卢瑟福原子核式模型α粒子散射试验
简述卢瑟福a粒子散射实验现象和意义

简述卢瑟福a粒子散射实验现象和意义引言:卢瑟福a粒子散射实验是20世纪初物理学家卢瑟福进行的一项重要实验,通过该实验,卢瑟福首次观察到了原子核的存在,从而为原子结构的研究奠定了基础。
本文将对卢瑟福a粒子散射实验的现象和意义进行简述。
一、实验现象:卢瑟福a粒子散射实验的基本现象是,将高速射入金箔的a粒子被金属原子核散射的过程。
实验中观察到以下几个重要现象:1. 大部分a粒子直线穿过金箔:实验结果显示,大部分a粒子直线穿过金箔,没有或只有微小的偏转。
这说明了原子中存在着大量的空白区域,即原子核外的电子云。
2. 少数a粒子发生大角度散射:尽管大部分a粒子直线穿过金箔,但也有少数a粒子发生了大角度的散射。
这表明原子核具有正电荷,能够对a粒子产生明显的排斥作用。
3. 极少数a粒子被完全反向散射:实验结果还显示,少数a粒子甚至被完全反向散射。
这意味着原子核具有非常强大的正电荷,能够对a粒子产生极强的排斥力。
二、实验意义:卢瑟福a粒子散射实验的意义在于:1. 验证了原子核的存在:实验结果表明,大部分a粒子直线穿过金箔,说明原子中存在大量的空白区域,即原子核外的电子云。
而少数a粒子的大角度散射和完全反向散射现象则表明了原子核具有正电荷。
这一实验结果验证了英国物理学家汤普森的“面包糠模型”是错误的,证明了原子核的存在。
2. 揭示了原子结构的重要特征:卢瑟福的实验结果表明,原子核具有非常强大的正电荷,能够对a粒子产生极强的排斥力。
这一发现揭示了原子结构的重要特征,即原子核是原子中质量集中、带正电荷的部分,而电子则分布在原子核外的电子云中。
3. 奠定了量子力学的基础:卢瑟福的实验结果对于量子力学的发展具有重要意义。
实验结果表明,a粒子在金属原子核的作用下会发生散射,而这种散射现象不能用经典物理学的理论解释。
这促使物理学家们提出了新的理论,即量子力学,以描述微观粒子的行为。
4. 推动了原子核物理学的发展:卢瑟福的实验为原子核物理学的研究奠定了基础。
α粒子散射实验

α粒子散射实验α粒子散射实验α粒子散射实验(a-particle scattering experiment)又称金箔实验、Geiger-Marsden 实验或卢瑟福α粒子散射实验引。
是1909年汉斯·盖革和恩斯特·马斯登在欧内斯特·卢瑟福指导下于英国曼彻斯特大学做的一个著名物理实验。
目录实验用准直的α射线轰击厚度为微米的金箔,发现绝大多数的α粒子都照直穿过薄金箔,偏转很小,但有少数α粒子发生角度比汤姆孙模型所预言的大得多的偏转,大约有1/8000 的α粒子偏转角大于90°,甚至观察到偏转角等于150°的散射,称大角散射,更无法用汤姆孙模型说明。
1911年卢瑟福提出原子的有核模型(又称原子的核式结构模型),与正电荷联系的质量集中在中心形成原子核,电子绕着核在核外运动,由此导出α粒子散射公式,说明了α粒子的大角散射。
卢瑟福的散射公式后来被盖革和马斯登改进了的实验系统地验证。
根据大角散射的数据可得出原子核的半径上限为10-14米,此实验开创了原子结构研究的先河。
这个实验推翻了J.J.汤姆孙在1903年提出的原子的葡萄干圆面包模型,认为原子的正电荷和质量联系在一起均匀连续分布于原子范围,电子镶嵌在其中,可以在其平衡位置作微小振动,为建立现代原子核理论打下了基础。
编辑本段实验目的与过程卢瑟福从1909年起做了著名的α粒子散射实验,实验的目的是想证实汤姆孙原子模型的正确性,实验结果却成了否定汤姆孙原子模型的有力证据。
在此基础上,卢瑟福提出了原子核式结构模型。
为了要考察原子内部的结构,必须寻找一种能射到原子内部的试探粒子,这种粒子就是从天然放射性物质中放射出的α粒子。
卢瑟福和他的助手用α粒子轰击金箔来进行实验,图14-1是这个实验装置的示意图。
在一个铅盒里放有少量的放射性元素钋(Po),它发出的α射线从铅盒的小孔射出,形成一束很细的射线射到金箔上。
当α粒子穿过金箔后,射到荧光屏上产生一个个的闪光点,这些闪光点可用显微镜来观察。
卢瑟福散射_实验报告

一、实验目的1. 验证卢瑟福散射理论,理解原子核式结构模型;2. 掌握实验装置的使用方法,学会数据处理和误差分析;3. 培养科学实验技能和团队协作能力。
二、实验原理卢瑟福散射实验是通过α粒子轰击金箔,观察α粒子在金箔后的散射情况,从而验证原子核式结构模型。
根据卢瑟福散射理论,当α粒子穿过原子时,只有当α粒子与原子核的距离小于某一特定值时,α粒子才会发生散射。
该特定值与原子核的半径有关,即r = (ke^2)/(p^2),其中k为库仑常数,e为电子电荷,p为α粒子的动量。
三、实验仪器与材料1. 实验仪器:卢瑟福散射实验装置、α粒子源、金箔、计数器、显微镜、计算机等;2. 实验材料:金箔、α粒子源、电源、真空泵等。
四、实验步骤1. 安装实验装置,确保所有仪器连接正确;2. 将金箔固定在实验装置上,调整显微镜位置,使其与金箔垂直;3. 打开α粒子源,调整电流,使α粒子流稳定;4. 打开计数器,记录α粒子在金箔后的散射情况;5. 调整显微镜位置,观察不同角度的散射情况,记录散射角度及计数;6. 重复步骤4和5,记录多组数据;7. 关闭α粒子源,关闭电源,整理实验器材。
五、实验数据与处理1. 记录实验数据,包括散射角度、计数等;2. 利用计算机软件处理数据,计算散射角度与计数的关系;3. 对比实验数据与理论计算值,分析误差来源。
六、实验结果与分析1. 实验结果显示,绝大多数α粒子穿过金箔后仍沿原来的方向前进,偏转角度很小;2. 少数α粒子发生了较大的偏转,偏转角度超过90度;3. 极少数α粒子的偏转角度超过180度,甚至被反弹回来。
根据实验结果,可以得出以下结论:1. 原子内部存在一个带正电的核,核的半径远小于原子半径;2. 原子核的质量远大于电子的质量;3. 原子核的正电荷集中在原子内部,电子围绕原子核运动。
七、误差分析1. α粒子源电流不稳定,导致α粒子流不稳定;2. 金箔厚度不均匀,导致α粒子散射角度不准确;3. 实验装置存在一定误差,如显微镜的读数误差等;4. 数据处理过程中存在舍入误差。
卢瑟福的α粒子散射实验观察和结论

卢瑟福的α粒子散射实验观察和结论卢瑟福的α粒子散射实验观察和结论导言卢瑟福的α粒子散射实验是物理学史上具有里程碑意义的实验之一。
通过此实验,卢瑟福成功地证实了原子结构的基本概念,并揭示了原子核的存在。
本文将探讨卢瑟福的α粒子散射实验的观察结果和结论,并分享我对此实验的观点和理解。
1. 实验背景卢瑟福的α粒子散射实验于1911年进行,当时科学界对原子结构的理解还较为模糊。
卢瑟福希望通过实验来验证当时流行的“杜尔文模型”,即认为原子是由带正电的球体(原子核)和带负电的电子云组成的。
他选择使用α粒子(带有两个负电荷的氦离子)作为入射粒子,通过散射角度的观察来揭示原子的内部结构。
2. 实验过程卢瑟福将一束经过加速的α粒子照射到薄金属箔上,并在周围布置了一个荧光屏。
通过观察荧光屏上出现的散射点和角度,卢瑟福记录下了大量实验数据。
3. 实验观察结果卢瑟福的实验观察结果出人意料,与当时的预期相去甚远:(1) 大多数α粒子出射角度很小,接近与入射方向一致;(2) 一小部分α粒子发生明显的偏转,出射角度远离入射方向;(3) 极少数α粒子甚至发生180度的反向散射,返回入射方向。
4. 实验结论基于上述观察结果,卢瑟福得出了以下结论:(1) 原子具有较大的空隙,大部分α粒子可以直接穿过原子而不发生散射;(2) 原子中存在带正电的原子核,同时带负电的电子云位于其周围;(3) 发生明显偏转的α粒子与正电荷较大的原子核发生了相互作用;(4) 散射角度与入射粒子的能量和散射物质的原子核正电荷有关。
5. 对实验的观点和理解卢瑟福的α粒子散射实验提供了直接证据,证明了历史上首次提出的原子核模型。
此模型认为原子核位于原子的中心,其中带有正电荷,并且占据了大部分原子的质量。
这个实验打破了当时流行的汤姆孙模型,即认为原子是由均匀分布的正负电荷所组成。
对于实验的观察结果,我认为其中最令人震惊的是极少数α粒子的180度反向散射。
这意味着原子核的大小远远小于原子的整体大小,同时具有较大的正电荷。
卢瑟福散射实验

实 验 报 告实验题目:卢瑟福散射实验实验目的:通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;并学习应用散射实验研究物质结构的方法。
实验原理:见预习报告。
数据处理:1.确定物理0°的位置。
在不同角度下,2s 内计数,结果如下:由上述数据可知2°处为物理0°。
按RESET 清零。
2.测量散射α粒子数。
测量数据及数据处理如下表:P的平均值为:4968.051==∑=i iPP标准差1123.04)(511=-=∑=-i i n P P σA 类不确定度:050.051123.051==-n Au σP=0.95时782.t p=,故139.0050.078.2=⨯==A p u t u因此14.050.0±=P ,P=0.95。
作)2/(sin 1~4θN曲线如下图:102030405060708090100N /100s1/[sin 4(θ/2)]N~1/[sin 4(θ/2)]曲线Linear Regression for Data7_B:Y = A + B * X Parameter Value Error------------------------------------------------------------A 6.80125 4.40716B 0.37696 0.03644------------------------------------------------------------ R SD N P------------------------------------------------------------ 0.98627 5.6309550.00193------------------------------------------------------------由上图可以看出,实验测得的5个点基本在一条直线上,斜率0.37696,因此可以认为P 近似为常数。
十七原子物理1卢瑟福的核式结构模型行星式模型α粒子散射试验

十七 原子物理1.卢瑟福的核式结构模型(行星式模型)α粒子散射实验:是用α粒子轰击金箔,结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转。
这说明原子的正电荷和质量一定集中在一个很小的核上。
卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。
由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m 。
2.玻尔模型(引入量子理论,量子化就是不连续性,整数n 叫量子数。
) ⑴玻尔的三条假设(量子化)①轨道量子化r n =n 2r 1 r 1=0.53×10-10m ②能量量子化:21n E E n = E 1=-13.6eV★③原子在两个能级间跃迁时辐射或吸收光子的能量h ν=E m -E n⑵从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量)。
原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。
(如在基态,可以吸收E ≥13.6eV 的任何光子,所吸收的能量除用于电离外,都转化为电离出去的电子的动能)。
2、天然放射现象⑴.天然放射现象----天然放射现象的发现,使人们认识到原子核也有复杂结构。
⑵.各种放射线的性质比较n 2H 21011+H n 111→①核反应类型⑴衰变: α衰变:e 422349023892H Th U +→(核内He n 2H 2421011→+)β衰变:e Pa Th 012349123490-+→(核内e H n 011110-+→)γ衰变:原子核处于较高能级,辐射光子后跃迁到低能级。
⑵人工转变:H O He N 1117842147+→+(发现质子的核反应)n E /eV∞ 0 -13.6-3.44 -0.85n C He Be 101264294+→+(发现中子的核反应)⑶重核的裂变:n 3Kr Ba n U 109236141561023592++→+ 在一定条件下(超过临界体积),裂变反应会连续不断地进行下去,这就是链式反应。
卢瑟福原子核式模型α粒子散射实验

-
-
-
-
---
按照汤姆逊模型, 正电荷在原子内部均匀地分 布,α粒子穿过原子时,粒子两侧正电荷对它的 斥力有相当大一部分互相抵消,使α粒子偏转的 力也不会很大,所有的粒子最终都不会发生大角 度的偏转。
汤姆孙原子枣糕模型不能解释α粒子散射实验。
枣糕模型被a粒子 散射实验否定
要解释α粒子散射实验 只有建立新的原子模型。
资 料:有一α粒子以2.0×107m/s的速度去轰击 金箔, 已知α粒子的质量为6.64×10-27kg若金 原子的核电荷数为79,且已知带电粒子在点电场 中的电势能的表达式为ε= kq1q2/r .
结论: α粒子与金原子核对心碰撞所能达到的 最近距离为:2.7×10-14m
问题9.原子核的电荷与尺度你知道吗?
汤姆孙的原子模型
原子是一个球体, 正电荷弥漫性地均匀分布 在整个球体内,电子镶嵌其中。
正电荷
负电荷
汤姆孙的原子模型
问题1.汤姆孙的原子 模型对吗?你能用电 学知识回答这个问题?
卢瑟福的思考(一)
卢 瑟
问题 2.如何证明汤姆生“枣糕“模
福
型?
原子的结构非常紧密,无法用一
般的方法探测它内部的结构,需
1.在用α 粒子轰击金箔的实验中,卢瑟福观
察到的α 粒子的运动情况是
(B )
A.全部α 粒子穿过金属箔后仍按原来的方 向前进
B.绝大多数α 粒子穿过金属箔后仍按原来 的方向前进,少数发生较大偏转,极少数甚至
被弹回
C.少数α 粒子穿过金属箔后仍按原来的方 向前进,绝大多数发生较大偏转,甚至被弹回
D.全部α 粒子都发生很大偏转
2.在a粒子散射实验中,当a粒子接近金核 时( AB )
α粒子散射实验

α粒子散射实验.一、基础知识原子的核式结构1. α粒子散射实验的结果绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子的偏转超过了90°,有的甚至被撞了回来,如图1所示.2.卢瑟福的原子核式结构模型在原子的中心有一个很小的核,叫原子核,原子的所有正电荷和几乎所有质量都集中在原子核里,带负电的电子在核外绕核旋转.3.原子核的尺度:原子核直径的数量级为10-15 m,原子直径的数量级约为10-10 m. 二、1、下列说法正确的是()A.汤姆孙首先发现了电子,并测定了电子电荷量,且提出了“枣糕”式原子模型B.卢瑟福做α粒子散射实验时发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,只有少数α粒子发生大角度偏转C.α粒子散射实验说明了原子的正电荷和绝大部分质量集中在一个很小的核上D.卢瑟福提出了原子“核式结构”模型,并解释了α粒子发生大角度偏转的原因答案BCD2、如图1所示为卢瑟福做α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,下述对观察到的现象的说法中正确的是()A.放在A位置时,相同时间内观察到屏上的闪光次数最多B.放在B位置时,相同时间内观察到屏上的闪光次数只比A位置时稍少些C.放在C、D位置时,屏上观察不到闪光D.放在D位置时,屏上仍能观察到一些闪光,但次数极少答案AD解析α粒子散射实验的结果是,绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,少数α粒子发生了较大偏转,极少数α粒子被反弹回来.因此,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,在相同时间内观察到屏上的闪光次数分别为绝大多数、少数、少数、极少数,故A、D正确.3、卢瑟福通过α粒子散射实验,判断出原子中心有一个很小的核,并由此提出了原子的核式结构模型.如图2所示的平面示意图中①、③两条线表示α粒子运动的轨迹,则沿②所示方向射向原子核的α粒子可能的运动轨迹是()A.轨迹a B.轨迹b C.轨迹c D.轨迹d 答案 A 解析α粒子带正电,因此α粒子靠近核时,与核间有斥力,沿方向②的α粒子比沿方向①的α粒子离核近,与核的作用强,因此α粒子沿方向②进入后与核作用向外侧散射的偏转角应该比沿①的大,故A正确.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
• •
卢
汤 姆
汤 姆 •α粒子散射实验
瑟 福
孙
孙
原
发
原
子
现
子
核
电
模
式
子
型
模
型
•枣糕式
•行星式
【随堂练习】
1.在用α 粒子轰击金箔的实验中,卢瑟福观
察到的α 粒子的运动情况是
(B )
A.全部α 粒子穿过金属箔后仍按原来的方 向前进
B.绝大多数α 粒子穿过金属箔后仍按原来 的方向前进,少数发生较大偏转,极少数甚至
粒子的散射实验
问题3. 粒子散射实验的装置是什么? 它是怎么做的?
问题4. 粒子散射实验的结果是什么?
绝大多数 粒子穿过金箔后,基本上仍 沿原来的方向前进,但有少数 粒子发
生了大角度偏转,偏转的角度甚至大于90 度,也就是说它们几乎被“撞了回来”
卢瑟福的思考(二)
问题5.粒子出现大角度散射有没有可能 是与电子碰撞后造成的?
被弹回
C.少数α 粒子穿过金属箔后仍按原来的方 向前进,绝大多数发生较大偏转,甚至被弹回
D.全部α 粒子都发生很大偏转
2.在a粒子散射实验中,当a粒子接近金核 时( AB )
A.a粒子动能最小 B.a粒子受到的库仑力最大 C.a粒子电势能最小 D.a粒子动量的变化率最小
3、当α粒子被重核散射时,如图所示的运动 轨迹哪些是不可能存在的 ( BC )
它们与某种质量大 的物质发生了撞击, 而且这种物质占据 很小的空间
问题8.卢瑟福设想的原子结构模型 是什么样的?
原子中带正电部分的体积很小,但几 乎占有全部质量,电子在正电体的外 面运动。
你知道吗?
卢瑟福重复做这个实验八万多次,仅有两三 次击中了金核被反弹, 这么小的几率他却成功 了.
如何估算原子核的大小?
温故知新
1.电子发现的重要意义是什么?
2.原子中带正电的部分及带负电 的电子可能是如何分布的?
第2节 原子的核式结构模型
初期的原子模型:
1901年,法国的佩兰设想:原子的中心是 些带正电粒子,外面围绕着电子。
1903年,德国的勒纳德设想:有正负电荷 组成的“刚性配偶体”飘浮于原子太空内。
卢瑟福的思考(一)
卢 瑟
问题 2.如何证明汤姆生“枣糕“模
福
型?
原子的结构非常紧密,无法用一
般的方法探测它内部的结构,需
要用高速粒子对它进行轰击。通
过观察粒子穿过物质层后的偏转
情况,获得原子结构的信息,这 种实验叫做散射实验。
1909~1911年,卢瑟福 和他的助手们用a 粒子 轰击金箔
著名的 a 粒 子散射实验
1903 年 底 , 日 本 的 长 冈 半 太 郎 提 出 一 个 “土木星模型”电子均匀分布在一个环上, 中心是一个为大质量的正电球。
汤姆孙的原子模型
原子是一个球体, 正电荷弥漫性地均匀分布 在整个球体内,电子镶嵌其中。
正电荷
负电荷
汤姆孙的原子模型
问题1.汤姆孙的原子 模型对吗?你能用电 学知识回答这个问题?
问题6.这种现象能否用汤姆生的原子 模型解释 ?
假设一演示
α
α α α
-
-
-
-
---
按照汤姆逊模型, 正电荷在原子内部均匀地分 布,α粒子穿过原子时,粒子两侧正电荷对它的 斥力有相当大一部分互相抵消,使α粒子偏转的 力也不会很大,所有的粒子最终都不会发生大角 度的偏转。
汤姆孙原子枣糕模型不能解释α粒子散射实验。
结论: α粒子与金原子核对心碰撞所能达到的 最近距离为:2.7×10-14m
问题9.原子核的电荷与尺度你知道吗?
1.原子的半径约为10-10米、原子核半 径约是10-15米,原子核的体积只占原 子的体积的万亿分之一。
2.原子核所带正电荷数与核外电子数以 及该元素在周期表内的原子序数相等。
•原子的核式结构
枣糕模型被a粒子 散射实验否定
要解释α粒子散射实验 只有建立新的原子模型。
?? 新的思考(三)
问题7.如何解释α粒子散射实验的?
α粒子散射实验结果分析
大多数α粒子不 偏转
少数α粒子发生 较大偏转
极少数α粒子 发生大角度偏 转甚至被弹回
原子内几乎是空的
有带正电的物质 对它们产生库仑 斥力作用;
估算方法:在α粒子散射实验中,根据α粒子与原子 核对心正碰时所能达到的最小距离可以估算原子 核的大小.
资 料:有一α粒子以2.0×107m/s的速度去轰击 金箔, 已知α粒子的质量为6.64×10-27kg若金 原子的核电荷数为79,且已知带电粒子在点电场 中的电势能的表达式为ε= kq1q2/r .