PID调节器的认识及应用
pid的原理及应用

PID的原理及应用1. 什么是PID?PID是一种常用的控制算法,是Proportional-Integral-Derivative(比例-积分-微分)的缩写。
它是一种自适应控制算法,被广泛应用于工业控制系统中,用于自动控制温度、压力、流量等参数。
2. PID的基本原理PID控制器通过计算误差的比例、积分和微分部分来调整输出控制量,以使系统达到期望的稳态值。
下面是PID控制器的基本原理:•比例(P):比例控制部分根据当前测量值与期望值之间的差异来计算输出。
比例控制的作用是根据误差的大小来调整输出的大小。
当误差较大时,比例控制器会产生较大的调整力,使系统快速接近稳态值。
•积分(I):积分控制部分根据误差的累积来计算输出。
积分控制的作用是消除稳态误差,即使误差非常小,积分控制器也能保持一定的输出。
积分控制器常用于消除系统的永久偏差。
•微分(D):微分控制部分根据误差的变化率来计算输出。
微分控制的作用是预测系统未来的行为,当误差的变化率较大时,微分控制器会制动输出的变化,以避免系统过冲或振荡。
PID控制器将比例控制、积分控制和微分控制的输出相加,得到最终的输出调整量,从而控制系统运行到稳定状态。
3. PID的应用领域PID控制器广泛应用于各个领域的控制系统中,下面列举了几个常见的应用领域:•温度控制:在温控系统中,PID控制器可以根据温度传感器测量到的数据,调整加热器或冷却器的输出,以控制温度稳定在期望值。
•压力控制:在压力控制系统中,PID控制器可以根据压力传感器测量到的数据,调整泵或阀门的输出,以维持压力稳定在设定值。
•流量控制:在流量控制系统中,PID控制器可以根据流量传感器测量到的数据,调整阀门或马达的输出,以控制流量保持在目标值。
•位置控制:在机器人或自动化设备中,PID控制器可以根据位置传感器测量到的数据,调整电机或执行器的输出,以控制位置精确到期望的位置。
4. PID优缺点•优点:–简单易实现:PID控制器的原理简单,计算量小,易于实现。
pid实际应用

pid实际应用PID(Proportional-Integral-Derivative,比例积分微分)控制器是一种经典的自动控制系统,也是目前工业控制中应用最广泛的一种控制器。
它通过不断地测量被控对象的实际输出值与期望输出值的差距,并依照一定的比例、积分、微分系数计算出控制信号,对被控对象进行调节,最终使其输出达到期望值并保持稳定。
PID控制器的实际应用非常广泛,涵盖了各个领域的自动控制系统。
下面就以几个实际的例子来说明PID控制器的应用。
1. 温度控制系统温度控制系统是PID控制器的经典应用。
制造业中的许多工艺都需要对温度进行控制,例如冶金、化工、生物制药、食品加工等行业。
PID 控制器可以根据传感器提供的温度数值计算出控制信号,通过调节加热器或制冷器的功率,实现对温度的精确控制。
2. 电机转速控制电机的转速直接影响着机械设备的性能和工作效率,因此需要对电机转速进行准确控制。
PID控制器可以通过对电机转速的反馈信号不断调整电机的输出功率,使得电机转速稳定在期望值或者在受到扰动时能够快速恢复到期望转速。
3. 液位控制系统液位控制系统在化工、石油、食品饮料等行业中应用较为广泛。
PID 控制器可以通过对液位的反馈信号进行测量和处理,精确地调节阀门开度和出口流量,从而实现液位的准确控制。
4. 飞行控制在无人机、飞机、火箭等航空器的飞行控制中,PID控制器是必不可少的关键组件之一。
通过对陀螺仪、加速度计等测量装置的反馈信号不断计算控制信号,实现对飞行器姿态、高度、速度等方面的精确控制。
总之,PID控制器是自动控制领域中非常重要的一种控制器,其实际应用广泛涵盖了各个领域。
在未来,随着人类技术的不断进步和应用场景的不断拓展,PID控制器的应用也将变得越来越广泛和深入。
pid的工作原理和应用

PID的工作原理和应用1. 什么是PID控制器PID(Proportional-Integral-Derivative)控制器是一种常用的自动控制系统,它可以根据所控制对象的反馈信号,通过比例、积分、微分这三个操作,实现对输出量的调节,从而使得系统的输出达到预期目标。
2. PID控制器的工作原理PID控制器依靠三个主要参数来实现控制,这三个参数分别是比例(P)、积分(I)和微分(D)。
•比例(P)控制是根据当前误差的大小来调整输出量的大小,从而实现对系统的控制。
比例控制的基本公式为:P = Kp * e(t),其中P为输出量的大小,Kp为比例增益,e(t)为当前误差。
•积分(I)控制是用于消除系统的稳态误差,它通过积累误差的积分项来调整输出量。
积分控制的基本公式为:I = Ki * ∫e(t)dt,其中I为输出量的大小,Ki为积分增益,∫e(t)dt为误差的积分。
•微分(D)控制是用于预测系统未来的状态,从而减小系统的超调和振荡。
微分控制的基本公式为:D = Kd * d(e(t))/dt,其中D为输出量的大小,Kd为微分增益,d(e(t))/dt为误差的导数。
PID控制器的输出量可以通过将三个操作加和来计算,即输出量 = P + I + D。
3. PID控制器的应用PID控制器广泛应用于工控系统、自动化系统以及各种控制要求精度高、快速响应的系统中,例如温度控制、速度控制和位置控制等。
具体的应用领域如下:1.温度控制:PID控制器可以根据温度传感器反馈的信号,控制加热或降温设备的输出,以达到设定的温度值。
2.速度控制:PID控制器可以根据速度传感器反馈的信号,控制电机或驱动器的输出,以实现对车辆或机械设备的精确控制。
3.位置控制:PID控制器可以根据位置传感器反馈的信号,调整执行器的输出量,使得被控对象达到预定位置。
4.流量控制:PID控制器可以根据流量传感器反馈的信号,调整阀门或泵的输出量,以实现对流体流量的控制。
PID调节器的作用及其参数对系统调节质量的影响

PID调节器的作用及其参数对系统调节质量的影响PID控制器是一种常用的控制器类型,其英文全称为Proportional-Integral-Derivative Control。
PID调节器的作用是通过不断调整控制器的输出信号,使得系统的输出值尽可能接近期望值,并且尽可能快速地达到期望值。
PID调节器主要通过三个参数来调节,分别是比例系数Kp、积分时间Ti和微分时间Td。
这三个参数可以通过调整来控制系统的调节质量。
首先,比例系数Kp决定了控制器输出与偏差之间的线性关系。
Kp越大,控制器输出对偏差的响应越强烈,系统的调节速度也就越快。
然而,Kp过大可能导致系统产生过冲或者不稳定的现象。
因此,适当地选择Kp 可以平衡系统的调节速度和稳定性。
其次,积分时间Ti决定了对系统误差的累积效果。
积分控制由于有记忆效应,可以用来消除稳态误差。
Ti越大,系统对误差的积累效应越强,可以更好地消除稳态误差。
但是,Ti过大可能导致系统产生震荡现象,使得系统不稳定。
因此,适当选择Ti可以使系统达到稳态时误差较小。
最后,微分时间Td决定了对系统误差变化率的响应。
微分控制可以通过对系统输出的变化率进行预测来减小偏差。
Td越大,系统对偏差变化率的响应越快,可以更好地预测偏差的变化趋势。
然而,Td过大也可能导致系统产生震荡或者不稳定的现象。
因此,适当选择Td可以平衡响应速度和稳定性。
总体来说,比例控制作用于系统的瞬态响应,积分控制作用于系统的稳态误差,微分控制作用于系统的瞬态稳定性。
通过调整这三个参数,可以达到理想的系统调节质量。
当需要较快的调节速度时,可以适当增大Kp和Td,减小Ti;当需要稳态误差较小时,可以适当增大Kp和Ti,减小Td;当需要减小震荡和不稳定现象时,可以适当减小Kp和Td,增大Ti。
总之,PID调节器通过调整比例系数、积分时间和微分时间来控制系统的调节质量,不仅可以使系统的调节速度快,稳态误差小,而且还可以减小震荡和提高系统的稳定性。
PID调节器的电路

采用可编程逻辑控制器(PLC)或微控制器(MCU),可以实现PID调节器电路的远程控制和编程控制, 方便系统的集成和扩展。
THANKS FOR WATCHING
感谢您的观看
比例调节器
根据输入信号与设定值的偏差,按比例输出控制 信号。
积分调节器
对输入信号与设定值之间的偏差进行积分运算, 以消除稳态误差。
微分调节器
对输入信号的变化率进行运算,以减小系统的动 态误差。
03
PID调节器电路的实现
硬件实现
模拟电路实现
通过使用电阻、电容和运算放大器等模拟元件,搭建PID调节器的硬件电路。 这种实现方式具有实时性好、稳定性高的优点,但调试复杂且容易受到环境温 度和元件老化等因素的影响。
电机控制系统
PID调节器电路用于控制电机的速度、 位置和转矩,广泛应用于数控机床、 机器人等领域。
家电领域
空调系统
PID调节器电路用于控制空调系统的温度和湿度,提供舒适的生活环境。
热水器
PID调节器电路用于控制热水器的加热温度,实现快速加热和节能的效果。
汽车领域
燃油喷射系统
PID调节器电路用于控制燃油喷射系统的喷 油量,提高燃油经济性和排放性能。
VS
详细描述
PID调节器由比例、积分和微分三个环节 组成。比例环节根据误差信号调整输出值 ,以减小误差;积分环节根据误差信号的 积分调整输出值,以消除长期误差;微分 环节根据误差信号的变化率调整输出值, 以提前预测并减小误差。三个环节协同作 用,实现PID调节器的控制效果。
PID调节器的特点
总结词
02
PID调节器电路的组成
输入部分
信号采集
负责采集系统或设备的状态信息 ,并将其转换为电信号。
说明其在电机控制中pid调节器的作用

说明其在电机控制中pid调节器的作用PID调节器在电机控制中的作用引言:在电机控制系统中,PID调节器是一种常用的控制器,通过对电机的输入和输出信号进行比较和调整,实现对电机的精确控制。
PID 调节器由比例(P)、积分(I)和微分(D)三个部分组成,通过调节这三个参数的值,可以实现对电机的速度、位置和力矩等方面的控制。
本文将详细介绍PID调节器在电机控制中的作用及其原理。
一、PID调节器的工作原理PID调节器的工作原理是基于反馈控制的原理。
其主要通过对电机的输出信号与期望值之间的差异进行测量,并根据比例、积分和微分三个参数对输出信号进行校正,从而实现对电机的精确控制。
1. 比例控制(P)比例控制是PID调节器的基本部分,其根据电机实际输出与期望输出之间的差异进行调整。
当差异较大时,比例控制作用明显,输出信号的调整幅度也较大;当差异较小时,比例控制的作用较小,输出信号的调整幅度也较小。
通过调节P参数的大小,可以控制输出信号的响应速度和稳定性。
2. 积分控制(I)积分控制是为了解决比例控制中的静差问题而引入的。
当系统存在静差时,比例控制无法完全消除这一差异。
积分控制通过对累积的偏差进行调整,逐步消除静差。
然而,过大的积分控制作用可能导致系统超调或不稳定,因此需要根据具体情况调整I参数的大小。
3. 微分控制(D)微分控制主要用于抑制系统的超调和震荡。
通过对输出信号的变化率进行调整,微分控制可以提前预知系统的响应趋势,并适时进行调整,以减少系统的超调和震荡。
然而,过大的微分控制作用可能导致系统的噪声干扰被放大,因此需要根据具体情况调整D参数的大小。
二、PID调节器在电机控制中的作用1. 速度控制在电机控制中,PID调节器可以用于对电机的速度进行控制。
通过对电机的输出速度与期望速度之间的差异进行测量和调整,PID调节器可以实时控制电机的转速。
通过调节PID参数,可以实现对电机速度的精确控制,提高电机的动态响应和稳定性。
PID调节器的作用及其参数对系统调节质量的影响

PID调节器的作用及其参数对系统调节质量的影响PID调节器(Proportional-Integral-Derivative Controller)是一种常见的工业控制器,广泛应用于各种自动控制系统中。
它可以根据给定的设定值与实际测量值之间的误差来调节系统的输出,并使系统的响应更加稳定和准确。
1.稳定性控制:PID控制器能够保持系统在给定设定值附近稳定工作,其比例(P)作用能够根据实际误差大小来调整输出力度,积分(I)作用能够补偿系统的稳态误差,而微分(D)作用则能够抑制系统的过度振荡。
2.响应速度控制:通过调节PID控制器的参数,可以控制系统的响应速度。
比例(P)作用对响应速度的影响最大,增大比例增益可以提高响应速度,但也容易引起系统的过度振荡;积分(I)作用对响应速度的影响较小,主要用于补偿静差;微分(D)作用能够减小系统的过度振荡和快速变化。
3.抗干扰能力:PID控制器通过比例(P)作用能够快速响应系统的测量误差,通过积分(I)作用能够积累误差并持续调整输出,通过微分(D)作用能够预测未来的变化趋势,因此具有较强的抗干扰能力。
4.参数调节:PID控制器的参数对系统的调节质量有很大影响。
比例增益(Kp)决定了系统的响应速度和稳定性,增大Kp可以提高响应速度,但会增加系统的过度振荡;积分时间常数(Ti)决定了系统对于静差的补偿能力和稳态误差的消除速度,较大的Ti能够减小系统的静差,但可能引起系统的超调;微分时间常数(Td)决定了系统对于变化速率的响应速度,较大的Td能够抑制系统的过度振荡。
综上所述,PID调节器的作用及其参数对系统调节质量的影响是多方面的。
通过调节PID控制器的参数,可以控制系统的稳定性、响应速度和抗干扰能力,从而实现对系统的准确控制。
但需要注意的是,不同系统的特性不同,参数的选择需要根据具体情况进行调整,经验和试错是提高调节质量的关键。
pid调节电路的原理及应用

PID调节电路的原理及应用1. 介绍PID(比例-积分-微分)控制器是一种常用于工业控制系统中的闭环反馈控制器,用于自动调节系统的输出以适应设定值。
本文将介绍PID调节电路的原理及其在实际应用中的一些常见场景。
2. 原理PID控制器的原理是基于对系统误差的三种处理方式:•比例控制(P控制):根据误差的大小,以比例关系调节输出。
具体操作是将误差信号乘以一个比例系数Kp,得到一个纠正量,然后将该纠正量与控制量相加,作为输出信号。
•积分控制(I控制):根据系统误差与时间的乘积,进行输出的调节。
此时,误差信号被积分,然后乘以一个积分系数Ki,得到积分项,将积分项与控制量相加,作为输出信号。
•微分控制(D控制):根据误差变化的快慢,进行输出的调节。
此时,误差信号被微分,然后乘以一个微分系数Kd,得到微分项,将微分项与控制量相加,作为输出信号。
PID控制器的输出信号可表示为:Output = Kp * Error + Ki * Integral(Error) + Kd * Derivative(Error)其中,Error为系统的误差信号,Integral(Error)为误差信号的积分项,Derivative(Error)为误差信号的微分项,Kp、Ki和Kd为对应的比例、积分和微分系数。
3. 应用3.1 温度控制PID调节电路广泛应用于温度控制系统中。
以恒温箱为例,通过测量箱体内部温度和设定温度的差值,将该差值作为PID控制器的输入误差信号。
通过调节加热元件的功率或冷藏系统的制冷量,实现温度的稳定控制。
PID控制器在温度控制中的比例作用是根据误差信号进行系统的快速响应,积分作用可以消除稳态误差,微分作用可以抑制系统的超调现象。
3.2 机器人运动控制PID调节电路也被广泛应用于机器人的运动控制中。
以轮式机器人为例,通过测量机器人当前位置和目标位置的差值,作为PID控制器的输入误差信号。
通过调节机器人的电机转速和舵机角度,实现机器人精确的运动控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PID调节器的认识及应用
PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。
参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。
阅读本文不需要高深的数学知识。
1.比例控制
有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID 控制与人工控制的控制策略有很多相似的地方。
下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。
假设用热电偶检测炉温,用数字仪表显示温度值。
在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。
然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。
操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。
炉温小于给定值时,误差为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。
炉温大于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。
上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。
闭环中存在着各种各样的延迟作用。
例如调节电位器转角后,到温度上升到新的转角对应的稳态值时有较大的时间延迟。
由于延迟因素的存在,调节电位器转角后不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟作用。
比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。
比例系数如果过大,即调节后电位器转角与位置L的差值过大,调节力度太强,将造成调节过头,甚至使温度忽高忽低,来回震荡。
增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态误差。
但是比例系数过大会使超调量增大,振荡次数增加,调节时间加长,动态性能变坏,比例系数太大甚至会使闭环系统不稳定。
单纯的比例控制很难保证调节得恰到好处,完全消除误差。
2.积分控制
PID控制器中的积分对应于图1中误差曲线与坐标轴包围的面积(图中的灰色部分)。
PID控制程序是周期性执行的,执行的周期称为采样周期。
计算机的程序用图1中各矩形面积之和来近似精确的积分,图中的TS就是采样周期。
图1 积分运算示意图
每次PID运算时,在原来的积分值的基础上,增加一个与当前的误差值ev(n)成正比的微小部分。
误差为负值时,积分的增量为负。
手动调节温度时,积分控制相当于根据当时的误差值,周期性地微调电位器的角度,每次调节的角度增量值与当时的误差值成正比。
温度低于设定值时误差为正,积分项增大,使加热电流逐渐增大,反之积分项减小。
因此只要误差不为零,控制器的输出就会因为积分作用而不断变化。
积分调节的“大方向”是正确的,积分项有减小误差的作用。
一直要到系统处于稳定状态,这时误差恒为零,比例部分和微分部分均为零,积分部分才不再变化,并且刚好等于稳态时需要的控制器的输出值,对应于上述温度控制系统中电位器转角的位置L。
因此积分部分的作用是消除稳态误差,提高控制精度,积分作用一般是必须的。
PID控制器输出中的积分部分与误差的积分成正比。
因为积分时间TI在积分项的分母中,TI越小,积分项变化的速度越快,积分作用越强。
3.PI控制
控制器输出中的积分项与当前的误差值和过去历次误差值的累加值成正比,因此积分作用本身具有严重的滞后特性,对系统的稳定性不利。
如果积分项的系数设置得不好,其负面作用很难通过积分作用本身迅速地修正。
而比例项没有延迟,只要误差一出现,比例部分就会立即起作用。
因此积分作用很少单独使用,它一般与比例和微分联合使用,组成PI或PID控制器。
PI和PID控制器既克服了单纯的比例调节有稳态误差的缺点,又避免了单纯的积分调节响应慢、动态性能不好的缺点,因此被广泛使用。
如果控制器有积分作用(例如采用PI或PID控制),积分能消除阶跃输入的稳态误差,这时可以将比例系数调得小一些。
如果积分作用太强(即积分时间太小),相当于每次微调电位器的角度值过大,其累积的作用会使系统输出的动态性能变差,超调量增大,甚至使系统不稳定。
积分作用太弱(即积分时间太大),则消除稳态误差的速度太慢,积分时间的值应取得适中。
4.微分作用
误差的微分就是误差的变化速率,误差变化越快,其微分绝对值越大。
误差增大时,其微分为正;误差减小时,其微分为负。
控制器输出量的微分部分与误差的微分成正比,反映了被控量变化的趋势。
有经验的操作人员在温度上升过快,但是尚未达到设定值时,根据温度变化的趋势,预感到温度将会超过设定值,出现超调。
于是调节电位器的转角,提前减小加热的电流。
这相当于士兵射击远方的移动目标时,考虑到子弹运动的时间,需要一定的提前量一样。
图2中的c (∞)为被控量c (t)的稳态值或被控量的期望值,误差e(t)= c (∞)- c (t)。
在图2中启动过程的上升阶段,当时,被控量尚未超过其稳态值。
但是因为误差e(t)不断减小,误差的微分和控制器输出的微分部分为负值,减小了控制器的输出量,相当于提前给出了制动作用,以阻碍被控量的上升,所以可以减少超调量。
因此微分控制具有超前预测的特性,在超调尚未出现之前,就能提前给出控制作用。
闭环控制系统的振荡甚至不稳定的根本原因在于有较大的滞后因素。
因为微分项能预测误差变化的趋势,这种“超前”的作用可以抵消滞后因素的影响。
适当的微分控制作用可以使超调量减小,增加系统的稳定性。
对于有较大的滞后特性的被控对象,如果PI控制的效果不理想,可以考虑增加微分控制,以改善系统在调节过程中的动态特性。
如果将微分时间设置为0,微分部分将不起作用。
微分时间与微分作用的强弱成正比,微分时间越大,微分作用越强。
如果微分时间太大,在误差快速变化时,响应曲线上可能会出现“毛刺”。
微分控制的缺点是对干扰噪声敏感,使系统抑制干扰的能力降低。
为此可在微分部分增加惯性滤波环节。
5.采样周期
PID控制程序是周期性执行的,执行的周期称为采样周期。
采样周期越小,采样值越能反映模拟量的变化情况。
但是太小会增加CPU的运算工作量,相邻两次采样的差值几乎没有什么变化,将使PID控制器输出的微分部分接近为零,所以也不宜将采样周期取得过小。
应保证在被控量迅速变化时(例如启动过程中的上升阶段),能有足够多的采样点数,不致因为采样点数过少而丢失被采集的模拟量中的重要信息。
6.PID参数的调整方法
在整定PID控制器参数时,可以根据控制器的参数与系统动态性能和稳态性能之间的定性关系,用实验的方法来调节控制器的参数。
有经验的调试人员一般可以较快地得到较为满意的调试结果。
在调试中最重要的问题是在系统性能不能令人满意时,知道应该调节哪一个参数,该参数应该增大还是减小。
为了减少需要整定的参数,首先可以采用PI控制器。
为了保证系统的安全,在调试开始时应设置比较保守的参数,例如比例系数不要太大,积分时间不要太小,以避免出现系统不稳定或超调量过大的异常情况。
给出一个阶跃给定信号,根据被控量的输出波形可以获得系统性能的信息,例如超调量和调节时间。
应根据PID参数与系统性能的关系,反复调节PID的参数。
如果阶跃响应的超调量太大,经过多次振荡才能稳定或者根本不稳定,应减小比例系数、增大积分时间。
如果阶跃响应没有超调量,但是被控量上升过于缓慢,过渡过程时间太长,应按相反的方向调整参数。
如果消除误差的速度较慢,可以适当减小积分时间,增强积分作用。
反复调节比例系数和积分时间,如果超调量仍然较大,可以加入微分控制,微分时间从0逐渐增大,反复调节控制器的比例、积分和微分部分的参数。
总之,PID参数的调试是一个综合的、各参数互相影响的过程,实际调试过程中的多次尝试是非常重要的,也是必须的。