圆柱的体积复习课导学案
2023年人教版数学六年级下册第10课圆柱的体积导学案(优选3篇)

人教版数学六年级下册第10课圆柱的体积导学案(优选3篇)〖人教版数学六年级下册第10课圆柱的体积导学案第【1】篇〗一、教学内容:人教版教材六年级下册19——20页例5例6及相关的练习题。
二、教学目标:1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历“类比猜想——验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积。
并会解决一些简单的实际问题。
3、注意渗透类比、转化思想。
三、教学重点:理解、掌握圆柱体积计算的公式,能运用公式正确地计算圆柱的体积。
四、教学难点:推导圆柱的体积计算公式。
五、教法要素:1、已有的知识和经验:体积、体积单位,学习长方体正方体的体积公式的经验。
2、原型:圆柱模型。
3、探究的问题:(1)圆柱的体积和什么有关?圆柱能否转化成已学过的立体图形来计算体积?(2)把圆柱拼成一个近似的长方体后,长方体的长、宽、高是圆柱的哪个部分?(3)怎样计算圆柱的体积?六、教学过程:(一)唤起与生成。
1、什么叫物体的体积?我们学过哪些立体图形的体积计算?2、长方体和正方体的体积怎样计算?它们可以用一个公式表示出来吗?切入教学:怎样计算圆柱的体积?圆柱的体积计算会和什么有关?(二)探究与解决。
探究:圆柱的体积1、提出问题,启发思考:如何计算圆柱的体积?2、类比猜测,提出假设:结合长方体和正方体体积计算的知识,即长方体和正方体的体积都等于底面积×高,据此分析并猜测圆柱的体积与谁有关,有什么关系;提出假设,圆柱的体积可能等于底面积×高。
3、转化物体,分析推理:怎样来验证我们的猜想?我们在学圆的面积时是把圆平均分成若干份,然后拼成一个近似的长方形,推导出圆的面积计算公式。
我们能不能也把圆柱转化为我们学过的立体图形呢?应该怎样转化?结合圆的面积计算小组讨论。
学生汇报交流。
(拿出平均分好的圆柱模型,圆柱的底面用一种颜色,圆柱的侧面用另一种颜色,以便学生观察。
2023年人教版数学六年级下册圆柱的体积导学案(优选3篇)

人教版数学六年级下册圆柱的体积导学案(优选3篇)〖人教版数学六年级下册圆柱的体积导学案第【1】篇〗尊敬的各位领导、老师:大家好!今天,我说课的内容是北师大版小学数学六年级下册《圆柱的体积》。
一、把握教材,目标定位《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。
圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。
根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。
2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。
探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。
教学的重点和难点:由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。
其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
二、把握学情,选择教法(一)学情分析六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
(二)、选择教法,实践课题。
《新课程标准》指出:数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的力量。
同时我紧密结合自己的课题“培养学生自主合作学习能力与学生数学素养的策略研究”、“在数学课上如何激发学生的学习兴趣”。
六年级下册数学教案-《圆柱体积》导学案 北师大版

六年级下册数学教案-《圆柱体积》导学案北师大版教学目标通过本节课的学习,学生应达到以下目标:1. 理解并掌握圆柱体积的计算公式,并能运用其解决实际问题。
2. 培养学生的空间想象能力和逻辑思维能力。
3. 培养学生合作学习和自主探究的能力。
教学重点与难点教学重点1. 圆柱体积的计算公式。
2. 圆柱体积公式的推导过程。
教学难点1. 圆柱体积公式的理解和应用。
2. 圆柱体积公式的推导过程。
教学方法1. 讲授法:讲解圆柱体积的概念、计算公式及其应用。
2. 演示法:通过实物模型或多媒体演示,帮助学生理解圆柱体积的计算过程。
3. 小组讨论法:分组讨论圆柱体积公式的推导和应用,培养学生的合作学习能力和问题解决能力。
教学过程一、导入1. 复习回顾:引导学生回顾已学的长方体和正方体的体积计算方法,为新课的学习做好铺垫。
2. 提出问题:如何计算圆柱的体积?二、新课讲解1. 讲解圆柱体积的概念:圆柱体积是指圆柱所占空间的大小。
2. 讲解圆柱体积的计算公式:圆柱体积 = 底面积× 高。
3. 讲解圆柱体积公式的推导过程:通过将圆柱切割成若干等份,再拼凑成一个长方体,从而推导出圆柱体积公式。
三、巩固练习1. 让学生完成教材中的练习题,巩固圆柱体积的计算方法。
2. 老师针对学生的错误进行讲解和指导。
四、拓展与应用1. 让学生探讨如何计算生活中遇到的圆柱体积问题,如圆柱形水桶的容积等。
2. 引导学生运用所学的圆柱体积知识解决实际问题。
五、课堂小结1. 让学生总结本节课所学的圆柱体积知识。
2. 老师点评并总结本节课的教学内容。
六、课后作业1. 完成教材中的课后习题。
2. 观察生活中的圆柱体积问题,并尝试解决。
教学反思1. 教学过程中,注意关注学生的学习情况,及时调整教学方法和节奏。
2. 注重培养学生的动手操作能力和问题解决能力。
3. 鼓励学生积极参与课堂讨论,提高学生的合作学习能力。
通过本节课的学习,学生应能理解和掌握圆柱体积的计算公式,并能运用其解决实际问题。
2024年人教版数学六年级下册第10课圆柱的体积导学案3篇

人教版数学六年级下册第10课圆柱的体积导学案3篇〖人教版数学六年级下册第10课圆柱的体积导学案第【1】篇〗一、教学过程(一)课堂导入1.带领学生回顾之前所学习过的长方体、圆锥的体积计算方法方法,以及长方体、圆锥的特征。
长方体的体积=底面积×高(V=S·h)圆锥的体积=底面积×高(V=S·h)特征:都有底面、侧面、高、顶点2.试问学生圆柱体的体积应该怎么算?(让学生进行大胆的猜测)学生说完之后,至于对不对?是不是学生所说的那样的计算方法?教师先做以保留。
评析:通过回顾之前所学的内容,引出本节课教学内容,既可以很好的导入本节课所学内容,又可以让学生对之前所学的内容进行巩固。
另外,可以间接的告诉学生本节课所学的内容与之前学习的长方体、体圆锥体积的学习有着紧密联系。
第二环节问题的提出,又不直接进行回答,可以激发学生学习、探索新知识的兴趣。
(二)圆柱体积计算方法一:实践操作1.教师拿出课前准备好的教具,同底等高的圆柱体和圆锥体的容器各一个,让学生们观察这两个物体的共同点。
学生:一个是圆柱体,一个是圆锥体。
他们的底面相同,高相等。
2.随后教师将圆锥体容器装满水倒入圆柱体容器中,一共倒了三次将圆柱体装满水。
通过教师的这一实验,让学生们谈谈自己的发现。
学生:圆锥体容器里装水的多少代表圆锥体的体积有多大,圆锥体装满水,倒了三次才将圆柱体倒满,说明圆柱体的体积是圆锥体提及的三倍。
所以,圆柱体的体积=3×圆锥的体积=3×底面积×高学到这里,对课堂一开始提出的如何計算圆柱体体积的答案就可显而知了。
教师:注意我们刚开始拿的这两个容器他们是同底等高,如果圆柱和圆锥不是同底等高的话,那么圆柱的体积将不能说是圆锥的体积的3倍。
任何一个圆柱体积都是和它同底等高的圆锥的体积的3倍。
(三)圆柱体积计算方法二:动画演示通过多媒体技术,将圆柱转化为之前所学过的物体体积,引导学生学习圆柱的体积。
六年级下学期数学圆柱的体积(导学案)

圆柱的体积导学案一、学习目标:1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,会运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力3、渗透转化思想,培养学生的自主探索意识。
二、学习重难点:学习重点:掌握圆柱体积的计算公式。
学习难点:圆柱体积的计算公式的推导。
三、自主学习:1.一个圆柱所占的空间的大小,叫做这个圆柱的体积。
怎样计算圆柱的体积呢?试一试能不能把圆柱转化为我们学过的立体图形,来计算它的体积?(提示:想一想,圆的面积公式是怎么推导出来的?)圆柱的高相当于长方体的,圆柱的底面积相当于长方体的,因为长方体的体积= ,因此圆柱的体积= 。
如果用V表示圆柱的体积,用S表示圆柱的底面积,用h表示圆柱的高,圆柱的体积公式用字母表示为:2.一个圆柱形容器所能容纳的物体的体积,叫做这个圆柱的容积。
例如:圆柱形的水杯、水桶,它们装满水的体积,就是水杯、水桶的容积。
圆柱的容积= 。
三、合作探究1.在计算过程中,有的并不是直接给出圆柱的底面积,而是给出底面半径或直径,我们应先求出,再求圆柱的体积。
2.若在计算过程中,给出底面周长,我们先求,再求,最后求圆柱的体积。
四、当堂检测1.一个圆柱形木料,底面积为75平方厘米,长90厘米。
它的体积是多少?2.光明村李大伯家挖一口圆柱形的水井,底面周长是3.14米,深是4米,挖出了多少立方米的土?3.一个装满稻谷的圆柱形粮囤,底面面积为2平方米,高为80厘米,每立方米稻谷的质量约为700千克,这个粮囤存放的稻谷的质量约为多少千克?答案二、自主学习:1.高底面积底面积×高底面积×高 V= Sh2.底面积×高三、合作探究:1.底面积2.半径底面积四、当堂检测1. 75×90=6750(立方厘米)2. 3.14÷3.14÷2=0.5(米)3.14×0.5×0.5×4=3.14(立方米)3. 80厘米=0.8米2×0.8×700=1120(千克)。
2024年人教版数学六年级下册圆柱的体积导学案3篇

人教版数学六年级下册圆柱的体积导学案3篇〖人教版数学六年级下册圆柱的体积导学案第【1】篇〗教学内容:教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。
教学目标:1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。
重点难点:掌握圆柱体积公式的推导过程。
教学资源:PPT课件圆柱等分模型教学过程:一、联系旧知,设疑激趣,导入新课。
1.呈现例4中长方体、正方体和圆柱的直观图。
2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。
二、动手操作,探索新知,教学例41.观察比较引导学生观察例4的三个立体,提问⑴这三个立体的底面积和高都相等,它们的体积有什么关系?⑵长方体和正方体的体积一定相等吗?为什么?⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?2.实验操作⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。
那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。
⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。
2023-2024学年六年级下学期数学圆柱的体积(导学案)

2023-2024学年六年级下学期数学圆柱的体积(导学案)一、教学目标1. 让学生掌握圆柱的体积公式,并能运用公式解决实际问题。
2. 培养学生的空间想象能力和抽象思维能力。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 圆柱的体积公式2. 圆柱体积公式的推导3. 圆柱体积公式的应用三、教学重点与难点1. 教学重点:圆柱的体积公式及其应用。
2. 教学难点:圆柱体积公式的推导过程。
四、教学过程1. 导入:通过复习长方体和正方体的体积公式,引导学生思考圆柱体积的计算方法。
2. 探究:让学生分组讨论,如何计算圆柱的体积。
引导学生发现圆柱体积与长方体体积之间的关系。
3. 讲解:讲解圆柱体积公式的推导过程,强调圆柱体积等于底面积乘以高。
4. 练习:布置一些关于圆柱体积的练习题,让学生独立完成,巩固所学知识。
5. 应用:让学生运用圆柱体积公式解决实际问题,如计算圆柱形水桶的容量等。
6. 总结:对本节课的内容进行总结,强调圆柱体积公式的应用。
五、作业布置1. 课后练习:完成教材中的圆柱体积练习题。
2. 拓展思考:思考如何计算其他几何体的体积,如圆锥、球等。
六、教学反思在教学过程中,要注意引导学生主动参与,培养学生的空间想象能力和抽象思维能力。
同时,要关注学生的学习反馈,及时调整教学方法,提高教学效果。
七、教学评价通过课后练习和课堂表现,评价学生对圆柱体积公式的掌握程度,以及运用公式解决实际问题的能力。
八、教学建议1. 在教学过程中,注重启发式教学,引导学生主动思考,培养学生的创新意识。
2. 针对不同学生的学习特点,因材施教,提高教学质量。
3. 加强课后辅导,帮助学生巩固所学知识,提高学习效果。
需要重点关注的细节是圆柱体积公式的推导过程。
这个过程是理解圆柱体积计算方法的关键,也是培养学生空间想象能力和抽象思维能力的良好机会。
以下是对这个重点细节的详细补充和说明。
圆柱体积公式的推导过程:1. 引入长方体和正方体的体积计算方法,作为圆柱体积计算的前置知识。
圆柱的体积 导学案

V = S×h
独立思考,组内合作交流,通过实践体会新知。
学生交流,并操作演示。
组内讨论,总结汇报,组长负责组织,由中心发言人汇报,其他同学补充完善。
引导学生反思。
三、巩固强化,达标测验
1:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求?
①知道圆柱的底面积和高,可以求圆柱的体积。完成练习七的第1题:填表。
学习重点:
掌握和运用圆柱体积计算公式进行正确计算。
学习难点
.理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
学案
导案
一、复习导入、揭示课题
1,什么叫体积?我们学会计算哪些立体图形和圆柱的直观图。
3、根据已学的长方体和正方体的体积计算方法,你能猜猜圆柱体的体积是怎样计算的吗?
2、小组讨论、交流。
(1)你准备把圆柱体转化成什么立体图形?(2)你是怎样转化成这个立体图形的?
(3)转化以后的立体图形和圆柱体之间有什么关系?
3、推导圆柱体积公式。学生交流,操作演示。
(1)把圆柱体转化成长方体。
(2)怎样转化成长方体呢?你会操作吗?(指名叙述:把圆柱体底面平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。))
说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。
(3)比一比:推导出的长方体与圆柱体什么变了?什么没变?(形状变了,体积大小没变。)
(4)讨论:切拼成的长方体与圆柱体有什么关系?切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。
(5)圆柱的体积怎样计算?用字母公式,怎样表示?
圆柱的体积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆柱的表面积与体积》复习导学案
【学习目标】:1、使学生熟练掌握圆柱表面积,体积的计算方法,并能正确地进行计算。
2、使学生能综合运用所学知识解决有关实际问题,发展学生的应用意识。
3、形成解决问题和策略,发展学生的实践能力。
【学习重点】:掌握圆柱表面积、体积的计算公式,并能正确地计算。
【学习难点】:综合应用计算公式解决实际问题。
【基础练习】: 1、把圆柱的侧面沿 展开,得到一个 形,它的长等于圆柱的 ,
宽等于 ,所以侧=S 表=S
2、把圆柱的底面平均分成若干扇形,然后按照等分线并沿着圆柱的高把圆柱切开,可
以拼成一个近似的 ,它的底面积等于 ,它的高等于
,所以圆柱V
= 2、算一算
(1) 一个圆柱体底面半径10cm ,高20cm ,它的表面积是 2cm ,体积是 3cm (结
果可以保留π)
(2)右图的圆柱体的表面积是 2cm ,体积是 3cm
(3) 一个圆柱体积是94.23cm ,底面直径4cm ,它的高是 cm (4)一个圆柱形铁皮水桶(无盖),高8dm ,底面直径是高的3/4,做一对这样的水桶大约
要铁皮 2
dm (结果可以保留π)
【灵活运用】:
1、圆柱的底面圆直径是3cm,侧面展开图是一个正方形,那么它的高是 cm.
2、一个圆柱体的底面半径扩大到原来的3倍,高不变,那么它的体积扩大到原来的
( ) A 、3倍 B 、6倍 C 、9倍 D 、27倍
3、将一个长6分米的圆柱形钢材,切割成2节小圆柱体后,(损耗不计),表面积比原
来增加了20平方厘米。
已知每立方厘米钢重7.8克,这两节钢材共重多少克?
h
8cm
C=31.4cm
4、一个圆柱形水槽里面盛有10厘米深的水,水槽的底面积是300平方厘米。
将一个棱长6厘米的正方体铁块放入水中,水面将上升几厘米?
cm,那么这个圆柱体原来的5、一个圆柱高4cm,如果高增加1cm,它的表面积就增加50.242
体积是多少?
【自悟自得】通过本节课的复习,你有哪些新的收获?(小组交流)
①
②
【当堂检测】
1、一个圆柱形水池底面直径8米,池深3米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池修好后最多能盛水多少立方米?
2、一个圆柱底面半径是8厘米,高是6厘米,沿这个圆柱的底面直径将圆柱平均分成两份,这时表面积比原来增加了多少平方厘米?
【课后思考】
cm,现在瓶中有一些饮料,某种饮料瓶的瓶身呈圆柱形(瓶颈部分忽略不计)容积是4623
正放时饮料的高度是12cm,倒放时饮料瓶空余部分的高度是2cm,那么瓶内现有饮料有多少立方厘米?
《整理和复习》导学案
【学习目标】
1、使学生较为系统地掌握圆柱和圆锥的基础知识,进一步理解圆柱、圆锥的关系,能正确解决有关实际问题。
2、形成解决问题的策略,发展学生的实践能力。
【学习重点】掌握相关计算公式,并能正确地计算。
【学习难点】综合应用计算公式解决实际问题。
【学法指导】自主探究、合作交流
【学习内容】
课前
【知识链接】
1、已知下列条件,怎样求圆柱的表面积与体积?
已知底面半径和高,求表面积:求体积:
已知底面直径和高,求表面积:求体积:
已知底面周长和高,求表面积:求体积:
2、已知下列条件,怎样求圆锥的体积?
已知底面半径和高:
已知底面直径和高:
已知底面周长和高:
3、一根圆木底面的直径和高都是4分米,这个圆柱体的体积是()立方分米。
4、量得一个圆柱体饮料罐底面半径是2厘米,高是半径的4倍,这个饮料罐体积是()立方厘米。
5、在建筑工地上有一堆圆锥体黄沙。
底面半径是10米,高是3米,如果每立方米黄沙重1.8吨,这堆黄沙约重多少吨?
课中
【小组合作】
1、将一个底面直径是20厘米,高为12厘米的金属圆锥体,全部浸没在直径是40厘米的圆柱形水槽中,水槽水面会升高多少厘米?
2、用铁皮做一个无盖的圆柱形水桶,底面周长是12.56分米,高10分米。
做这个水桶至少需要多少平方分米铁皮?这个水桶最多可以盛水多少升?
3、一个圆柱形水槽里面盛有10厘米深的水,水槽的底面积是300平方厘米。
将一个棱长6厘米的正方体铁块放入水中,水面将上升几厘米?
【班级展示】请同学们积极展示本组的学习成果,认真倾听,大胆发表看法。
【质疑探究】通过我们的自学和交流,你还有什么问题?(感到疑惑、困难或有不同看法的问题)
【自悟自得】通过本节课的复习,你有哪些新的收获?(小组交流)
【当堂检测】
1、一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米,池深1.2米。
镶瓷砖的面积是多少平方米?
2、有一个圆柱形粮囤,从里面量,它的底面半径是3米,高是2.5米。
稻谷按每立方米550千克计算,这个装满粮食的粮囤约装有多少吨稻谷?
3、把高是10厘米的圆柱切拼成一个近似的长方体后,表面积增加了60平方厘米。
圆柱的体积是多少立方厘米?
课后
【课后反思】教(学)后记:。