基本不等式(含答案)

基本不等式(含答案)
基本不等式(含答案)

§3.4 基本不等式:ab ≤

a +

b 2

材拓展

1.一个常用的基本不等式链

设a >0,b >0,则有:

min{a ,b }≤21a +1b

≤ ab ≤a +b 2≤ a 2+b 22≤max{a ,b }, 当且仅当a =b 时,所有等号成立.

若a >b >0,则有:

b <21a +1b

(1)a ,b ∈R ,都有ab ≤(a +b )24≤a 2+b 2

2

成立. (2)a 2+b 2≥2ab 可以加强为a 2+b 2≥2|a |·|b |,当且仅当|a |=|b |时取等号.

(3)a ,b ,c ∈R ,都有a 2+b 2+c 2≥ab +bc +ca 成立.

(4)若ab >0,则a b +b a

≥2. 3.利用基本不等式求最值的法则

基本不等式ab ≤a +b 2

(a ,b 为正实数)常用于证明不等式或求代数式的最值. (1)当两个正数的和为定值时,它们的积有最大值,即ab ≤????a +b 22,当且仅当a =b 时,

等号成立.

(2)当两个正数的积为定值时,它们的和有最小值,即a +b ≥2ab ,当且仅当a =b 时,等号成立.

注意:利用基本不等式求代数式最值,要注意满足三个条件:①两个正数;②两个正数的积或和为定值;③取最值时,等号能成立.概括为“一正、二定(值)、三相等”.

4.函数f (x )=x +k x

(k >0)的单调性在求最值中的应用 有些最值问题由于条件的限制使等号取不到,其最值又确实存在,我们可以利用函数f (x )=x +k x

(k >0)的单调性加以解决. 利用函数单调性的定义可以证明函数f (x )=x +k x

(k >0)在(0,k ]上单调递减,在[k ,+∞)上单调递增.

因为函数f (x )=x +k x (k >0)是奇函数,所以f (x )=x +k x

(k >0)在(-∞,-k ]上为增函数,在[-k ,0)上为减函数.

函数f (x )=x +k x

(k >0)在定义域上的单调性如右图所示. 例如:求函数f (x )=sin 2x +5sin 2x

,x ∈(0,π)的最小值. 解 令t =sin 2x ,x ∈(0,π),g (t )=t +5t

. t ∈(0,1],易知g (t )在(0,1]上为单调递减函数,

所以当t =1时,g (t )min =6.

即sin x =1,x =π2

时,f (x )min =6.

法突破

一、利用基本不等式求最值

方法链接:基本不等式是求函数最值的有利工具,在使用基本不等式求函数最值时,要注意应用条件“一正、二定、三相等”.不要仅仅关注结构上的定值,而忽略对相等条件的考察.

例1 求函数y =x +22x +5的最大值. 解 设t =x +2,从而x =t 2-2(t ≥0),

则y =t 2t 2+1

. 当t =0时,y =0;

当t >0时,y =12t +1t ≤12 2t ·1t =24. 当且仅当2t =1t

, 即t =22

时等号成立. 即当x =-32时,y max =24

. 二、利用基本不等式解恒成立问题

方法链接:含参数的不等式恒成立问题,通过分离参数,把参数的范围化归为函数的最值问题.a >f (x )恒成立?a >[f (x )]max ,a

例2 已知f (x )=32x -(k +1)3x +2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( )

A .(-∞,-1)

B .(-∞,22-1)

C .(-1,22-1)

D .(-22-1,22-1)

解析 由f (x )>0得32x -(k +1)·3x +2>0,

解得k +1<3x +23x , 而3x +23

x ≥22, ∴k +1<22,k <22-1. 答案 B

三、利用基本不等式证明不等式

方法链接:证明不等式时应根据求证式两端的结构,合理选择重要不等式及其变形不等式;本题的证明方法在论证对称不等式时具有一定的普遍性.

例3 已知a >2,求证:log a (a -1)·log a (a +1)<1.

证明 因为a >2,所以log a (a -1)>0,log a (a +1)>0.

又log a (a -1)≠log a (a +1),

所以log a (a -1)·log a (a +1)

=12log a (a 2-1)<12

log a a 2=1. 所以log a (a -1)log a (a +1)<1.

四、基本不等式的实际应用方法链接:应用基本不等式解决实际问题时,要注意把要求最值的变量设为函数,列函数解析式时,要注意所设变量的范围.

例4 某公司计划用一块土地建造一幢总面积为A m 2的办公大楼,已知征地的费用是2 388元/m 2,每层的建筑面积相同,土地的征用面积是每层面积的2.5倍,经工程技术人员核算,第一、二层的建设费用相同,费用为445元/m 2,以后每增高一层,建筑费用就增加30元/m 2,试设计这幢办公楼的楼层数,使总费用最少,并求其最少总费用.(总费用=建筑费用+征地费用)

解 设建造这幢办公楼的楼层数为n ,总费用为y 元,

当n =1时,y =2.5·A ·2 388+445A =6 415A (元),

当n =2时,y =2.5·A 2

·2 388+445A =3 430A (元), 当n ≥3时,y =2.5·A n ·2 388+445·2A n +(445+30)·A n +(445+60)·A n +…+[445+30(n -2)]·A n =6 000·A n

+15nA +400A ≥2A 6 000×15+400A

=1 000A (元)(当且仅当n =20时取等号).

即n =20时,有最小值1 000A 元,所以,当建造这幢办公楼的楼层数为20时,总费用最少,为1 000A 元.

区突破

1.忽略应用基本不等式的前提条件而致错

例1 求f (x )=2+log 2 x +5log 2 x

(0

≥2+2log 2 x ·5log 2 x

=2+2 5. ∴f (x )min =2+2 5.

这实际是一个错解,错在哪里?请你找出来.

[点拨] ∵0

<0,不能直接运用公式. [正解] ∵0

∴(-log 2 x )>0,????-5log 2 x >0.

∴(-log 2 x )+????-5log 2 x

≥2 (-log 2 x )????-5log 2 x =2 5.

∴log 2x +5log 2x

≤-2 5.

∴f (x )=2+log 2 x +5log 2 x

≤2-2 5. 当且仅当log 2 x =5log 2 x

时,即x =2-5时取等号.

∴f (x )max =2-2 5.

2.忽略等号成立的条件而致错

例2 已知m 2+n 2=a ,x 2+y 2=b (a 、b 为大于0的常数且a ≠b ),求mx +ny 的最大值.

[错解] ∵mx ≤m 2+x 22,ny ≤n 2+y 22

, ∴mx +ny ≤m 2+x 22+n 2+y 22

=m 2+n 2+x 2+y 22=a +b 2

. 当且仅当m =x ,n =y 时取“=”.

[点拨] 如果m =x ,n =y ,则会有m 2+n 2=x 2+y 2=a =b ,这与条件“a ≠b ”矛盾,如果m =x ,n =y 中有一个不成立,则“=”取不到,则不满足使用基本不等式的条件.

[正解] 利用三角代换可避免上述问题.

∵m 2+n 2=a ,

∴设{ m =a cos αn =a sin α (α∈[0,2π)),

∵x 2+y 2=b ,

∴设{ x =b cos βy =b sin β(β∈[0,2π))

∴mx +ny =ab cos αcos β+ab sin αsin β =ab (cos αcos β+sin αsin β)

=ab cos(α-β)≤ab

∴(mx +ny )max =ab ,

当且仅当cos(α-β)=1,α=β时取“=”.

3.两次利用基本不等式而致错 例3 已知x >0,y >0,且x +2y =1,求1x +1y

的最小值. [错解] 因为x >0,y >0,且x +2y =1, 1x +1y =???

?1x +1y (x +2y ) ≥21x ·1y

×22xy =4 2. 所以1x +1y

的最小值为4 2. [点拨] 上述解答是错误的,错因是连续两次使用基本不等式解题忽视了等号成立的一致性.

[正解] 因为x >0,y >0,且x +2y =1,

所以1x +1y =x +2y x +x +2y y =1+2+2y x +x y

≥3+22y x ·x y

=3+2 2. 当且仅当2y x =x y

且x +2y =1, 即x =2-1,y =1-22

时,取得等号. 所以1x +1y

的最小值为3+2 2. 温馨点评 在多次使用基本不等式时,一定要注意等号成立的条件是否相同.

题多解

例 若正数a ,b 满足ab =a +b +3,求ab 的取值范围.

解 方法一 把代数式ab 转化为a (或b )的函数.

∵ab =a +b +3,∴b =a +3a -1

∵b >0,∴a >1.

∴ab =a 2+3a a -1=(a -1)2+5a -1a -1

=(a -1)2+5(a -1)+4a -1

=(a -1)+4a -1

+5 ∵a >1,∴a -1>0,

∴(a -1)+4a -1≥2(a -1)·4a -1

=4. ∴ab ≥9,当且仅当a -1=4a -1

, 即a =3,b =3时,取“=”.

方法二 利用基本不等式a +b ≥2ab ,把a +b 转化为ab ,再求ab 的范围.

∵a +b ≥2ab ,∴ab =a +b +3≥2ab +3.

∴ab -2ab -3≥0,

∴(ab -3)(ab +1)≥0.

∴ab ≥3,∴ab ≥9,

从以上过程可以看出:当且仅当a =b =3时,取“=”.

方法三 把a ,b 视为一元二次方程x 2+(3-ab )x +ab =0的两个根,那么该方程应有两个正根.

所以有:

其中由Δ=(3-ab )2-4ab =a 2b 2-10ab +9

=(ab -9)(ab -1)≥0,解得ab ≥9或ab ≤1.

∵x 1+x 2=ab -3>0,∴ab ≥9.

又ab =a +b +3,∴a +b =6,

∴当且仅当a =b =3时取“=”.

题赏析

1.(2011·重庆)已知a >0,b >0,a +b =2,则y =1a +4b

的最小值是( ) A.72 B .4 C.92

D .5 解析 ∵a +b =2,∴a +b 2

=1. ∴1a +4b =(1a +4b )(a +b 2)=52+(2a b +b 2a )≥52+22a b ·b 2a =92(当且仅当2a b =b 2a

,即b =2a 时,“=”成立),故y =1a +4b 的最小值为92

. 答案 C

2.(2009·天津)设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b

的最小值为( ) A .8 B .4 C .1 D.14

解析 由题意知3a ·3b =3,即3a +b =3,所以a +b =1.

因为a >0,b >0,

所以1a +1b =???

?1a +1b (a +b ) =2+b a +a b ≥2+2b a ·a b

=4, 当且仅当a =b 时,等号成立.

答案 B

赏析 本题考查了等比中项的概念、基本不等式,解答本题时要注意等号成立的条件是否具备,防止最小值取不到.

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

基本不等式练习题及答案解析

1.若xy>0,则对x y+ y x说法正确的是() A.有最大值-2B.有最小值2 C.无最大值和最小值D.无法确定 答案:B 2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400 B.100 C.40 D.20 答案:A 3.已知x≥2,则当x=____时,x+4 x有最小值____. 答案:2 4 4.已知f(x)=12 x+4x. (1)当x>0时,求f(x)的最小值; (2)当x<0 时,求f(x)的最大值. 解:(1)∵x>0,∴12 x,4x>0. ∴12 x+4x≥2 12 x·4x=8 3. 当且仅当12 x=4x,即x=3时取最小值83, ∴当x>0时,f(x)的最小值为8 3. (2)∵x<0,∴-x>0. 则-f(x)=12 -x +(-4x)≥2 12 -x ·?-4x?=83, 当且仅当12 -x =-4x时,即x=-3时取等号. ∴当x<0时,f(x)的最大值为-8 3. 一、选择题 1.下列各式,能用基本不等式直接求得最值的是() A.x+1 2x B.x 2-1+ 1 x2-1 C.2x+2-x D.x(1-x) 答案:C 2.函数y=3x2+ 6 x2+1 的最小值是() A.32-3 B.-3 C.6 2 D.62-3

解析:选D.y=3(x2+ 2 x2+1 )=3(x2+1+ 2 x2+1 -1)≥3(22-1)=62-3. 3.已知m、n∈R,mn=100,则m2+n2的最小值是() A.200 B.100 C.50 D.20 解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程: ①∵a,b∈(0,+∞),∴b a+ a b≥2 b a· a b=2; ②∵x,y∈(0,+∞),∴lg x+lg y≥2lg x·lg y; ③∵a∈R,a≠0,∴4 a+a≥2 4 a·a=4; ④∵x,y∈R,,xy<0,∴x y+ y x=-[(- x y)+(- y x)]≤-2?- x y??- y x?=-2. 其中正确的推导过程为() A.①②B.②③C.③④D.①④解析:选D.从基本不等式成立的条件考虑. ①∵a,b∈(0,+∞),∴b a, a b∈(0,+∞),符合基本不等式的条件,故①的推导 过程正确; ②虽然x,y∈(0,+∞),但当x∈(0,1)时,lg x是负数,y∈(0,1)时,lg y是负数,∴ ②的推导过程是错误的; ③∵a∈R,不符合基本不等式的条件, ∴4 a+a≥24 a·a=4是错误的; ④由xy<0得x y, y x均为负数,但在推导过程中将全体 x y+ y x提出负号后,(- x y)均 变为正数,符合基本不等式的条件,故④正确. 5.已知a>0,b>0,则1 a+ 1 b+2ab的最小值是() A.2 B.2 2 C.4 D.5 解析:选 C.∵1 a+ 1 b+2ab≥ 2 ab +2ab≥22×2=4.当且仅当 ?? ? ??a=b ab=1 时, 等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()

一元一次不等式单元测试题

《一元一次方程》试题 【巩固练习】 一、选择题 1.下列方程中,是一元一次方程的是( ). A .250x += B .42x y +=- C .162x = D .x =0 2. 下列变形错误的是( ) A.由x + 7= 5得x+7-7 = 5-7 ; B.由3x -2 =2x + 1得x= 3 C.由4-3x = 4x -3得4+3 = 4x+3x D.由-2x= 3得x= - 32 3. 某书中一道方程题:213 x x ++=W ,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是 2.5x =-,那么□处应该是数字( ). A .-2.5 B .2.5 C .5 D .7 4. 将(3x +2)-2(2x -1)去括号正确的是( ) A 3x +2-2x +1 B 3x +2-4x +1 C 3x +2-4x -2 D 3x +2-4x +2 5. 当x=2时,代数式ax -2x 的值为4,当x=-2时,这个代数式的值为( ) A.-8 B.-4 C.-2 D.8 6.解方程121153 x x +-=-时,去分母正确的是( ). A .3(x+1)=1-5(2x -1) B .3x+3=15-10x -5 C .3(x+1)=15-5(2x -1) D .3x+1=15-10x+5 7.某球队参加比赛,开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该队获胜的场数为( ). A .4 B .5 C .6 D .7 8.某超市选用每千克28元的甲种糖3千克,每千克20元的乙种糖2千克,每千克12元的丙种糖5千克混合成杂拌糖后出售,在总销售额不变的情况下,这种杂拌糖平均每千克售价应是( ). A .18元 B .18.4元 C .19.6元 D .20元 二、填空题 9.在0,-1,3中, 是方程3x -9=0的解. 10.如果3x 52a -=-6是关于x 的一元一次方程,那么a = ,方程的解=x . 11.若x =-2是关于x 的方程324=-a x 的解,则a = . 12.由3x =2x +1变为3x -2x =1,是方程两边同时加上 . 13.“代数式9-x 的值比代数式x 3 2-1的值小6”用方程表示为 .

基本不等式题型总结

基本公式 (1)R b a ab a a ∈≥+、,222(2)ab b a 2≥+,一定二正三相等(3 )b a a b b a b a 1122222+≥≥+≥+,当b a =时,等号成立(4)33abc c b a ≥++推广: n n n x x x n x x x 2121≥+++,0>i x 题型 (1)对勾函数:x b ax y +=当x b ax =时,函数取得极值点 (2)1的代换 当题目中有b a b a 11、、、时。例1:正数n m 、满足12=+n m ,求m n 11+的最小值解:223212)21111+≥+++=+?+=+m n n m n m m n m n ()(

(3)xy y x 、、型 例2:已知2=++xy y x ,求y x +最小值①因式分解(提取公因式)2 3232113 )1)(1(2 -≥+∴≥+++=++∴=++y x y x y x xy y x 又②求谁留谁 22208)(4)())(2(4)())(2(44)(2222-≥+≥-+++∴+-≥+∴+-=≥+∴≥+y x y x y x y x y x y x xy y x xy y x 解得: ③?判别法:0 ≥?2 320 )2(40 22 )(,22-≥≥--=?=-+-∴=-+∴-=+=z z z z zy y z y y z z y x y x z 解得则令④技巧、完全对称为最值 解得:原式完全对称和式子中2322 22-==+=∴=∴x x x y x y x

(4)xy y x 、、22型①完全对称 ②求谁留谁 ③?判别法:0≥?④配方,三角换元例3:已知1422=++xy y x 求y x +2的最大值配方: 1)2(41522=++x y x ;则:12(21522=++x y x )(换元: ]2,0[cos 2;sin 215πθθθ∈=+=。x y x θθθsin 15 1cos ,sin 152-==∴y x )sin(58cos sin 15 32?θθθ+=+=+∴y x 510 22≤+∴y x

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

必修五不等式单元测试题

人教版必修五《不等式》单元测试题 一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x の解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2} D .{x |x ≤0或x ≥2} 2.下列说法正确の是( ) A .a >b ?ac 2>bc 2 B .a >b ?a 2>b 2 C .a >b ?a 3>b 3 D .a 2>b 2?a >b 3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域の是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2) 4.不等式x -1 x +2 >1の解集是( ) A .{x |x <-2} B .{x |-2N B .M ≥N C .M 2 B .m <-2或m >2 C .-20时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-11 D .0log 1 2(x +13)の解集是_________. 13.函数f (x )=x -2 x -3 +lg 4-x の定义域是__________. 14.x ≥0,y ≥0,x +y ≤4所围成の平面区域の周长是________. 15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份 销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、

三角恒等变换单元测试基础篇

三角恒等变换单元测试基础篇 一.选择题(共10小题,每小题5分,满分50分) 1.(2019?北京学业考试)cos(α﹣β)等于() A.cosαcosβ+sinαsinβB.cosαcosβ﹣sinαsinβ C.sinαcosβ+cosαsinβD.sinαcosβ﹣cosαsinβ 【解析】解:cos(α﹣β)=cosαcosβ+sinαsinβ.故选:A. 【点睛】本题考查两角和与差的三角函数的公式,是基本知识的考查. 2.(2019秋?乃东区校级月考)求sin120°cos15°+cos60°cos105°的值() A.1 B.3 C.D. 【解析】解:sin120°cos15°+cos60°cos105°=sin60°cos15°﹣cos60°sin15° =sin(60°﹣15°)=sin45°.故选:C. 【点睛】本题考查两角和与差的三角函数以及诱导公式的应用,特殊角的三角函数求值,是基本知识的考查. 3.(2019秋?湛江校级月考)已知,则cos2α=() A.B.C.D. 【解析】解:由,得﹣sinα,即sin. ∴cos2α. 故选:C. 【点睛】本题考查三角函数的化简求值,考查诱导公式与二倍角的余弦,是基础题. 4.(2019秋?太和县校级月考)若,且θ为第三象限角,则的值等于()A.B.C.﹣7 D.7 【解析】解:若,且θ为第三象限角,则sinθ, ∴tanθ,7, 故选:D. 【点睛】本题主要考查同角三角函数的基本关系,两角和的正切公式的应用,属于基础题.

5.(2019?西湖区校级模拟)已知若,且θ∈(0,π),则() A.B.C.±D. 【解析】解:∵,且θ∈(0,π), ∴∈(0,), ∴cos0, ∴. 故选:A. 【点睛】本题注意考查了二倍角的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题. 6.(2019秋?兴庆区校级月考)已知2sinα=cosα,则() A.B.3 C.6 D.12 【解析】解:∵已知2sinα=cosα,∴tanα,则2+2tanα=3,故选:B. 【点睛】本题主要考查同角三角函数的基本关系、二倍角公式的应用,属于基础题. 7.(2019秋?辛集市校级月考)已知tanα=﹣3,α是第二象限角,则()A.B.C.D. 【解析】解:已知tanα=﹣3,α是第二象限角,根据三角函数的定义求出, 所以sin()=cos. 故选:A. 【点睛】本题考查的知识要点:三角函数的定义的应用,诱导公式的应用,主要考查学生的运算能力和

广东高考数学(理)一轮题库:7.4-基本不等式(含答案)

第4讲基本不等式一、选择题 1.若x>0,则x+4 x 的最小值为( ). A.2 B.3 C.2 2 D.4 解析∵x>0,∴x+4 x ≥4. 答案 D 2.已知a>0,b>0,a+b=2,则y=1 a + 4 b 的最小值是( ). A.7 2 B.4 C. 9 2 D.5 解析依题意得1 a + 4 b = 1 2? ? ? ? ? 1 a + 4 b( a+b)= 1 2? ? ? ? ? ? 5+ ? ? ? ? ? b a + 4a b≥ 1 2? ? ? ? ? 5+2 b a × 4a b =9 2 ,当且仅当 ?? ? ?? a+b=2 b a = 4a b a>0,b>0 ,即a= 2 3 , b=4 3 时取等号,即 1 a + 4 b 的最小值是 9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a和b(a

又v -a =2ab a + b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4 C.a +b 有最大值 2 D .a 2+b 2有最小值 22 解析 由基本不等式,得ab ≤a 2+b 2 2 = a +b 2 -2ab 2 ,所以ab ≤1 4 ,故B 错; 1 a +1 b =a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=1 2, 故D 错. 答案 C 5.已知x >0,y >0,且2x +1 y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ???? 2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4

(完整word版)中职不等式单元测试题一

不等式单元测试题(一) 一、选择题:本大题共12小题,每小题3分,共36分 1、不等式的解集的数轴表示为( ) (A )(B ) (C ) (D ) 2、设,A=(0,+∞),B=(-2,3],则A ∩B= ( ) (A )(-2,+∞) (B ) (-2,0) (C ) (0,3] (D )(0,3) 3、已知a 、b 、c 满足c a c B 、c (b -a )<0 C 、c 2b 0 4、不等式|x +1|(2x -1)≥0的解集为 ( ) A 、{x |x ≥ 21} B 、{x |x ≤-1或x ≥21} C 、{x |x =-1或x ≥21} D 、{x |-1≤x ≤2 1} 5、若a b 1 B 、b a -1>a 1 C 、a ->b - D 、|a |>b - 6、不等式x 2 >x 的解集是 ( ) A (-∞,0) B (0,1) C (1,+∞) D (-∞,0)∪(1,+∞) 7、已知0a b +>,0b <,那么,,,a b a b --的大小关系是 ( ) A .a b b a >>->- B .a b a b >->->C .a b b a >->>- D .a b a b >>->- 8、已知下列不等式:①x 2+3>2x ;②a 5+b 5 >3 223b a b a +;③22b a +≥2(a -b -1),其中正确的个 数为 ( ) A 、0 B 、1 C 、2 D 、3 9、已知A ={x |-1≤x ≤1},B ={x |1-a ≤x ≤2a -1},若B ?A ,则a 的范围为 ( ) A 、(-∞,1] B 、[1,+∞) C 、[2,+∞) D 、[1,2] 10、下列不等式中,对任意x ∈R 都成立的是 ( ) A . 244x x +≤1 B .x 2+1>2x C .lg(x 2 +1)≥lg2x D .2111 x <+ 11、 不等式 的解集是( ) (A )(2,4) (B ) (C )(-4,-2) (D ) 12.在R 上定义运算:x *y =x (1-y ).若不等式(x -a )*(x +a )<1对任意实数x 恒成立,则( ) A .-10的解集为(- 21,3 1),则a +b =. 16、不等式 204 x x ->+的解集是 . 17、022=+b a 是0=a 条件 18、设A=(-1,3],B=[3,6],则A ∩B= ; 三、解答题:本大题共6小题,共36分。 19、解下列不等式:(1)|3x -5|<8, (2)3|2x -1|≤2. 20、解下列不等式:(1);(2) .

不等式常见考试题型总结

不等式常见考试题型总结 Prepared on 22 November 2020

《不等式》常见考试题型总结一、高考与不等式 高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。不等式常与下列知识相结合考查: ①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大; ②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题; ③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查. 二、常见考试题型 (1)求解不等式解集的题型 (分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法) (2)不等式的恒成立问题 (不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合 法) (3)不等式大小比较 常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法;

4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。 (4)不等式求函数最值 技巧一:凑项 例:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例. 当 时,求(82)y x x =-的最大值。 技巧三: 分离 例. 求2710 (1)1 x x y x x ++= >-+的值域。 技巧四:换元 例. 求2710 (1)1x x y x x ++= >-+的值域。 技巧五:函数的单调性 (注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。) 例:求函数22 4 y x = +的值域。 技巧六:整体代换 (多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。) 例:(1)已知0,0x y >>,且19 1x y +=,求x y +的最小值。 (2)若+ ∈R y x ,且12=+y x ,求y x 11+的最小值 (3)已知+ ∈R y x b a ,,,且1=+y b x a ,求y x +的最小值

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

一元一次不等式单元测试题

第八章一元一次不等式测试题 一、选择题: 1、如果,那么下列不等式不成立的是() A、B、C、D、 2、不等式的解集是() A、B、C、D、 3 、下列各式中,是一元一次不等式的是() A、E、C、D、 4、已知不等式,此不等式的解集在数轴上表示为() 5、在数轴上从左至右的三个数为a, 1 + a,—a,则a的取值范围是() A a v B a v 0 C、a> 0 D、a v — 6、(2007 年湘潭市)不等式组的解集在数轴上表示为() 7、不等式组的整数解的个数是() A、1 个 B、2 个 C、3 个 D、4 个 8、在平面直角坐标系内, P(2x—6, x—5)在第四象限,则x 的取值范围为() A、3v x v 5 B、—3v x v 5 C、—5v x v 3 D、—5v x v— 3 9、方程组的解x、y满足x>y,贝U m的取值范围是() A. B. C. D. 10、、(2013?荆门)若关于x的一元一次不等式组有解,则m的取值范围为() A. < C. D. me

11、(2013?孝感)使不等式x - 1>2与3x - 7 v 8同时成立的x的整数值是() A.3, 4 D.不存在 12、某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法 第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售?你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买 ()块肥皂? 二、填空题 13、若不等式组无解,则m的取值范围是 _______________ . 14、不等式组的解集为x >2,则a的取值范围是________________ . 15、(2013?厦门)某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全 区域?甲工人在转移过程中,前40米只能步行,之后骑自行车. 已知导火线燃烧的速度为米/秒,步行的速度为1米/秒,骑车的速度为4米/秒?为了确保甲工人的安全,则导火线的长要大于______________________ 米 16、(2013?白银)不等式2x+9》3 (x+2)的正整数解是 ____________ ? 17、(2013?宁夏)若不等式组有解,则a的取值范围是______________ ? 18、(2013?南通)关于x的方程mx 1 2x的解为正实数,则m的取值范围是 _____________ 19、(2013?包头)不等式(x - m) > 3 - m的解集为x > 1,贝U m的值为 _______ . 三、解答题: 20、解不等式(组) x v 1 —x< x + 5 (1)

高中数学第一册不等式单元测试题(含答案)

不等式单元测试题 一、单选题(共12题;共24分) 1.(2020高二下·北京期中)若,,则() A. B. C. D. 2.(2020高一下·邯郸期中)已知,且.下列不等式中成立的是() A. B. C. D. 3.(2020高一下·成都期中)若,则一定有() A. B. C. D. 4.(2020高一下·嘉兴期中)设、、,,则下列不等式一定成立的是() A. B. C. D. 5.(2020高一下·吉林期中)下列命题中:① ,;② ,; ③ ;④ ;正确命题的个数是() A. 1 B. 2 C. 3 D. 4 6.(2020高一下·哈尔滨期末)已知,,则的最小值为() A. 8 B. 6 C. D. 7.(2020高一下·太和期末)设正实数满足,则当取得最大值时, 的最大值为() A. 1 B. 4 C. D. 8.(2020高一下·丽水期末)已知实数满足,且,则的最小值为() A. B. C. D. 9.(2020高一下·宜宾期末)若正数满足,则的最大值为() A. 5 B. 6 C. 7 D. 9 10.(2020高一下·南昌期末)已知a,,且满足,则的最小值为() A. B. C. D. 11.(2020高一下·丽水期末)不等式的解集是() A. 或 B. 或 C. D. 12.(2020高一下·吉林期末)若a<0,则关于x的不等式x2-4ax-5a2>0的解是() A. x>5a或x<-a B. x>-a或x<5a C. 5a<x<-a D. -a<x<5a

二、填空题(共4题;共4分) 13.(2020高二下·西安期中)比较大小:________ .(用,或填空) 14.(2020高一下·温州期末)已知正实数x,y满足,则的最小值是________. 15.(2020高一下·宜宾期末)若正数满足,则的最小值为________. 16.(2020高一下·哈尔滨期末)不等式的解集为________. 三、解答题(共8题;共75分) 17.(2020高一下·六安期末)已知函数. (1)当时,求函数的最小值; (2)若存在,使得成立,求实数a的取值范围. 18.(2020高一下·大庆期末)已知关于x的不等式. (1)当时,解上述不等式. (2)当时,解上述关于x的不等式 19.(2020高一下·太和期末)已知函数. (1)若对任意实数,恒成立,求实数a的取值范围; (2)解关于x的不等式. 20.(2020高一下·宜宾期末)已知函数. (1)当时,解不等式; (2)当时,恒成立,求的取值范围. 21.(2020高一下·萍乡期末) (1)解不等式; (2)解关于x的不等式:. 22.(2020高一下·成都期末)已知定义在上的函数,其中为常数. (1)求解关于的不等式的解集; (2)若是与的等差中项,求a+b的取值范围. 23.(2020高一下·南昌期末)已知汽车从踩刹车到停车所滑行的距离()与速度()的平方和汽车总质量积成正比关系,设某辆卡车不装货物以的速度行驶时,从刹车到停车走了.(Ⅰ)当汽车不装货物以的速度行驶,从刹车到停车所滑行的距离为多少米?. (Ⅱ)如果这辆卡车装着等于车重的货物行驶时,发现前面处有障碍物,这时为了能在离障碍物 以外处停车,最大限制时速应是多少?(结果保留整数,设卡车司机发现障碍物到踩刹车需经过.参考数据:.) 24.(2020高一下·重庆期末)已知函数. (1)当时,求不等式的解集; (2)若关于x的不等式的解集为R,求a的取值范围.

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

基本不等式(含答案)

§3.4 基本不等式:ab ≤ a + b 2 材拓展 1.一个常用的基本不等式链 设a >0,b >0,则有: min{a ,b }≤21a +1b ≤ ab ≤a +b 2≤ a 2+b 22≤max{a ,b }, 当且仅当a =b 时,所有等号成立. 若a >b >0,则有: b <21a +1b 0,则a b +b a ≥2. 3.利用基本不等式求最值的法则 基本不等式ab ≤a +b 2 (a ,b 为正实数)常用于证明不等式或求代数式的最值. (1)当两个正数的和为定值时,它们的积有最大值,即ab ≤????a +b 22,当且仅当a =b 时, 等号成立. (2)当两个正数的积为定值时,它们的和有最小值,即a +b ≥2ab ,当且仅当a =b 时,等号成立. 注意:利用基本不等式求代数式最值,要注意满足三个条件:①两个正数;②两个正数的积或和为定值;③取最值时,等号能成立.概括为“一正、二定(值)、三相等”. 4.函数f (x )=x +k x (k >0)的单调性在求最值中的应用 有些最值问题由于条件的限制使等号取不到,其最值又确实存在,我们可以利用函数f (x )=x +k x (k >0)的单调性加以解决. 利用函数单调性的定义可以证明函数f (x )=x +k x (k >0)在(0,k ]上单调递减,在[k ,+∞)上单调递增. 因为函数f (x )=x +k x (k >0)是奇函数,所以f (x )=x +k x (k >0)在(-∞,-k ]上为增函数,在[-k ,0)上为减函数.

初一不等式单元测试

七年级数学《不等式与不等式(组)》练习题 班级_______姓名________成绩_________ 一、 选择题(4×8=32) 1、下列数中是不等式x 3 2>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60 A、5个 B、6个 C、7个 D、8个 2、下列各式中,是一元一次不等式的是( ) A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( ) A、b a +-+-33 B、0 b a - C、b a 3 131 D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( ) A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2- 5、不等式组???2 2 x x 的解集为( ) A 、x >2- B 、2-83+x 的解集为( ) A 、x >21 B 、x <0 C 、x >0 D 、x <2 1 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个 8、下图所表示的不等式组的解集为( ) -2 A 、x 3 B 、32 x - C 、 2- x D 、32 x - 二、 填空题(3×6=18) 9、“x 的一半与2的差不大于1-”所对应的不等式是 10、不等号填空:若a

新北师大八年级数学下册第二章一元一次不等式和一元一次不等式组单元测试1

新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组单元测试1

————————————————————————————————作者:————————————————————————————————日期:

第二章 一元一次不等式与一元一次不等式组检测题 (本试卷满分:100分,时间:90分钟) 一、选择题(每小题3分,共30分) 1.(2015?四川南充中考)若m >n ,下列不等式不一定成立的是( ) A.m +2>n +2 B.2m >2n C. 2 2m n > D.22m n > 2.当2 1- =x 时,多项式12 -+kx x 的值小于0,那么k 的值为 [ ] A .23- k D .2 3>k 3. 不等式组?? ?<>+7 20 13x x 的正整数解的个数是 [ ] A .1 B .2 C .3 D .4 4.(2015?湖北襄阳中考)在数轴上表示不等式2(1-x )<4的解集,正确的是() A. B. C. D. 5.已知关于x 的不等式组?? ?+<-≥-1 22b a x b a x 的解集为53<≤x ,则a b 的值为 [ ] A .-2 B .21- C .-4 D .4 1 - 6.如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx+b>ax 的解集是( ) A .x>1 B .x<1 C .x>2 D .x<2 7 .要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为( ) A.m > 2 3 ,n >-31 B.m >3,n >-3 C.m < 2 3 ,n <-31 D.m <2 3 ,n >-31

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab b a +≤ +≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 已知,,a b c R + ∈,且1a b c ++=,求证:1111118a b c ??????---≥ ??????????? 6、选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、选修4—5:不等式选讲: 已知0>≥b a ,求证:b a ab b a 2 23322-≥- 题型二:利用不等式求函数值域

相关文档
最新文档