专题基本不等式常见题型归纳(学生版)
专题03 等式与不等式的性质 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题03等式与不等式的性质比较大小基本方法关系方法做差法与0比较做商法与1比较b a >0>-b a )0(1>>b a b a ,或)0(1<<b a b a ,b a =0=-b a )0(1≠=b baba <0=-b a )0(1><b a b a ,或)0(1<>b a ba ,2.不等式的性质(1)基本性质性质性质内容对称性ab b a a b b a >⇔<<⇔>;传递性c a c b b a c a c b b a <⇒<<>⇒>>,;,可加性cb c a b a >>+⇔>可乘性ac c b a bc ac c b a ⇒<>>⇒>>00,;,同向可加性db c a d c c a +>+⇒>>,同向同正可乘性bdac d c b a >⇒>>>>00,可乘方性nn b a N n b a >⇒∈>>*0,【方法技巧与总结】1.应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.2.比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法.【题型归纳目录】题型一:不等式性质的应用题型二:比较数(式)的大小与比较法证明不等式题型三:已知不等式的关系,求目标式的取值范围题型四:不等式的综合问题【典例例题】题型一:不等式性质的应用例1.(2022·北京海淀·二模)已知,x y ∈R ,且0x y +>,则()A .110x y +>B .330x y +>C .lg()0x y +>D .sin()0x y +>例2.(2022·山东日照·二模)若a ,b ,c 为实数,且a b <,0c >,则下列不等关系一定成立的是()A .a c b c+<+B .11a b<C .ac bc >D .b a c->例3.(2022·山西·模拟预测(文))若0αβ<<,则下列结论中正确的是()A .22αβ<B .2βααβ+>C .1122αβ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .sin sin αβ<(多选题)例4.(2022·辽宁·二模)己知非零实数a ,b 满足||1a b >+,则下列不等关系一定成立的是()A .221a b >+B .122a b +>C .24a b>D .1ab b>+(多选题)例5.(2022·重庆八中模拟预测)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是()A .1ab ≤B .2a b +≥C .1a b ->D .3a b -<(多选题)例6.(2022·广东汕头·二模)已知a ,b ,c 满足c <a <b ,且ac <0,那么下列各式中一定成立的是()A .ac (a -c )>0B .c (b -a )<0C .22cb ab <D .ab ac>(多选题)例7.(2022·福建三明·模拟预测)设a b c <<,且0a b c ++=,则()A .2ab b <B .ac bc <C .11a c<D .1c ac b-<-【方法技巧与总结】1.判断不等式是否恒成立,需要给出推理或者反例说明.2.充分利用基本初等函数性质进行判断.3.小题可以用特殊值法做快速判断.题型二:比较数(式)的大小与比较法证明不等式例8.(2022·全国·高三专题练习(文))设2312m ⎛⎫= ⎪⎝⎭,1312n ⎛⎫= ⎪⎝⎭,2315p ⎛⎫= ⎪⎝⎭,则()A .m p n<<B .p m n<<C .n m p<<D .p n m<<例9.(2022·全国·高三专题练习)若a =ln 22,b =ln 33,则a ____b (填“>”或“<”).例10.(2022·全国·高一)(1)试比较()()15x x ++与()23x +的大小;(2)已知a b >,11a b<,求证:0ab >.例11.(2022·湖南·高一课时练习)比较()()213a a +-与()()62745a a -++的大小.例12.(2022·湖南·高一课时练习)比较下列各题中两个代数式值的大小:(1))21与)21;(2)()()2211xx ++与()()2211xx x x ++-+.【方法技巧与总结】比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法,作商法比较大小的原理是:若0,0a b >>,则1b b a a >⇔>;1b b a a <⇔<;1bb a a =⇔=;若0,0a b <<,则1b b a a >⇔<;1b b a a <⇔>;1bb a a=⇔=.题型三:已知不等式的关系,求目标式的取值范围例13.(2022·浙江·模拟预测)若实数x ,y 满足1522x y x y +≥⎧⎨+≥⎩,则2x y +的取值范围()A .[1,)+∞B .[3,)+∞C .[4,)+∞D .[9,)+∞例14.(2022·全国·高三专题练习)已知12a ≤≤,14b -≤≤,则2a b -的取值范围是()A .724a b -≤-≤B .629a b -≤-≤C .629a b ≤-≤D .228a b -≤-≤例15.(2022·全国·高三专题练习)若,x y 满足44x y ππ-<<<,则x y -的取值范围是()A .(,0)2π-B .(,22ππ-C .(,0)4π-D .(,44ππ-例16.(2022·全国·高三专题练习(文))已知-3<a <-2,3<b <4,则2a b的取值范围为()A .(1,3)B .4934⎛⎫ ⎪⎝⎭,C .2334⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭例17.(2022·江西·二模(文))已知122x y ≤-≤,1231x y -≤+≤,则6x +5y 的取值范围为______.例18.(2022·全国·高三专题练习)设二次函数()()22,f x mx x n m n =-+∈R ,若函数()f x 的值域为[)0,∞+,且()12f ≤,则222211m n n m +++的取值范围为___________.例19.(2022·全国·高三专题练习)已知有理数a ,b ,c ,满足a b c >>,且0a b c ++=,那么ca的取值范围是_________.例20.(2022·全国·高三专题练习)已知函数()34f x x ax b =++,当[]1,1x ∈-时,()1f x ≤恒成立,则a b +=____________.例21.(2022·全国·高三专题练习)已知正数a ,b 满足5﹣3a ≤b ≤4﹣a ,ln b ≥a ,则ba的取值范围是___.例22.(2022·全国·高三专题练习)已知,,a b c 均为正实数,且111,,232425ab bc ca a b b c c a +++,那么111a b c++的大值为__________.【方法技巧与总结】在约束条件下求多变量函数式的范围时,不能脱离变量之间的约束关系而独立分析每个变量的范围,否则会导致范围扩大,而只能建立已知与未知的直接关系.题型四:不等式的综合问题例23.(2022·江西鹰潭·二模(理))已知0,0a b >>,且2e 1b aa b -+=+则下列不等式中恒成立的个数是()①1122b a --<②11b aa b -<-③e e b a b a -<-④5ln5a b +<+A .1B .2C .3D .4例24.(2022·江西·临川一中高三期中(文))若实数a ,b 满足65a a b <,则下列选项中一定成立的有()A .a b<B .33a b <C .e 1a b ->D .ln 0a b ⎛⎫< ⎪⎝⎭例25.(2022·湖南·长沙一中高三阶段练习)若m ,n ∈+N ,则下列选项中正确的是()A .()()1log 1log 2m m m m ++<+B .(n m m n mn ⋅≥C .()()22sin1sin 31n n n n n ππ⋅<+⋅>+D .1121111n n n n n n n n +++++<++(多选题)例26.(2022·江苏连云港·模拟预测)已知0,0a b >>,直线2y x a =+与曲线1e 1x y b -=-+相切,则下列不等式一定成立的是()A .19ab ≤B .219ab+≥C D ≤(多选题)例27.(2022·辽宁辽阳·二模)已知0a >,0b >,且24a b +=,则()A .124a b->B .22log log 1a b +≤C ≥D .412528a b +≥(多选题)例28.(2022·重庆八中模拟预测)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是()A .1ab ≤B .2a b +≥C .1a b ->D .3a b -<例29.(2022·全国·高三专题练习)若x ,y R ∈,设2223M x xy y x y =-+-+,则M 的最小值为__.例30.(2022·四川泸州·三模(理))已知x 、y ∈R ,且224x y +=,给出下列四个结论:①2x y +≤;②1xy ≥;③23x y +≤;④448x y +≥.其中一定成立的结论是______(写出所有成立结论的编号).【过关测试】一、单选题1.(2022·湖南·宁乡市教育研究中心模拟预测)小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为(0)b a b >>,他往返甲乙两地的平均速度为v ,则()A .2a bv +=B .v =C 2a b v +<<D .b v <<2.(2022·甘肃省武威第一中学模拟预测(文))已知0a b <<,则()A .110->a bB .sin sin 0a b ->C .0a b -<D .ln()ln()0a b -+->3.(2022·陕西宝鸡·三模(理))若a b <,则下列结论正确的是()A .330a b ->B .22a b <C .()ln 0a b ->D .a b<4.(2022·重庆·二模)若非零实数a ,b 满足a b >,则下列不等式一定成立的是()A .11a b<B .a b +>C .22lg lg a b >D .33a b >5.(2022·安徽黄山·二模(文))设实数a 、b 满足a b >,则下列不等式一定成立的是()A .22a b >B .11b b a a +<+C .22ac bc >D .332a b -+>6.(2022·安徽·芜湖一中高三阶段练习(理))已知0a >,0b >,22a b m +=,则以下正确的是()A .若1m =,则1a b +B .若1m =,则331a b +C .若2m =,则2a b +>D .若2m =,则332a b + 7.(2022·全国·高三专题练习(理))已知32a =,53b =,则下列结论正确的有()①a b <②11a b ab+<+③2a b ab+<④b aa ab b +<+A .1个B .2个C .3个D .4个8.(2022·安徽省舒城中学模拟预测(理))若数列{}n a 为等差数列,数列{}n b 为等比数列,则下列不等式一定成立的是()A .1423b b b b +≤+B .4132b b b b ≤--C .3124a a a a ≥D .3124a a a a ≤二、多选题9.(2022·辽宁·一模)已知不相等的两个正实数a 和b ,满足1ab >,下列不等式正确的是()A .1ab a b +>+B .()2log 1a b +>C .11a b ab+<+D .11a b a b+>+10.(2022·湖南省隆回县第二中学高三阶段练习)已知a b c >>,且0a b c ++=,则下列结论正确的是()A .2ab b >B .ac bc<C .11a c>D .1a cb c->-11.(2022·广东·广州市第四中学高三阶段练习)已知实数a ,b ,c 满足1,01a b c >><<,则下列不等式一定成立的有()A .()()c c a c b c -<-B .log (1)log (1)a b c c +<+C .log log 2a c c a +≥D .22224a cbc c >>12.(2022·河北保定·一模)已知a 、b 分别是方程20x x +=,30x x +=的两个实数根,则下列选项中正确的是().A .10b a -<<<B .10a b -<<<C .33a b b a ⋅<⋅D .22b aa b ⋅<⋅三、填空题13.(2022·四川泸州·三模(文))已知x ,R y ∈,满足224x y +=,给出下列四个结论:①2x y +≤;②1xy ≥;③23x y +<;④448x y +≥.其中一定成立的结论是______(写出所有成立结论的编号).14.(2022·全国·江西科技学院附属中学模拟预测(文))已知实数x 、y 满足223x y -≤+≤,220x y -≤-≤,则34x y -的取值范围为______.15.(2022·全国·高三专题练习)如果a >b ,给出下列不等式:①11a b <;②a 3>b 3>2ac 2>2bc 2;⑤ab>1;⑥a 2+b 2+1>ab +a +b .其中一定成立的不等式的序号是________.16.(2022·全国·高三专题练习)设x ,y 为实数,满足238xy ≤≤,249x y≤≤,则3x y 的最小值是______.四、解答题17.(2022·全国·高三专题练习)已知1a >,1b >,2222,1111a b b a M N a b a b =+=+----.(1)试比较M 与N 的大小,并证明;(2)分别求M ,N 的最小值.18.(2022·全国·高三专题练习)(1)已知a ,b 均为正实数.试比较33+a b 与22a b ab +的大小;(2)已知a ≠1且a ∈R ,试比较11a-与1a +的大小.19.(2022·全国·高三专题练习)已知下列三个不等式:①0ab >;②c da b>;③bc ad >,以其中两个作为条件,余下一个作为结论,则可组成几个正确命题?并选取一个结论证明.20.(2022·全国·高三专题练习)已知1<a <4,2<b <8,试求a -b 与ab的取值范围.21.(2022·贵州贵阳·二模(理))已知,,,a b c d R∈(1)证明:()()22222()a b c d ac bd --- ;(2)已知,x y R ∈,2241x y -=,求2|y +的最小值,以及取得最小值时的x ,y 的值.22.(2022·全国·高三专题练习)设二次函数2()2()f x ax bx c c b a =++>>,其图像过点(1,0),且与直线y a =-有交点.(1)求证:01ba≤<;(2)若直线y a =-与函数|()|y f x =的图像从左到右依次交于A ,B ,C ,D 四点,若线段,,AB BC CD 能构成钝角三角形,求ba的取值范围.。
《基本不等式》17种题型高一

基本不等式是高中数学中非常重要且基础的一部分。
它在高一数学中占据着重要的地位,对于学生的数学基础和逻辑推理能力的培养起着至关重要的作用。
在高一数学教学中,基本不等式的学习也是一个重要的环节,不仅需要掌握它的概念和性质,还需要学会运用它解决实际问题。
本文将从基本不等式的概念入手,详细介绍其性质和运用方法,并列举17种题型,帮助学生全面理解和掌握基本不等式的相关知识。
一、基本不等式的概念基本不等式是指在任意三个实数a、b、c之间,必有以下基本不等式成立:1)正数的不等式:a >b ⟹ a +c > b + ca > 0,b > 0 ⟹ ac > bca > b, c > 0 ⟹ ac > bca > b, c < 0 ⟹ ac < bc2)负数的不等式:a <b ⟹ a +c < b + ca < 0,b < 0 ⟹ ac > bca < b, c > 0 ⟹ ac < bca < b, c < 0 ⟹ ac > bc以上基本不等式是学习基本不等式的基础,对于解决实际问题是非常重要的。
二、基本不等式的性质基本不等式还具有一些重要的性质,包括:1)传递性:若a > b,b > c,则a > c2)对称性:若a > b,则-b > -a3)倒置性:若a > b,则1/a < 1/b,且a/b > 0这些性质对于运用基本不等式解决实际问题时起着重要的作用,可以帮助学生更好地理解和运用基本不等式。
三、基本不等式的运用方法基本不等式在解决实际问题时有着广泛的应用,其运用方法主要包括:1)利用基本不等式的性质化简题目;2)利用基本不等式构造等式或方程组,进而求解问题;3)利用基本不等式证明不等式关系,讨论最值等问题。
学生在解决实际问题时,可以根据具体情况选择不同的运用方法,灵活运用基本不等式,解决各种复杂的问题。
专题:基本不等式常见题型归纳(学生版)

专题:基本不等式基本不等式求最值 利用基本不等式求最值:一正、二定、三等号.三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R +,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2,当且仅当a =b 时取等号.上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系.其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则112-+b a 的最小值为 .练习:1.若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 .2.若实数,x y 满足133(0)2xy x x +=<<,则313x y +-的最小值为 .3.已知0,0,2a b c >>>,且2a b +=,则2ac c c b ab +-+的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +yx +y 的最大值为 .【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________.变式:1.若,a b R +∈,且满足22a b a b +=+,则a b +的最大值为_________.2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______3.设R y x ∈,,1422=++xy y x ,则y x +2的最大值为_________4.已知正数a ,b 满足195ab a b+=-,则ab 的最小值为 【题型二】含条件的最值求法【典例4】已知正数y x ,满足1=+y x ,则1124+++y x 的最小值为练习1.已知正数y x ,满足111=+yx ,则1914-+-y yx x 的最小值为 .2.已知正数,x y 满足22x y +=,则8x yxy+的最小值为 .3.已知函数(0)xy a b b =+>的图像经过点(1,3)P ,如下图所示,则411a b+-的最小值为 .4.己知a ,b 为正数,且直线 60ax by +-=与直线 2(3)50x b y +-+=互相平行,则2a+3b 的最小值为________.5.常数a ,b 和正变量x ,y 满足ab =16,a x +2b y =12.若x +2y 的最小值为64,则a b =________.6.已知正实数,a b 满足()()12122a b b b a a+=++,则ab 的最大值为 .【题型三】代入消元法【典例5】(苏州市2016届高三调研测试·14)已知14ab =,,(0,1)a b ∈,则1211ab+--的最小值为 .练习1.设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .2.已知正实数x ,y 满足,则x + y 的最小值为 .3.已知正实数,x y 满足(1)(1)16x y -+=,则x y +的最小值为 .4.若2,0>>b a ,且3=+b a ,则使得214-+b a 取得最小值的实数a = 。
第二章 第二节 基本不等式 学生版

6.已知0<x ≤3,则y =x +16x 的最小值为( ) A.253 B .8 C .20 D .107.y =2+x +5x (x <0) 的最大值为________.8.若x <0,则函数y =x +4x 有( ) A .最小值4 B .最大值4 C .最小值-4 D .最大值-49.已知a <b ,则b -a +1b -a+b -a 的最小值为( )A .3B .2C .4D .110.[2019·天津卷]设x >0,y >0,x +2y =5,则x +12y +1xy的最小值为________.题型七基本不等式的实际应用1.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件.2.某住宅小区为了使居民有一个优雅、舒适的生活环境,计划建一个八边形的休闲小区,如右图所示,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的面积为200 m2的十字形地域.现计划在正方形MNPO上建一花坛,造价为4 200元/m2,在四个相同的矩形上(如右图中黑色部分)铺花岗地坪,造价为210元/m2,再在四个空角(图中四个灰色三角形)上铺草坪,造价为80元/m2.(1)设总造价为S元,AD的长为x m,试建立S关于x的函数关系式;(2)计划至少要投入多少元,才能建造这个休闲小区?3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*),则每台机器为该公司创造的年平均利润的最大值是________万元.4.某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O为圆心的两个同心圆弧和延长后通过点O的两条线段围成的.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x米,圆心角为θ(弧度).(1)求θ关于x的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米,设花坛的面积与装饰总费用的比为y,求y关于x的函数关系式,并求出x为何值时,y取得最大值.11。
基本不等式题型及常用方法总结

基本不等式题型及常用方法总结基本不等式题型包括一元一次不等式、一元二次不等式、绝对值不等式和有理不等式等。
1. 一元一次不等式:- 解法1:通过移项和化简来求解,确保不等号方向的正确性。
- 解法2:将不等式转化为等价的集合表示,再通过集合的交、并运算求解。
2. 一元二次不等式:- 解法1:将不等式化为一元二次函数的图像,通过观察图像求解或者利用函数的性质来求解。
- 解法2:通过移项和配方法将不等式转化为二次函数的标准形式,再判断二次函数图像的位置与不等号关系来求解。
3. 绝对值不等式:- 解法1:将绝对值不等式分段求解,分别讨论绝对值内部是正数还是负数的情况。
- 解法2:通过绝对值的定义和不等式的性质,将绝对值不等式转化为两个简单的不等式来求解。
4. 有理不等式:- 解法1:将有理不等式化为分式的形式,然后通过分式的性质来求解。
- 解法2:通过变量的替换来将有理不等式转化为一元二次不等式或者一元一次不等式,再利用对应的方法来求解。
常用方法总结:1. 对于一元一次不等式和一元二次不等式,常用的方法是移项和化简、画函数图像和利用函数的性质来求解。
2. 对于绝对值不等式,常用的方法是分段求解和利用绝对值的性质来求解。
3. 对于有理不等式,常用的方法是化为分式形式和利用分式的性质来求解。
4. 在求解不等式的过程中,经常需要进行合并同类项、开方、取倒数、乘除等基本运算,需要注意运算法则和符号的变化。
5. 在不等式的求解过程中,需要注意不等式两边的平方值是否相等,以及是否存在不等式的等价变换等。
同时,在进行运算过程中,需要根据不等式的符号关系来选择合适的方式。
2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)

《基本不等式》专题一、相关知识点1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R); (2)a +b ≥2ab (a >0,b >0).(3)b a +ab ≥2(a ,b 同号且不为零); (4)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(5)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R).2(a 2+b 2)≥(a +b )2(a ,b ∈R).(6)a 2+b 22≥(a +b )24≥ab (a ,b ∈R).(7)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)5.重要不等式链 若a ≥b >0,则a ≥a 2+b 22≥a +b 2≥ab ≥2aba +b≥b . 题型一 基本不等式的判断1.若a ,b ∈R ,则下列恒成立的不等式是( )A.|a +b |2≥|ab | B .b a +ab ≥2 C.a 2+b 22≥⎝⎛⎭⎫a +b 22 D .(a +b )⎝⎛⎭⎫1a +1b ≥4 2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC .1a +1b >2abD .b a +ab ≥23.下列命题中正确的是( )A .函数y =x +1x 的最小值为2 B .函数y =x 2+3x 2+2的最小值为2C .函数y =2-3x -4x (x >0)的最小值为2-4 3D .函数y =2-3x -4x(x >0)的最大值为2-4 34.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg ⎝⎛⎭⎫a +b 2,则( )A .R <P <QB .Q <P <RC .P <Q <RD .P <R <Q题型二 利用基本不等式求最值类型一 直接法或配凑法利用基本不等式求最值1.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.2.已知a >0,b >0,且2a +b =4,则1ab 的最小值为3.已知0<x <1,则x (3-3x )取得最大值时x 的值为4.已知x <0,则函数y =4x +x 的最大值是5.函数f (x )=xx +1的最大值为6.若x >1,则x +4x -1的最小值为________.7.设0<x <2,则函数y =x (4-2x )的最大值为________.8.若x ,y 均为正数,则3x y +12yx +13的最小值是9.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.10.已知x <54,则f (x )=4x -2+14x -5的最大值为________.11.设x >0,则函数y =x +22x +1-32的最小值为12.已知x ,y 为正实数,则4x x +3y +3yx的最小值为13.函数y =x 2+2x -1(x >1)的最小值为________.14.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是15.已知x ,y 都为正实数,且x +y +1x +1y =5,则x +y 的最大值是16.已知a >b >0,则2a +4a +b +1a -b的最小值为17.已知正数a ,b 满足2a 2+b 2=3,则a b 2+1的最大值为________.类型二 常数代换法利用基本不等式求最值1.已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.2.已知a >0,b >0,a +2b =3,则2a +1b 的最小值为________.3.已知正实数x ,y 满足2x +y =2,则2x +1y 的最小值为________.4.已知正项等比数列{a n }的公比为2,若a m a n =4a 22,则2m +12n 的最小值为5.已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是6.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为7.若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.8.已知a >0,b >0,函数f (x )=a log 2x +b 的图像经过点⎝⎛⎭⎫4,12,则1a +2b 的最小值为________.9.已知函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +1n 的最小值为10.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是11.已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________.12.已知x ,y 均为正实数,且1x +2+1y +2=16,则x +y 的最小值为13.若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c 的最小值是14.已知正数x ,y 满足x +2y =3,则y x +1y 的最小值为________.15.设a >0,b >1,若a +b =2,则3a +1b -1的最小值为________.16.已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值;(2)x +y 的最小值.类型三 通过消元法利用基本(均值)不等式求最值1.若正实数m ,n 满足2m +n +6=mn ,则mn 的最小值是________.2.已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为________.3.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________.4.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.类型四:利用基本不等式求参数值或取值范围1.若对于任意的x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为2.已知函数y =x +mx -2(x >2)的最小值为6,则正数m 的值为________.3.若对x >0,y >0,x +2y =1,有2x +1y ≥m 恒成立,则m 的最大值是________.4.已知a >0,b >0,若不等式3a +1b ≥ma +3b恒成立,则m 的最大值为5.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________.6.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为7.已知函数f (x )=3x 2+ax +26x +1,若存在x ∈N +使得f (x )≤2成立,则实数a 的取值范围为___题型三 基本不等式的综合问题类型一 基本不等式的实际应用问题1.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =__________吨.3.某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2). (1)求S 关于x 的函数关系式;(2)求S 的最大值.类型二 基本不等式与函数的交汇问题1.已知A ,B 是函数y =2x 的图象上不同的两点,若点A ,B 到直线y =12的距离相等,则点A ,B 的横坐标之和的取值范围是( )A .(-∞,-1)B .(-∞,-2)C .(-∞,-3)D .(-∞,-4)类型三 基本不等式与数列的交汇问题1.已知a >0,b >0,并且1a ,12,1b 成等差数列,则a +9b 的最小值为2.已知正项等比数列{a n }的前n 项和为S n ,且S 8-2S 4=5,则a 9+a 10+a 11+a 12的最小值为3.设等差数列{a n }的公差是d ,其前n 项和是S n (n ∈N +),若a 1=d =1,则S n +8a n 的最小值是______.类型四 基本不等式与解析几何的交汇问题1. 已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是2.当双曲线M :x 2m -y 2m 2+4=1的离心率最小时,M 的渐近线方程为3.两圆x 2+y 2-2my +m 2-1=0和x 2+y 2-4nx +4n 2-9=0恰有一条公切线,若m ∈R ,n4m2+1n2的最小值为∈R,且mn≠0,则。
基本不等式的常见题型

12.已知x 0, y 0, x y 1, 则
13.已知2 x y 0,
1
1
的最小值是 _____.
1 x 1 2 y
1
1
1, 则x y的最小值是 _____.
2 x-y x +2 y
1 1
4x
9y
14.已知x 0, y 0, 1, 则
2.基本不等式
一、知识点梳理
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当 a=b 时取等号.
a+b
称为正数 a,b 的算术平均数, ab称为正数 a,b 的几何平均数.
2
(3)其中
1 a 2+b2 2ab, a,b R
(当且仅当 a= b时取等号 )
2
a+b
的最小值为_______.
xy
a2 1
的最小值为_______.
ab
x2 3y
的最小值为_______.
xy
[题组训练]
(�+1)(2�+1)
1. (2019 天津,13,5 分)设 x>0,y>0,x+2y=5,则
��
的最小值为
.
1 a
2.设a 0, b >0, 且a b 1, 则 的最小值为_______.
1 1
2.若 2m+n=1 上,且 m,n 为正数,则 + 的最小值为________.
m n
1
4
3.已知正数 x,y 满足 x+y=1,则�+1+�的最小值为________.
专题14 基本不等式(解析版)

专题14 基本不等式1.已知关于x 的不等式b a x <+的解集为{}42<<x x ,则=a b . 【难度】★ 【答案】31-2.若关于实数x 的不等式a x x <++-35无解,则实数a 的取值范围是 . 【难度】★★ 【答案】(]8,∞-【解析】因为35++-x x 表示数轴上的动点x 到数轴上的点3-、5的距离之和,而()835min=++-x x ,所以当8≤a 时,a x x <++-35无解.热身练习3.不等式212+<-x x 的解集为 . 【难度】★【答案】⎪⎭⎫ ⎝⎛-331, 4.若关于x 的不等式21-++≥x x a 存在实数解,则实数a 的取值范围是 . 【难度】★★ 【答案】3≥a 或3-≤a5.若关于x 的不等式164222--≤++x x b ax x 对R x ∈恒成立,则=+b a . 【难度】★★★ 【答案】10-1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号.·基本不等式的几何解释:因为()02≥-y x ,令a x =,b y =,代入展开可得2b a ab +≤知识梳理模块一:利用基本不等式求最值·基本不等式的几何解释:如图,AB 是圆的直径,C 是AB 上一点,AC =a ,BC =b ,过点C 作垂直于AB 的弦DE ,连结AD ,BD .由射影定理或三角形相似可得CD =ab ,由CD 小于或等于圆的半径a +b 2, 可得不等式ab ≤a +b2.当且仅当点C 与圆心重合,即当a =b 时,等号成立.【例1】(1)已知,如果,那么的最小值为__________;(2)已知,如果,那么的最小值为______;(3)若,则的最小值为 ; (4)已知,且,则的最大值为.【难度】★【答案】(1)2 (2)12 (3)22 (4)1162.基本不等式及有关结论(1)基本不等式:如果a >0,b >0,则a +b2a b +∈R 、1ab =a b +a b +∈R 、1a b +=22a b +0x >2x x+,x y R +∈41x y +=x y ⋅_____典例剖析≥ab ,当且仅当a =b 时,等号成立,即正数a 与b 的算术平均数不小于它们的几何平均数.(2)重要不等式:a ∈R ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.(3)几个常用的重要结论① b a +ab ≥2(a 与b 同号,当且仅当a =b 时取等号);② a +1a ≥2(a >0,当且仅当a =1时取等号),a +1a ≤-2(a <0,当且仅当a =-1时取等号);③ ab ≤2)2(ba (a ,b ∈R ,当且仅当a =b时取等号);④ 21a +1b≤ab ≤a +b2≤a 2+b22(a ,b >0,当且仅当a =b 时取等号).调和平均数≤几何平均数≤算术平均数≤平方平均数【例2】已知实数a 、b ,判断下列不等式中哪些一定是正确的?(1)abba ≥+2; (2)abb a 222-≥+; (3)ab b a ≥+22; (4)2≥+baa b (5)21≥+a a ; (6) 2≥+abb a (7)222)(2b a b a +≥+)(【难度】★【答案】(2)(3)(6)(7)(1)错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
。
a b2
5.设实数 x、y 满足 x 2 +2xy-1=0,则 x+y 的取值范围是_________
6.已知 x, y, z R ,且 x y z 1, x 2 y 2 z 2 3 ,求 xyz 的最大值为______
【题型四】换元法
【典例 6】已知函数 f(x)=ax2+x-b(a,b 均为正数),不等式 f(x)>0 的解集记为 P,集合 Q
3.已知 a 0,b 0, c 2 ,且 a b 2 ,则 ac c c 5 的最小值为
.
b ab 2 c 2
【典例 2】已知 x,y 为正实数,则4x4+x y+x+y y的最大值为
.
【典例 3】若正数 a 、 b 满足 ab a b 3,则 a b 的最小值为__________.
上述三个不等关系揭示了 a2+b2 ,ab ,a+b 三者间的不等关系. 其中,基本不等式及其变形:a,b∈R+,a+b≥2 ab(或 ab≤(a+2 b)2),当且仅当 a=b 时 取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系
【典例
1】已知
4
1a 1b
最小值为
.
练习 1.设实数 x,y 满足 x2+2xy-1=0,则 x2+y2 的最小值是
.
2.已知正实数 x,y 满足
,则 x + y 的最小值为
.
3.已知正实数 x, y 满足 (x 1)( y 1) 16 ,则 x y 的最小值为
.
4.若 a 0,b 2 ,且 a b 3,则使得 4 1 取得最小值的实数 a =
2.已知正数 x, y 满足 x 2y 2 ,则 x 8y 的最小值为
.
xy
3.已知函数 y ax b(b 0) 的图像经过点 P(1,3) ,如下图所示,
则 4 1 的最小值为
.
a 1 b
4.己知 a,b 为正数,且直线 ax by 6 0 与直线 2x (b 3) y 5 0 互相平行,则
确定主元法:如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则
可简化解题过程。
2.设二次函数 f x ax2 bx c ( a,b, c 为常数)的导函数为 f ' x.对任意 x R ,
4.已知正数 a , b 满足 1 9 ab 5 ,则 ab 的最小值为 ab
【题型二】含条件的最值求法
【典例 4】已知正数 x, y 满足 x y 1,则 4 1 的最小值为 x 2 y 1
练习 1.已知正数 x, y 满足 1 1 1 ,则 4x 9 y 的最小值为
.
xy
x 1 y 1
0对
x
R 恒成立
a
0 . 0
分离变量法:若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题
转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值。一般地有:
1) f (x) g(a)(a为参数)恒成立 g(a) f (x)max
2) f (x) g(a)(a为参数)恒成立 g(a) f (x)max
2a+3b 的最小值为________. 5.常数 a,b 和正变量 x,y 满足 ab= 16,ax+2yb=12.若 x+2y 的最小值为 64,则 ab=________.
6.已知正实数 a, b 满足
2a
1
bb
2b
2
aa
1 ,则 ab
的最大值为
.
【题型三】代入消元法
【典例 5】(苏州市 2016 届高三调研测试·14)已知 ab 1 , a,b (0,1) ,则 1 2 的
={x|-2-t<x<-2+t}.若对于任意正数 t,P∩Q≠,则a1-1b的最大值是
.
2.已知正数 a,b,c 满足 b+c≥a,则 + 的最小值为
.
练习
1.若实数
x,y
满足
2x2+xy-y2=1,则
5x2
x 2y 2xy
2y2
的最大值为
.
2.设 x, y 是正实数,且 x y 1,则 x2 y2 的最小值是____. x 2 y 1
.
2.设 x, y R , 3x 2 y 2 xy 1,则 2x y 的最大值为________
变式 1.在平面直角坐标系 xOy 中,设点 A(1,0) , B(0,1) ,C(a,b) , D(c,d) ,若不等式
2
CD
≥ (m
2)OC
OD
m(OC
OB)
(OD
OA)
对任意实数
a ,b , ,d
3..若实数 x,y 满足 2x2+xy-y2=1,则5x2-x-2x2y+y 2y2的最大值为
.
2 4
4.若实数 满足
,当
取得最大值时, 的值为
.
【题型五】判别式法
【典例 7】已知正实数 x,y 满足 x 2 3y 4 10 ,则 xy 的取值范围为
.
x
y
练习 1.若正实数 满足
,则
的最大值为
都成立,则实数
m 的最大值是
.
【方法技巧】不等式恒成立常用的方法有判别式法、分离参数法、换主元法.判别式法:
将所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数
f (x) ax2 bx c(a 0, x R) ,有
1)
f
(x)
0对
x
R 恒成立
a
0 2) 0
f
(x)
专题:基本不等式
基本不等式求最值 利用基本不等式求最值:一正、二定、三等号.
三个不等式关系:
(1)a,b∈R,a2+b2≥2ab,当且仅当 a=b 时取等号.
(2)a,b∈R+,a+b≥2 ab,当且仅当 a=b 时取等号. (3)a,b∈R,a2+2 b2≤(a+2 b)2,当且仅当 a=b 时取等号.
a>b>1 且
2
log
a
b
3 log
b
a
7
,则
a
1 b2 1
的最小值为
.
练习:1.若实数
x, y 满 足 x y 0 , 且 log2 x log2
y 1 ,则
x2 y2 x y
的最小值
为
.
2.若实数 x, y 满足 xy 3x 3(0 x 1) ,则 3 1 的最小值为
.
2
x y3
变式:1.若 a, b R ,且满足 a2 b2 a b ,则 a b 的最大值为_________.
2.设 x 0, y 0 , x 2y 2xy 8 ,则 x 2y 的最小值为_______
3.设 x, y R , 4x2 y 2 xy 1,则 2x y 的最大值为_________