基本不等式题型归纳
基本不等式求最值的题型及解题策略

ʏ喻 芳利用不等式求最值的实质是a b ɤa +b2ɤa 2+b 22(a ,b >0),a b ɤa +b 22ɤa 2+b22(a ,b ɪR )的灵活应用㊂题型一:简单的和或积为定值求最值例1 (1)已知x ,y ,z 都是正实数,若x y z =1,则(x +y )(y +z )(z +x )的最小值为( )㊂A.2 B .4C .6D .8(2)已知0<x <1,则函数f (x )=x 3(1-x 3)的最大值为㊂(1)由x >0,y >0,z >0,可知x +y ȡ2x y >0(当且仅当x =y 时等号成立),y +z ȡ2y z >0(当且仅当y =z 时等号成立),x +z ȡ2x z >0(当且仅当x =z 时等号成立)㊂以上三个不等式两边同时相乘得(x +y )(y +z )(z +x )ȡ8x 2y 2z 2=8(当且仅当x =y =z =1时等号成立)㊂应选D ㊂(2)由基本不等式得f (x )=x 3(1-x 3)ɤx 3+1-x322=14,当且仅当x 3=1-x 3,即x =312时等号成立㊂故所求的最大值为14㊂感悟:基本不等式a 2+b 2ȡ2a b (a ,b ɪR ),a +b ȡ2a b (a ,b ɪR +),当一端为定值时,另一端就可取到最值,且要注意两个不等式适应的范围和取等号的条件㊂题型二:配凑法构造和或积为定值求最值例2 (1)已知x <54,求y =4x -2+14x -5的最大值㊂(2)若x ȡ72,则f (x )=x 2-6x +10x -3有( )㊂A .最大值52B .最小值52C .最大值2D .最小值2(1)由x <54,可得5-4x >0,所以y =4x -2+14x -5=4x -5+14x -5+3=-5-4x +15-4x+3ɤ-2(5-4x )ˑ15-4x+3=1,当且仅当5-4x =15-4x ,即x =1时等号成立,所以y 的最大值为1㊂(2)由x ȡ72,可得x -3>0,所以f (x )=x 2-6x +10x -3=(x -3)2+1x -3=(x -3)+1x -3ȡ2(x -3)ˑ1x -3=2,当且仅当x -3=1x -3,即x =4时等号成立,所以f (x )有最小值2㊂应选D ㊂感悟:形如y =a x 2+b x +ck x +m的分式函数求最值,可化为y =m g (x )+Ag (x)+B (A >0,B >0),这里g (x )恒正或恒负,然后运用基本不等式求最值㊂题型三:常数代换法求最值例3 已知p ,q 为正实数,且p +q =3,81 知识结构与拓展 高一数学 2023年9月Copyright ©博看网. All Rights Reserved.则1p +2+1q +1的最小值为( )㊂A.23B .53C .74D .95由p ,q 为正实数,p +q =3,可知p +2+q +1=6㊂所以1p +2+1q +1=1p +2+1q +1 ㊃p +26+q +16 =13+16p +2q +1+q +1p +2 ȡ13+16ˑ2p +2q +1㊃q +1p +2=23,当且仅当p +2=q +1,即p =1,q =2时 = 成立㊂应选A ㊂感悟:常数代换法适用于求解条件最值问题㊂题型四:消元法求最值例4 若正实数x ,y ,z 满足x 2+4y 2=z +3x y ,则当x yz 取最大值时,1x +12y -1z 的最大值为㊂正实数x ,y ,z 满足x 2+4y 2=z +3x y ,则z =x 2-3x y+4y 2,所以x y z =x yx 2-3x y +4y2=1x y +4y x -3ɤ12x y ㊃4y x -3=1,当且仅当x =2y 时等号成立,所以x yzm a x=1,此时x =2y ,所以z =x 2-3x y +4y 2=2y 2㊂所以1x +12y -1z =12y +12y -12y 2=-121y -12+12ɤ12,所以1x +12y -1z的最大值为12㊂感悟:解决多元最值的方法是消元后利用基本不等式求解,但要注意所保留变量的取值范围㊂题型五:换元法求最值例5 若正数a ,b 满足2a +b =1,则a 2-2a +b2-b的最小值是㊂设u =2-2a ,v =2-b ,则a =2-u2,b =2-v ,所以u +v =3(u >0,v >0)㊂所以a 2-2a +b 2-b =1-12uu +2-vv=1u +2v -32=13(u +v )1u +2v-32=13㊃3+v u +2u v-32ȡ133+2v u ㊃2uv-32=1+223-32=223-12,当且仅当v 2=2u 2,u +v =3,即v =6-32,u =32-3时等号成立,所以所求的最小值为223-12㊂感悟:换元法求最值的关键是整体换元,利用构造的新元求最值㊂题型六:构建不等式求最值例6 (1)已知正实数x ,y 满足x y =x +y +8,则x +y 的最小值为㊂(2)已知x ,y ɪR +,若x +y +x y =8,则x y 的最大值为㊂(1)由正实数x ,y ,可得(x +y )2=x 2+y 2+2x y ȡ4x y(当且仅当x =y 时等号成立),所以x y ɤ(x +y )24,所以x y =x +y +8ɤ(x +y )24,即(x +y )2-4(x +y )-32ȡ0,解得x +y ɤ-4(舍去)或x +y ȡ8(当且仅当x =y =4时等号成立),所以x +y 的最小值为8㊂(2)因为正数x ,y 满足x +y +x y =8,所以8-x y =x +y ȡ2x y ,即x y +2x y-8ɤ0,解得0<x y ɤ2,所以x y ɤ4,当且仅当x =y =2时取等号㊂所以x y 的最大值为4㊂感悟:利用题设条件,借助基本不等式进行放缩,得到关于 和 或 积 的不等式,解此不等式可得 和 或 积 的最值㊂作者单位:湖北省宜昌市长阳土家族自治县职业教育中心(责任编辑 郭正华)91知识结构与拓展高一数学 2023年9月Copyright ©博看网. All Rights Reserved.。
基本不等式题型及常用方法总结

基本不等式题型及常用方法总结1. 引言不等式是数学中重要的概念之一,它在数学建模、优化理论、概率论等领域中有着广泛的应用。
基本不等式是解决不等式问题的基础,掌握常用的解题方法对于学习和应用不等式理论至关重要。
本文将系统总结基本不等式题型及常用方法,以帮助读者更好地理解和应用这一领域的知识。
2. 一元一次不等式2.1 一元一次线性不等式2.1.1 基本性质:线性函数图像特点、函数值与符号关系在解决一元一次线性函数时,我们首先需要了解线性函数图像的特点。
对于形如ax+b>0或ax+b<0的线性函数,我们可以通过求解对应方程ax+b=0得到临界点x=-b/a,并以此为界将数轴分为两个区间。
在每个区间内,我们可以通过选取任意一个测试点来判断该区间内函数值与符号之间的关系。
2.1.2 解法:图像法、代数法对于一元一次线性不等式,我们可以通过图像法和代数法来解决问题。
图像法是通过绘制线性函数的图像,通过观察函数在不同区间的变化来确定不等式的解集。
代数法则是通过代数运算,将不等式转化为等价的形式,从而得到解集。
例如,对于ax+b>0形式的线性不等式,我们可以将其转化为ax>-b,并根据a的正负性讨论出解集。
2.2 一元一次绝对值不等式绝对值函数是一个常见的非线性函数,在解决绝对值不等式时我们需要特别注意其特点和解题方法。
对于形如|ax+b|>c或|ax+b|<c的绝对值不等式,我们可以将其转化为一个或多个线性不等式,并根据这些线性不等式得到最终的解集。
2.3 一元二次根号型不等式二次根号型函数在数学中也有着重要地位,在解决二次根号型函数时我们需要掌握特定方法。
例如,在求解形如√(ax^2+bx+c)>0或√(ax^2+bx+c)<0 的二次根号型函数时,可以通过求出二次方程ax^2+bx+c=0 的两个实数根,并根据根的位置和函数的凹凸性来确定函数值与符号之间的关系。
基本不等式知识点和基本题型

基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1、基本不等式原始形式若$a,b\in R$,则$a+b\geq 2ab$,其中$a^2+b^2$为定值。
2、基本不等式一般形式(均值不等式)若$a,b\in R$,则$\frac{a+b}{2}\geq \sqrt{ab}$。
3、基本不等式的两个重要变形若$a,b\in R$,则$a+b\geq 2\sqrt{ab}$,其中$\frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}$。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。
特别说明:以上不等式中,当且仅当$a=b$时取“=”。
4、求最值的条件:“一正,二定,三相等”。
5、常用结论若$x>1$,则$\frac{x+1}{2}>\sqrt{x}$(当且仅当$x=1$时取“=”)。
若$x<1$,则$\frac{x+1}{2}<-\frac{1}{x}$(当且仅当$x=-1$时取“=”)。
若$ab>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”)。
若$a,b\in R$,则$a^2+b^2\geq 2ab$,$\frac{a+b}{2}\geq \frac{2ab}{a+b}$,$\frac{a+b}{2}\leq \sqrt{a^2+b^2}$。
6、柯西不等式若$a,b\in R$,则$(a^2+b^2)(1+1)\geq (a+b)^2$。
题型分析题型一:利用基本不等式证明不等式1、设$a,b$均为正数,证明不等式:$ab\geq\frac{a^2+b^2}{2}$。
2、已知$a,b,c$为两两不相等的实数,求证:$a^2+b^2+c^2\geq ab+bc+ca$。
3、已知$a+b+c=1$,求证:$a^2+b^2+c^2+\frac{9}{4}\geq 2(ab+bc+ca)$。
高一数学基本不等式10题型分类(原卷版)

2.2基本不等式10题型分类一、基本不等式1.如果a >0,b >0≤2a b+,当且仅当a b =时,等号成立.其中2a b+叫做正数a ,b a ,b 的几何平均数.2.变形:ab ≤22a b +⎛⎫⎪⎝⎭,a ,b ∈R ,当且仅当a =b 时,等号成立.a +b a ,b 都是正数,当且仅当a =b 时,等号成立.3.不等式22a b + 2ab ≤2a b+成立的条件一样吗?不一样,22a b + 2ab 成立的条件时a ,b ∈R 2a b+成立的条件是a >0,b >0.4.不等式22a b + 2ab ≤2a b+中“=”成立的条件相同吗?相同.都是当且仅当a =b 时等号成立.5.基本不等式成立的条件一正二定三相等.二、基本不等式与最大值最小值1.两个正数的和为常数时,它们的积有最大值;两个正数的积为常数时,它们的和有最小值.(1)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当x y =时,积xy 有最大值214S .(2)已知x ,y 都是正数,如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值(一)对基本不等式概念的理解对基本不等式概念的理解(1)基本不等式ab ≤2a b+(a >0,b >0)反映了两个正数的和与积之间的关系.(2)对基本不等式的准确掌握要抓住以下两个方面:①定理成立的条件是a 、b 都是正数.②“当且仅当”的含义:当a =b 时,ab ≤2a b +的等号成立,即a =b ⇒2a b+=ab ;仅当a =b 时,2a b +≥ab 的等号成立,即2a b+=ab ⇒a =b .的是((二)利用基本不等式比较大小利用基本不等式证明不等式的策略与注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”.(2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②累加法是不等式证明中的一种常用方法,证明不等式时注意使用;③对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.(三)利用基本不等式求最值利用基本不等式求最值1.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则.≥ab成立的前提条件:a>0,b>0.(1)一正:符合基本不等式a+b2(2)二定:化不等式的一边为定值.(3)三相等:必须存在取等号的条件,即等号成立.以上三点缺一不可.2.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分项或配凑因式.3.应用基本不等式证明不等式的关键在于进行“拼”、“凑”、“拆”、“合”、“放缩”等变形,构造出符合基本不等式的条件结构..4.一般地,数学中的定理、公式揭示了若干量之间的本质联系,但不能定格于某种特殊形式,因此重要不=(四)基本不等式的恒成立问题求参数的值或取值范围的一般方法(1)分离参数,转化为求代数式的最值问题.(2)观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或取值范围.C .2m ≤-或m 1≥D .1m ≤-或2m ≥9-2.(2023秋·湖北·高一校联考阶段练习)已知不等式()1116x ay x y ⎛⎫++≥ ⎪⎝⎭对任意正实数,x y 恒成立,则正实数a 的最小值为()A .2B .4C .6D .99-3.(2023春·河北石家庄·高二校联考阶段练习)已知0,0a b >>,且212a b +=,若2143121t t a b -≤+--恒成立,则t 的取值范围是.9-4.(2023秋·云南昭通·高一校联考阶段练习)已知0a >,0b >,且12ab =,不等式11422m a b a b++≥+恒成立,则正实数m 的取值范围是()A .{}1m m ≥B .{}2m m ≥C .{}3m m ≥D .{}4m m ≥9-5.(2023秋·天津和平·高一耀华中学校考期中)已知0a >,0b >.(1)若不等式313ma b a b+≥+恒成立,求m 的最大值;(2)若228a b ab ++=,求2+a b 的最小值.(五)利用基本不等式解决实际问题在应用基本不等式解决实际问题时,应注意如下的思路和方法:(1)先理解题意,设出变量,一般把要求最值的量定为函数;(2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)根据实际背景写出答案.题型10:利用基本不等式解决实际问题10-1.(2023·广西南宁·统考二模)某单位为提升服务质量,花费3万元购进了一套先进设备,该设备每年管理费用为0.1万元,已知使用x 年的维修总费用为227x x+万元,则该设备年平均费用最少时的年限为()A .7B .8C .9D .1010-2.(2023春·湖南·高三校联考阶段练习)某社区计划在一块空地上种植花卉,已知这块空地是面积为1800平方米的矩形ABCD ,为了方便居民观赏,在这块空地中间修了如图所示的三条宽度为2米的人行通道,则种植花卉区域的面积的最大值是()A .1208平方米B .1448平方米C .1568平方米D .1698平方米10-3.(2023春·湖南长沙·高二湖南师大附中校考期中)一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.你认为顾客购得的黄金()附:依据力矩平衡原理,天平平衡时有1122m L m L =,其中1m 、2m 分别为左、右盘中物体质量,1L 、2L 分别为左右横梁臂长.A .等于10gB .小于10gC .大于10gD .不确定10-4.(2023秋·广东深圳·高一校考阶段练习)为加强“疫情防控”,某校决定在学校门口借助一侧原有墙体,建造一间墙高为4米,底面积为32平方米,且背面靠墙的长方体形状的校园应急室,由于此应急室后背靠墙,无需建造费用,某公司给出的报价为:应急室正面和侧面报价均为每平方米200元,屋顶和地面报价共计7200元,设应急室的左右两侧的长度均为x 米()16x ≤≤,公司整体报价为y 元.(1)试求y 关于x 的函数解析式;(2)公司应如何设计应急室正面和两侧的长度,可以使学校的建造费用最低,并求出此最低费用.一、单选题1.(2023春·重庆·高二校联考期末)已知0a b >>,下列不等式中正确的是()A .2ab b <B .c ca b>C .1111a b <--D .12a b a b-+≥-2.(2023·全国·高三专题练习)已知实数,,a b c 满足a b c <<且0abc <,则下列不等关系一定正确的是()A .ac bc <B .ab ac <C .2b c c b+>D .2b a a b+>3.(2023春·山东滨州·高二校考阶段练习)若0x >,则()94f x x x=+的最小值为()A .4B .9C .12D .214.(2023秋·广东江门·高一校考期中)如果0a b <<,那么下列不等式正确的是()A2a ba b +<<<B .2a ba b +<<C2a ba b +<<<D .2a ba b+<<<5.(2023春·河南·高三校联考阶段练习)已知2(0,0)a b ab a b +=>>,下列说法正确的是()A .ab 的最大值为8B .1212a b +--的最小值为2C .a b +有最小值3D .2224a a b b -+-有最大值46.(2023·江苏·高一假期作业)若对0x >,0y >,有21(2)()x y m x y+⋅+≥恒成立,则m 的取值范围是()A .4m ≤B .4m >C .0m <D .8m ≤7.(2023秋·湖南长沙·高三湖南师大附中校考阶段练习)快递公司计划在某货运枢纽附近投资配建货物分拣中心.假定每月的土地租金成本与分拣中心到货运枢纽的距离成反比,每月的货物运输成本与分拣中心到货运枢纽的距离成正比.经测算,如果在距离货运枢纽10km 处配建分拣中心,则每月的土地租金成本和货物运输成本分别为2万元和8万元.要使得两项成本之和最小,分拣中心和货运枢纽的距离应设置为()A .5kmB .6kmC .7kmD .8km二、多选题8.(2023春·云南曲靖·高二校考阶段练习)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.下列结论不正确的是()A .当0x >2≥B .当0x >2的最小值是2C .当54x <时,22145x x -+-的最小值是52D .设0x >,0y >,且2x y +=,则14x y +的最小值是929.(2023春·安徽六安·高二六安一中校考期末)已知正实数a 、b 满足2a b +=,则下列结论正确的是()A .1ab ≤B 2≥C .332a b +≤D .222a b +≥10.(2023春·云南迪庆·高一统考期末)设正实数x ,y 满足23x y +=,则下列说法正确的是()A .3yx y +的最小值为4B .xy 的最大值为98C 的最小值为2D .224x y +的最小值为9211.(2023春·江西南昌·高二校联考期末)已知0,0a b >>,且22a b +=,则()A .ab 的最小值是12B .12a b+的最小值是4C .2214a b +的最小值是8D 211a b++12.(2023春·河北张家口·高二统考期末)已知0a >,0b >且121a b+=,则下列结论正确的有()A .a b +≤B .3a b +≥+C .ab ≤D .8ab ≥13.(2023春·江西上饶·高二统考期末)已知0x >,0y >,且30x y xy ++-=,则下列结论正确的是()A .xy 的取值范围是(0,1]B .x y +的取值范围是[2,3]C .2x y +的最小值是3-D .5x y +的最小值为6三、填空题14.(2023春·云南红河·高二校考期中)若正数,a b 满足4ab =,则a b +的最小值是.15.(2023秋·陕西渭南·高二统考期末)若1x >,则311x x +--的最小值为.16.(2023春·辽宁葫芦岛·高二统考期末)已知正实数x ,y 满足1x y +=,则63x y xy++的最小值为.17.(2023春·辽宁·高二校联考阶段练习)已知0a >,0b >,()()2218a b ++=,则下列判断正确的是()A .3322a b +++B .ab 的最大值为11-C .2a b +的最小值为6D .()1a b +的最大值为818.(2023秋·上海黄浦·高一上海市光明中学校考期中)已知0x >,0y >且3x y +=,若1222a x y y x +≥--恒成立,则实数a 的范围是.四、解答题19.(2023春·河北石家庄·高一校考期中)(1)已知102x <<,求()1122y x x =-的最大值(2)已知3x <,求423y x x =+-的最大值(3)已知00,x y >>,且4x y +=,求13x y+的最小值20.(2023春·山西运城·高二康杰中学校考阶段练习)若正实数a ,b 满足1a b +=.(1)求ab 的最大值;(2)求411a b++的最小值.21.(2023秋·四川绵阳·高一四川省绵阳江油中学校考阶段练习)如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形菜园.设菜园的长为x m ,宽为y m .(1)若菜园面积为18m 2,则x ,y 为何值时,可使所用篱笆总长最小?(2)若使用的篱笆总长度为15m ,求12x y+的最小值.22.(2023秋·陕西榆林·高一统考期末)已知0a >,0b >.(1)若16b a =-,求ba的最大值;(2)若222292a b ab a b ++=,证明:8ab ≥.23.(2023·贵州黔西·校考一模)设a ,b ,c 均为正数,且1a b c ++=,证明:(1)22213a b c ++≥;(2)333a c b a c b abc ++≥.。
基本不等式题型20种

基本不等式题型20种不等式是数学中重要的概念,它描述了数之间的大小关系。
在解决实际问题和推导数学推论中,不等式起着非常重要的作用。
本文将介绍20种常见的基本不等式题型。
一、一元一次不等式一元一次不等式是最简单的不等式类型。
例如:解不等式3x+4>10。
解:首先将不等式转化为等式:3x+4=10;然后解方程:3x=6;得到解:x=2。
二、一元二次不等式一元二次不等式是一元二次函数的不等式形式。
例如:解不等式x^2-5x+6>0。
解:首先求出一元二次函数的根:(x-2)(x-3)>0;然后画出函数的图像或根据韦达定理判断函数的正负;得到解:x<2或x>3。
三、绝对值不等式绝对值不等式是含有绝对值符号的不等式。
例如:解不等式|2x-3|≥5。
解:将含有绝对值的不等式拆分为两个不等式:2x-3≥5或2x-3≤-5;然后求解这两个不等式得到:x≥4或x≤-1。
四、分式不等式分式不等式是含有分式的不等式。
例如:解不等式(3x-2)/(2x+1)≤1。
解:首先将不等式化简:3x-2≤2x+1;然后解方程:x≤3。
五、根式不等式根式不等式是含有根式的不等式。
例如:解不等式√(x-4)≥2。
解:将不等式平方得:x-4≥4;然后解方程:x≥8。
六、乘法不等式乘法不等式是含有乘法的不等式。
例如:解不等式2x(x-1)≤0。
解:将不等式化简:2x(x-1)≤0;然后求解这个不等式得到:0≤x≤1。
七、除法不等式除法不等式是含有除法的不等式。
例如:解不等式(3x+6)/(x+2)≤4。
解:首先将不等式转化为等式:(3x+6)/(x+2)=4;然后解方程:x=-5;由于分母不能为0,所以解为x<-2或x>-5。
八、加法不等式加法不等式是含有加法的不等式。
例如:解不等式x+2>5。
解:将不等式化简:x>3。
九、减法不等式减法不等式是含有减法的不等式。
例如:解不等式2x-5≥1。
《基本不等式》17种题型高一

基本不等式是高中数学中非常重要且基础的一部分。
它在高一数学中占据着重要的地位,对于学生的数学基础和逻辑推理能力的培养起着至关重要的作用。
在高一数学教学中,基本不等式的学习也是一个重要的环节,不仅需要掌握它的概念和性质,还需要学会运用它解决实际问题。
本文将从基本不等式的概念入手,详细介绍其性质和运用方法,并列举17种题型,帮助学生全面理解和掌握基本不等式的相关知识。
一、基本不等式的概念基本不等式是指在任意三个实数a、b、c之间,必有以下基本不等式成立:1)正数的不等式:a >b ⟹ a +c > b + ca > 0,b > 0 ⟹ ac > bca > b, c > 0 ⟹ ac > bca > b, c < 0 ⟹ ac < bc2)负数的不等式:a <b ⟹ a +c < b + ca < 0,b < 0 ⟹ ac > bca < b, c > 0 ⟹ ac < bca < b, c < 0 ⟹ ac > bc以上基本不等式是学习基本不等式的基础,对于解决实际问题是非常重要的。
二、基本不等式的性质基本不等式还具有一些重要的性质,包括:1)传递性:若a > b,b > c,则a > c2)对称性:若a > b,则-b > -a3)倒置性:若a > b,则1/a < 1/b,且a/b > 0这些性质对于运用基本不等式解决实际问题时起着重要的作用,可以帮助学生更好地理解和运用基本不等式。
三、基本不等式的运用方法基本不等式在解决实际问题时有着广泛的应用,其运用方法主要包括:1)利用基本不等式的性质化简题目;2)利用基本不等式构造等式或方程组,进而求解问题;3)利用基本不等式证明不等式关系,讨论最值等问题。
学生在解决实际问题时,可以根据具体情况选择不同的运用方法,灵活运用基本不等式,解决各种复杂的问题。
基本不等式题型及常用方法总结

基本不等式题型及常用方法总结基本不等式题型包括一元一次不等式、一元二次不等式、绝对值不等式和有理不等式等。
1. 一元一次不等式:- 解法1:通过移项和化简来求解,确保不等号方向的正确性。
- 解法2:将不等式转化为等价的集合表示,再通过集合的交、并运算求解。
2. 一元二次不等式:- 解法1:将不等式化为一元二次函数的图像,通过观察图像求解或者利用函数的性质来求解。
- 解法2:通过移项和配方法将不等式转化为二次函数的标准形式,再判断二次函数图像的位置与不等号关系来求解。
3. 绝对值不等式:- 解法1:将绝对值不等式分段求解,分别讨论绝对值内部是正数还是负数的情况。
- 解法2:通过绝对值的定义和不等式的性质,将绝对值不等式转化为两个简单的不等式来求解。
4. 有理不等式:- 解法1:将有理不等式化为分式的形式,然后通过分式的性质来求解。
- 解法2:通过变量的替换来将有理不等式转化为一元二次不等式或者一元一次不等式,再利用对应的方法来求解。
常用方法总结:1. 对于一元一次不等式和一元二次不等式,常用的方法是移项和化简、画函数图像和利用函数的性质来求解。
2. 对于绝对值不等式,常用的方法是分段求解和利用绝对值的性质来求解。
3. 对于有理不等式,常用的方法是化为分式形式和利用分式的性质来求解。
4. 在求解不等式的过程中,经常需要进行合并同类项、开方、取倒数、乘除等基本运算,需要注意运算法则和符号的变化。
5. 在不等式的求解过程中,需要注意不等式两边的平方值是否相等,以及是否存在不等式的等价变换等。
同时,在进行运算过程中,需要根据不等式的符号关系来选择合适的方式。
基本不等式的常见题型

12.已知x 0, y 0, x y 1, 则
13.已知2 x y 0,
1
1
的最小值是 _____.
1 x 1 2 y
1
1
1, 则x y的最小值是 _____.
2 x-y x +2 y
1 1
4x
9y
14.已知x 0, y 0, 1, 则
2.基本不等式
一、知识点梳理
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当 a=b 时取等号.
a+b
称为正数 a,b 的算术平均数, ab称为正数 a,b 的几何平均数.
2
(3)其中
1 a 2+b2 2ab, a,b R
(当且仅当 a= b时取等号 )
2
a+b
的最小值为_______.
xy
a2 1
的最小值为_______.
ab
x2 3y
的最小值为_______.
xy
[题组训练]
(�+1)(2�+1)
1. (2019 天津,13,5 分)设 x>0,y>0,x+2y=5,则
��
的最小值为
.
1 a
2.设a 0, b >0, 且a b 1, 则 的最小值为_______.
1 1
2.若 2m+n=1 上,且 m,n 为正数,则 + 的最小值为________.
m n
1
4
3.已知正数 x,y 满足 x+y=1,则�+1+�的最小值为________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式题型归纳
【重点知识梳理】
1.基本不等式:2a b ab +≤ (1)基本不等式成立的条件:0a >,0b >.
(2)等号成立的条件:当且仅当a b =时,等号成立.
2.几个重要的不等式:(1)222a b ab +≥(,a b R ∈); (2)
2b a a b +≥(0ab >); (3)2(
)2a b ab +≤(,a b R ∈); (4)2222()()a b a b +≥+(,a b R ∈). 3.算术平均数与几何平均数
设0a >,0b >,则,a b 的算术平均数为
2
a b +,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.
4.利用基本不等式求最值问题
已知0a >,0b >,则
(1)如果积ab 是定值p ,那么当且仅当a b =时,a b +有最小值是2p .(简记:积定和最小) (2)如果和a b +是定值p ,那么当且仅当a b =时,ab 有最大值是2
4
p .(简记:和定积最大) 题型一览
1、已知0a >,0b >,且41a b +=,则ab 的最大值为_______,则
1ab
的最小值为_______; 2、已知21x y +=,则24x y +的最小值为_______ 3、设03x <<,则函数4(52)y x x =-的最大值为_______
4、若0x >,则4x x +
的最小值为_______;若0x <,则4x x +的最大值为_______ 5、若2x > ,则12x x +-的最小值为_______;若2x < ,则12
x x +-的最大值为_______ 若函数1()(2)2f x x x x =+
>-在 x a =处有最小值,则a =_______ 6、已知,a b R +∈,且22a b +=,则
12a b +(2a b b a +)的最小值为_______,此时,a b 的值分别是_______ 7、已知0x >,0y >,2
12x y
+=(22x y xy +=或220x y xy +-=),则2x y +的最小值为_______
8、已知0,0a b >>,如果不等式
212m a b a b
+≥+恒成立,那么m 的最大值等于_______ 9、几个分式的变形: (1)若0x >,则函数21x y x
+=的最小值是_______ (2)已知 0t >,则函数241t t y t
-+= 的最小值为_______ (3)函数2+5+15=(0)2
x x y x x ≥+的最小值为_______ 分析:变形得22515(2)2922
x x x x y x x ++++++==+
+9(2)1172x x =+++≥=+, 当且仅当9(2)2
x x +=+,即1x =时取等号, 故函数2515(0)2x x y x x ++=≥+的最小值为7 (4)已知0b a >>,2ab =,则22
a b a b
+-的取值范围是_______ 解:2222()2()444()[()]4a b a b ab a b a b b a a b a b a b a b b a
+-+-+===-+=--+≤------ (5)设22()4
x f x x =+(0x >), 则()f x 的最大值为_______; (6)已知0,0a b >>,则22
22
32a ab b a ab b ++++的最小值是_______ (7)已知,a b 都是负实数,则2a b a b a b
+++的最小值是_______
10、(1)已知非负实数,x y 满足1x y +=,则11
x y +++的最小值为_______ 分析:因为 1x y +=,所以 113x y +++=,即1[(1)(1)]13x y +++=,
因为非负实数,x y ,所以 10,10x y +>+>,
所以 11111()[(1)(1)]11113
x y x y x y +=+⋅+++++++
1
14(1)[14]311y x x y ++=+++++119[5(54)3333
≥+=+== 当且仅当14(1)11y x x y ++=++,即12(1)y x +=+,0,1x y ==时取等号,所以 1411
x y +++的最小值为3 (2)已知实数,x y 满足102x y x y >>+=
,且,则213x y x y ++-的最小值为_______
1[(3)()]2
x y x y x y =+=++-,则(3)()1x y x y ++-= 21212()3
()[(3)()]3()3333x y x y x y x y x y x y x y x y x y x y
-++=+++-=++≥++-+-+-【法二】令x y t -=,3x y s +=(0,0t s >>)
121212()()3()3t s s t x y s t s t s t
+=+=++=++≥+-
11、(1)已知,x y 均为正实数,且3xy x y =++,则xy 的最小值为_______
解:因为,x y 均为正实数,所以x y +≥3xy x y =++可化为3xy ≥,即
1)0≥3,9,xy ≥≥故当且仅当x y =时,xy 取得最小值9
(2)已知,x y 均为正实数,39x y xy ++=,则3x y +的最小值为_______
解:因为,x y 均为正实数,所以211393333()332x y x y xy x y x y x y +=++=++
⋅≤++⋅, 12、(1)若正实数,x y 满足221x y xy ++=,则x y +的最大值是_______
解:由221x y xy ++=,得21()x y xy =+-, 2
2
()()114x y x y xy ++=+≤+,
解得33x y -≤+≤,x y ∴+得最大值为3
(2)设,x y 为实数,若2241x y xy ++=,则2x y +的最大值是_______ 解:由2241x y xy ++=得2222314(2)3(2)22
x y xy x y xy x y x y =++=+-=+-⋅⋅ 2223251(2)()(2)228
x y x y x y +≥+-⋅=+
则2x y ≤+≤13、若,(0,2]x y ∈且2xy =,使不等式(2)(2)(4)a x y x y +≥--恒成立,则实数a 的取值范围为
A .12a ≤
B .2a ≤
C .2a ≥
D .12
a ≥ 分析:由,(0,2]x y ∈,2xy =, 得()1022(2)(4)102222x y x y a x y x y x y -+--≥
==-+++.
又24x y +≥=由,∴12
a ≥,选D . 14、 若0,0a
b >> ,且4a b += ,则下列不等式恒成立的是( )
A .112ab >
B .111a b
+≤ C
2≥ D .228a b +≥ 分析:因为0a >,0b >
利用基本不等式有2a b ≤+=≤,当且仅当a b =时等号成立,C
2得,
114ab ≥,A 错;222()21688a b a b ab +=+-≥-=,当且仅当a b =时,等号成立,D 正确;11414
a b a b ab ++=≥=,当且仅当a b =时等号成立,B 错;综上可知,选D . 15、设正实数,,x y z 满足22340x xy y z -+-=,则当
xy z 取得最大值时,212x y z +-的最大值为 A .0 B .1 C .
94 D .3 答案:由22340x xy y z -+-=得2234z x xy y =-+,
则22114343xy xy x y z x xy y y x ==≤=-++-,当且仅当2x y =时等号成立,此时22z y = 222122122111(2)122x y z y y y y y y y
+-=+-=-=-≤. 16、(2013天津理14)设2a b +=,0b >,则当a =_____时,
1||2||a a b +取得最小值. 解:因为2a b +=,所以1=2
a b + 1||||||22||2||4||4||a b
a a a
b a a b a b a a b ++=+=+
++14||4||
a a a a ≥+=, 当0a >时,5+1=4||4a a ,1||52||4
a a
b +≥;
当0a <时,3+1=4||4a a ,1||32||4a a b +≥,当且仅当2b a =时等号成立. 因为0b >,所以原式取最小值时2b a =-.
又2a b +=,所以2a =-时,原式取得最小值.。