,在计算机上产生随机数,如利用EXCEL提供的RAND函数,模拟量本利分析的概率分布,并利用VLOOKUP寻找对应概率分布下的销售数量、销售价格、产品生产的变动成本以及固定成本等参数;
3、建立管理会计的数学模型,对于概率型量本利分析有如下关系式,产品利润=产品销售数量×(产品单位销售价格-单位变动成本)-固定成本,这里需要说明的是以上分析参数不是确定型的,是依据某些概率分布存在的;
4、通过足够数量的计算机仿真,如文章利用RAND、VLOOKUP等函数进行30000次的模拟,得到30000组不同概率分布的各参数的排列与组合,由于模拟的数量比较大,所取得的实验数据具有一定的规律性;
5、根据计算机仿真的参数样本值,利用函数MAX、MIN、A VERAGE等,求出概率型量本利分析评价需要的指标值,通过对大量的评价指标值的样本分析,得到量本利分析中的利润点可能的概率分布,从而掌握企业经营与财务中的风险,为财务决策提供重要的参考。
三、概率型量本利分析与比较
(一)期望值分析方法假设某企业为生产与销售单一产品的企业,经过全面分析与研究,预计未来年度的单位销售价格、销售数量、单位变动成本和固定成本的估计值及相应的概率如表1,其中销售数量单位为件,其余反映价值的指标单位为元,试计算该企业的生产利润。
表1概率型量本利分析参数
项目概率数值
单位销售价格0.3 40
0.4 43
0.3 45
单位变动成本0.4 16
0.2 18
0.4 20
固定成本0.6 28000
0.4 30000
销售数量0.2 1000
0.3 1400
0.3 1750
0.2 2000
按照一般教材介绍的期望值分析方法,其计算过程如下:
单位销售价格的期望值=0.3×40+0.4×43+0.3×45=42.7元,
单位变动成本的期望值=0.4×16+0.2×18+0.4×20=18元,
固定成本的期望值=0.6×28000+0.4×30000=28800元,
销售数量的期望值=0.2×1000+0.3×1400+0.3×1750+0.2×2000=1545件,则该企业的利润期望值=1545×(42.7-18)-28800=9361.5元。
从上述计算过程可知,以上实际上反映的是大样本的统计规律,与某个体财务状况不一定一致,为了弥补期望值分析方法的不足,现引入蒙特卡洛模拟进行分析。
(二)蒙特卡洛模拟及分析
1、蒙特卡洛模拟使用的主要函数论文采用电子表格EXCEL软件提供的相关函数进行模拟分析,这些主要的函数名称与功能如下:(1)RAND:利用该函数产生0—1之间的平均分布随机数;(2)COUNTIF:计算某个区域中满足给定条件的单元格数目;(3)VLOOKUP:搜索表区域首列满足条件的元素,确定待检索单元格在区域中的行序号,再进一步返回选定单元格的值。
2、蒙特卡洛模拟的结果及分析
(1)蒙特卡洛模拟的数值特征期望值计算方法实际上只能反映一种总体规律,对于足够大的样本来说,反映了某种指标的平均值,如该论文采用30000次的模拟,其产品利润的平均值为9345元,与期望值计算的9361.5元接近,但是期望值法忽视了对某特定个体的分析,甚至会对决策产生误导。
蒙特卡洛模拟克服了上述不足,按照量本利指标的随机性,如本文案例中共有3×3×2×4=72种排列组合,根据一定的概率分布随机交替的出现,当模拟次数达到足够数量时,其模拟样本的平均值逐步逼近期望值,在案例中的72种量本利排列组合中,有53种量本利组合为正,18种量本利组合为负,1种量本利组合为零。
在各种量本利组合中,产品销售数量是一个非常重要的参数,当销售数量为1000件时,18种组合中仅有1个利润为正;而当销售数量为1400件,18种组合中有2个利润分别为零和负,当销售数量为1750与2000时,此时36种组合中所有利润均为正值,在这72种量本利排列组合中,有5种特殊的组合,详细情况见表2。
表2 5种典型量本利组合
序号销售数量销售单价变动成本固定成本利润
1 2000 45 16 28000 30000
2 1400 45 18 28000 9800
3 1400 43 16 28000 9800
4 1400 40 20 28000 0
5 1000 40 20 30000 -10000
从表2可以看出,当销售数量、销售单价取最大值,变动成本、固定成本取最小值时,此时利润取得最大值,当销售数量、销售单价取最小值,变动成本、固定成本取最大值时,此时利润取得最小值,而序号2、3的量本利组合最接近利润的期望值,序号4的量本利组合利
润为零。
(2)蒙特卡洛模拟的概率分析模拟数量的多少取决于对指标精度的要求,本次模拟30000次的利润平均值为9345元,而利润期望值9361.5元,两者误差仅为0.18%,符合一般预测的精度要求。
在对30000次随机数据统计中,各区间和典型利润的概率分布见表3、4,从表3可知利润在10000—20000之间的概率最大,从表4可知利润出现最大、最小或为0的概率较小,当然作为管理阶层与财务人员也应该提高警觉,采取切实可行的防范措施,防止不利的小概率事件的发生。
表3 利润取值范围及出现概率
序号利润取值范围模拟区域数量出现概率
1 [-10000,0] 6618 22.06%
2 (0,10000] 8878 29.59%
3 (10000,20000] 10695 35.65%
4 (20000,30000] 3809 12.70%
表4 典型利润取值范围及出现概率
序号典型利润点模拟出现数量出现概率
1 -10000 289 0.96%
2 0 670 2.23%
3 9800 1189 3.96%
4 30000 404 1.35%
1、运用蒙特卡洛模拟进行概率型的量本利分析相对比较复杂,但是所获取的信息要丰富,甚至可以涵盖期望值分析,是对确定型量本利分析的进一步拓展。
2、概率型量本利分析尤其适用于不确定与风险环境下的财务分析,它所反映的信息体现了风险管理的思想,比较贴近客观复杂的现实经济实际,如高新技术环境下的财务分析。
3、本文所介绍的是离散型随机量本利问题,采用常用的EXCEL软件进行模拟,对于更加复杂的连续型随机量本利问题,也可采用相类似的方法进行分析。