薄膜材料的制备

合集下载

薄膜材料的制备及其应用

薄膜材料的制备及其应用

薄膜材料的制备及其应用一、薄膜材料的基本概念和制备方法薄膜是指宽度很小,但厚度相对较薄的材料。

薄膜材料由于具有在空间限制下的卓越性质,被广泛应用于化学、生物、光电等领域。

常见的薄膜材料有聚合物、金属、陶瓷、玻璃等。

1.基于聚合物的薄膜制备方法聚合物薄膜制备方法包括溶液浇铸、界面聚合、自组装、化学气相沉积等多种技术。

其中,溶液浇铸法是最为普遍的一种方法,即将聚合物分散于溶剂中,通过蒸发-干燥过程制备膜材料。

2.基于金属的薄膜制备方法金属薄膜制备方法主要包括物理气相沉积、化学气相沉积、物理溅射和热蒸发等技术。

其中,物理气相沉积法是最常用的一种方法,依靠金属的高温蒸发和沉积,形成薄膜材料。

3.基于陶瓷的薄膜制备方法陶瓷薄膜材料的制备采用包括溶胶-凝胶法、物理气相沉积、离子束沉积和磁控溅射等多种技术。

其中,溶胶-凝胶法是一种低温制备技术,制备出的膜材料具有良好的化学稳定性和高纯度。

二、薄膜材料的应用1.生物医学领域在生物医学领域,薄膜被广泛应用于药物递送、人工器官、组织工程等方面。

聚合物薄膜材料具有良好的生物相容性和生物可降解性,广泛用于药物递送系统和组织工程中。

金属薄膜由于其良好的导电性能,可用于人体电刺激和成像等领域。

2.能源领域薄膜在太阳能电池、燃料电池、半导体器件等领域也有着重要的应用。

例如,聚合物薄膜用于太阳能电池、金属薄膜用于燃料电池、氧化物薄膜用于半导体领域。

3.环境领域薄膜在环境领域的应用主要包括水处理、气体净化、油污处理等方面。

例如,纳米复合薄膜用于水处理,可有效过滤掉微小颗粒和化学污染物;纳米多孔结构薄膜用于气体净化,可去除有害氧化物和有机物质;陶瓷薄膜用于油污处理,可高效分离和去除油污。

三、薄膜材料的发展趋势1.可持续、环保的材料未来薄膜材料的制备趋势是转向可持续、环保的材料。

例如,生物可降解聚合物薄膜可以在使用后被自然分解,减少环境影响。

2.多功能化材料未来的薄膜材料也将具备多种功能,例如,与生物组织相容、导电、光学响应等。

薄膜材料的制备和应用领域

薄膜材料的制备和应用领域

薄膜材料的制备和应用领域近年来,薄膜材料在各个领域的应用越来越广泛,如电子、光学、能源等。

薄膜材料的制备技术也在不断发展,以满足不同领域对材料性能与应用需求的不断提高。

一、薄膜材料的制备技术当前,主要有以下几种薄膜制备技术被广泛应用于工业生产和科研实验中。

1. 物理气相沉积(PVD)物理气相沉积技术是将固体材料在真空环境下以蒸发、溅射等方式转化为气体,然后在衬底表面沉积成薄膜。

此技术具有较高的原子沉积速率、较小的晶粒尺寸和良好的附着力,可用于制备金属、合金和多层膜等。

2. 化学气相沉积(CVD)化学气相沉积技术是通过气相反应将气体分解并生成固态产物,从而在衬底表面沉积形成薄膜。

因其制备过程在常压下进行,能够实现批量制备大面积均匀薄膜,因此被广泛应用于硅、氮化硅、氮化铝等材料的制备。

3. 溶液法溶液法是将材料溶解于适当的溶剂中,然后利用溶液的性质,在衬底上形成膜状材料。

溶液法制备工艺简单、成本较低,适用于生物陶瓷、无机膜、有机膜等材料的制备。

4. 凝胶法凝胶法是在溶液中形成胶体颗粒,然后通过凝胶化的方式得到凝胶体系,再经由热处理、晾干等工艺制得薄膜。

凝胶法可制备出具有较高孔隙度和较大比表面积的纳米级多孔膜材料,适用于催化剂、分离膜等领域。

二、薄膜材料在电子领域的应用随着电子领域的快速发展,薄膜材料作为电子器件的关键组成部分,扮演着越来越重要的角色。

薄膜材料在半导体器件中的应用,如金属薄膜作为电极材料、氧化物薄膜作为绝缘层材料、硅薄膜作为基板等,不仅能够提高电子器件的性能,还能够实现器件的微型化和集成化。

此外,薄膜材料在光电显示技术中也有着广泛应用。

以液晶显示技术为例,通过在衬底上沉积液晶薄膜和驱动薄膜,实现了显示器的高清、高亮度、高对比度等特性。

三、薄膜材料在能源领域的应用薄膜材料在能源领域的应用主要体现在太阳能电池和燃料电池方面。

太阳能电池中的薄膜材料主要是用于吸收太阳能并进行光电转换的薄膜层。

薄膜材料的制备及其应用

薄膜材料的制备及其应用

薄膜材料的制备及其应用薄膜材料是一种非常重要的材料,在形态和用途上都非常广泛。

与传统的块材料不同,薄膜材料可以制备成各种形状和大小,非常适合各种特殊需求的场合。

薄膜材料的制备技术也变得越来越成熟和多样化,能够满足不同领域的需求。

本文将从薄膜材料的制备和应用两个方面阐述其重要性。

一、薄膜材料的制备方法薄膜制备的方法有很多,可以根据需要选择不同的方法。

其中一些主要的方法有:1. 溅射法。

该方法是一种常见的薄膜制备方法,依靠高温下的原子或离子的加速碰撞使得物质凝聚在样品表面上,形成一层薄膜。

2. 化学气相沉积法。

该方法利用气相反应,使物质沉积在样品表面上,也是一种经常使用的薄膜制备方法。

3. 溶液法。

该方法利用一定的溶剂将物质溶解,然后通过各种方式沉积在样品表面上,也是一种略微便宜的方法。

薄膜材料的制备方法可以根据具体情况进行选择。

例如,需要制备高质量的薄膜材料,则溅射法和化学气相沉积法更适用,对薄膜材料的结晶质量有更高的要求。

需要大规模制备时,则可以使用溶液法,因为溶液法的成本相对较低。

二、薄膜材料的应用薄膜材料在很多领域都有广泛的应用,其中一些主要的领域有:1. 太阳能电池。

薄膜太阳能电池相对于其他太阳能电池的优势在于其更低的制造成本和更低的重量。

这就是为什么薄膜太阳能电池在过去几年里变得越来越流行的原因。

2. 光电显示器。

我们的笔记本电脑和手机等电子产品中使用的另一个薄膜材料是透明电极。

这种材料可以被施加电压来产生电子,从而控制光的透过。

3. 薄膜防护层。

薄膜材料不仅可以用来制造电子产品,还可以用来保护它们。

例如,我们可以使用一层防护膜来保护手机或平板电脑的屏幕免受划伤或破碎。

4. 超级电容器。

超级电容器是利用电容器原理储存电能的装置,其制作的核心就是薄膜电极。

使用薄膜电极具有较大的表面积,从而增加了超级电容器储存电能的能力。

总的来说,薄膜材料在现代科技领域的应用非常广泛,其制备方法也越来越成熟。

薄膜的制备方法有哪些

薄膜的制备方法有哪些

薄膜的制备方法有哪些薄膜是一种非常常见的材料形式,它在许多领域都有着广泛的应用,比如电子产品、光学器件、包装材料等。

薄膜的制备方法多种多样,包括物理方法、化学方法和生物方法等。

接下来,我们将介绍一些常见的薄膜制备方法。

首先,物理方法是制备薄膜的一种重要途径。

其中,蒸发法是一种常用的物理方法。

通过加热固体材料,使其升华成气体,然后在基底表面凝结成薄膜。

这种方法制备的薄膜质量较高,适用于制备金属薄膜和部分无机物薄膜。

其次,溅射法也是一种常见的物理方法。

在溅射法中,通过向靶材表面轰击离子或中性粒子,使靶材表面的原子或分子脱落,并在基底表面沉积成薄膜。

这种方法制备的薄膜具有较好的结晶性和附着力,适用于制备金属薄膜、氧化物薄膜等。

除了物理方法,化学方法也是制备薄膜的重要手段。

溶液法是一种常用的化学方法。

在溶液法中,将溶解了所需材料的溶液涂覆在基底表面,然后通过溶剂挥发或化学反应使溶液中的物质沉积成薄膜。

这种方法制备的薄膜适用范围广,可以制备有机薄膜、无机薄膜等。

此外,化学气相沉积(CVD)也是一种常用的化学方法。

在CVD 中,将气态前体物质输送到基底表面,经过化学反应生成薄膜。

这种方法制备的薄膜质量较高,适用于制备氧化物薄膜、氮化物薄膜等。

最后,生物方法也在制备薄膜中发挥着重要作用。

生物合成法是一种常见的生物方法。

在生物合成法中,利用生物体内的生物大分子,如蛋白质、多糖等,通过生物合成过程制备薄膜。

这种方法制备的薄膜具有生物相容性和可降解性,适用于医用材料等领域。

综上所述,薄膜的制备方法多种多样,包括物理方法、化学方法和生物方法等。

不同的制备方法适用于不同类型的薄膜材料,选择合适的制备方法对于薄膜的性能和应用具有重要意义。

希望本文能够帮助您更好地了解薄膜制备方法,为您的研究和应用提供参考。

薄膜材料的制备流程

薄膜材料的制备流程

薄膜材料的制备流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!薄膜材料的制备流程一般包括以下几个步骤:1. 基底准备。

选择合适的基底材料,如硅片、玻璃、金属等。

薄膜制备方法

薄膜制备方法

薄膜制备方法薄膜制备方法是一种将材料制备成薄膜状的工艺过程。

薄膜是指厚度在纳米至微米级别的材料,具有特殊的物理、化学和电学性质,在许多领域具有重要的应用价值。

薄膜制备方法有多种,包括物理气相沉积法、化学气相沉积法、物理溅射法、溶液法等。

一、物理气相沉积法物理气相沉积法是一种利用高温或高能粒子束使材料原子或分子在基底表面沉积形成薄膜的方法。

常见的物理气相沉积方法有热蒸发法、电子束蒸发法和磁控溅射法等。

其中,热蒸发法是通过加热材料使其蒸发,并在基底上沉积形成薄膜;电子束蒸发法则是利用电子束的热能使材料蒸发并沉积在基底上;磁控溅射法是通过在真空室中加入惰性气体,并利用高能电子束轰击靶材使其溅射出原子或离子,从而沉积在基底上形成薄膜。

二、化学气相沉积法化学气相沉积法是一种利用气相反应在基底表面沉积材料的方法。

常见的化学气相沉积方法有化学气相沉积法、低压化学气相沉积法和气相扩散法等。

其中,化学气相沉积法是通过将反应气体在基底表面分解或氧化生成薄膜的方法;低压化学气相沉积法则是在较低的气压下进行反应,以控制薄膜的成分和结构;气相扩散法是通过将反应气体在基底表面进行扩散反应,使材料沉积在基底上。

三、物理溅射法物理溅射法是一种利用高能粒子轰击靶材使其原子或分子从靶表面溅射出来,并沉积在基底上形成薄膜的方法。

物理溅射法包括直流溅射法、射频溅射法和磁控溅射法等。

其中,直流溅射法是利用直流电源加电使靶材离子化并溅射出来;射频溅射法则是利用射频电源产生高频电场使靶材离子化并溅射出来;磁控溅射法则是在溅射区域加入磁场,利用磁控电子束使靶材离子化并溅射出来。

四、溶液法溶液法是一种利用溶液中的材料分子或离子在基底表面沉积形成薄膜的方法。

常见的溶液法包括浸渍法、旋涂法和喷雾法等。

其中,浸渍法是将基底放置在溶液中,使其吸附溶剂中的材料分子或离子,然后通过蒸发或热处理使其形成薄膜;旋涂法是将溶液倒在旋转的基底上,通过离心作用使溶液均匀涂布在基底上,然后通过蒸发或热处理使其形成薄膜;喷雾法则是将溶液喷雾到基底上,通过蒸发或热处理使其形成薄膜。

薄膜材料及其制备技术

薄膜材料及其制备技术

薄膜材料及其制备技术薄膜材料是指厚度在纳米级别到微米级别的材料,具有特殊的物理、化学和力学性质。

薄膜材料广泛应用于电子、光电、光学、化学、生物医学等领域。

下面将介绍薄膜材料的分类以及常用的制备技术。

薄膜材料的分类:1.无机薄膜材料:如氧化物薄膜、金属薄膜、半导体薄膜等。

2.有机薄膜材料:如聚合物薄膜、膜面活性剂薄膜等。

3.复合薄膜材料:由两种或以上的材料组成的。

如聚合物和无机材料复合薄膜、金属和无机材料复合薄膜等。

薄膜材料的制备技术:1.物理气相沉积技术:包括物理气相沉积(PVD)和物理气相淀积(PVD)两种方法。

PVD主要包括物理气相沉积和磁控溅射,通过将固态金属或合金加热,使其升华或蒸发,然后在基底表面形成薄膜。

PVD常用于制备金属薄膜、金属氧化物薄膜等。

2.化学气相沉积技术:包括化学气相沉积(CVD)和原子层沉积(ALD)两种方法。

CVD通过化学反应在基底表面形成薄膜。

ALD则是通过一系列的单原子层回旋沉积来生长薄膜。

这些方法可以制备无机薄膜、有机薄膜和复合薄膜。

3.溶液法制备技术:包括溶胶-凝胶法、旋涂法、浸渍法等。

溶胶-凝胶法通过溶胶和凝胶阶段的转化制备薄膜。

旋涂法将溶液倒在旋转基底上,通过离心力将溶液均匀分布并形成薄膜。

浸渍法将基底浸泡在溶液中,溶液中的材料通过表面张力进入基底并形成薄膜。

这些方法主要用于制备有机薄膜和复合薄膜。

4.物理沉积法和化学反应法相结合的制备技术:如离子束沉积法、激光沉积法等。

这些方法通过物理沉积或化学反应在基底表面形成薄膜,具有较高的沉积速率和较好的薄膜质量。

综上所述,薄膜材料及其制备技术涉及多个领域,各种薄膜材料的制备方法各有特点,可以选择合适的技术来制备特定性质的薄膜材料。

随着对薄膜材料的深入研究和制备技术的不断进步,薄膜材料在各个应用领域的潜力将会得到更大的发掘。

薄膜材料制备原理、技术及应用

薄膜材料制备原理、技术及应用

薄膜材料制备原理、技术及应用薄膜材料是在基材上形成的一层薄膜状的材料,通常厚度在几纳米到几十微米之间。

它具有重量轻、柔韧性好、透明度高等特点,广泛应用于电子、光学、能源、医疗等领域。

薄膜材料制备的原理主要涉及物理蒸发、溅射、化学气相沉积等方法。

其中,物理蒸发是指将所需材料制成块状或颗粒状,利用高温或电子束加热,使材料从固态直接转变为蒸汽态,并在基材上沉积形成薄膜。

溅射是将材料制成靶材,用惰性气体或者稀释气体作为工作气体,在高电压的作用下进行放电,将靶材表面的原子或分子溅射到基材上形成薄膜。

化学气相沉积是指在一定条件下,将气态前体分子引入反应室,通过化学反应沉积到基材上,形成薄膜。

薄膜材料制备技术不仅包括上述原理所述的基本制备方法,还涉及到不同材料、薄膜厚度、表面质量等方面的特定要求。

例如,为了提高薄膜的品质和厚度均匀性,可采用多台蒸发源同时蒸发的方法,或者通过旋涂、喷涂等方法使得所需薄膜材料均匀地覆盖在基材上。

此外,为了实现特定功能,还可以通过控制制备条件、改变材料组成等手段来改变薄膜的特性。

薄膜材料具有多种应用领域。

在电子领域,薄膜材料可以用于制作集成电路的介质层、金属电极与基板之间的隔离层等。

在光学领域,薄膜材料可以用于制作光学滤波器、反射镜、透明导电膜等。

在能源领域,薄膜材料在太阳能电池、锂离子电池等器件中扮演重要角色。

在医疗领域,薄膜材料可以用于制作人工器官、医用伽马射线屏蔽材料等。

此外,薄膜材料还应用于防腐蚀涂料、食品包装、气体分离等领域。

虽然薄膜材料制备技术已经相对成熟,但是其制备过程中仍然存在一些挑战。

例如,薄膜厚度均匀性、结晶性能、粘附性能等方面的要求十分严格,制备过程中需要控制温度、压力、物质流动等多个参数的影响,以确保薄膜的质量。

此外,部分薄膜材料的制备成本相对较高,制约了其在大规模应用中的推广。

总的来说,薄膜材料制备原理、技术及其应用具有重要的实际意义。

通过不断改进制备技术,提高薄膜材料的制备效率和质量,将有助于推动薄膜材料在各个领域的更广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对薄膜制备的综述一.前言随着薄膜科学技术与薄膜物理学的发展,薄膜在微电子、光学、窗器、表面改性等方面的应用日益广泛;而薄膜产业的日趋壮大又刺激了薄膜技术和薄膜材料的蓬勃发展。

面对新技术革命提出的挑战,无机薄膜材料的制备方法也日新月异,与以往的制膜方法相比有了新的特点,方法也向着多元化的方向发展。

这篇综述主要介绍了:薄膜材料的制备、举例发光薄膜的制备以及薄膜材料的发展前景。

二.薄膜材料的制备主要内容:1.薄膜材料基础;2.薄膜的形成机理;3.物理气相沉积;4.化学气相沉积;5.化学溶液镀膜法;6.液相外延制膜法。

§1 薄膜材料基础1. 薄膜材料的概念采用一定方法,使处于某种状态的一种或几种物质(原材料)的基团以物理或化学方式附着于衬底材料表面,在衬底材料表面形成一层新的物质,这层新物质就是薄膜。

简而言之,薄膜是由离子、原子或分子的沉积过程形成的二维材料。

2. 薄膜分类(1)物态:气态、液态、固态(thin-solid-film)。

(2)结晶态:A非晶态:原子排列短程有序,长程无序。

B晶态:a单晶:外延生长,在单晶基底上同质和异质外延;b多晶:在一衬底上生长,由许多取向相异单晶集合体组成。

(3)化学角度:有机和无机薄膜。

(4)组成:金属和非金属薄膜。

(5)物性:硬质、声学、热学、金属导电、半导体、超导、介电、磁阻、光学薄膜。

薄膜的一个重要参数:a厚度,决定薄膜性能、质量;b通常,膜厚小于数十微米,一般在1微米以下。

3. 薄膜应用薄膜材料及相关薄膜器件兴起于20世纪60年代。

是新理论、高技术高度结晶的产物。

(1)主要的薄膜产品:光学薄膜、集成电路、太阳能电池、液晶显示膜、光盘、磁盘、刀具硬化膜、建筑镀膜制品、塑料金属化制品。

(2)薄膜是现代信息技术的核心要素之一:薄膜材料与器件结合,成为电子、信息、传感器、光学、太阳能等技术的核心基础。

4.薄膜的制备方法(1)代表性的制备方法按物理、化学角度来分,有:a物理成膜PVD、b化学成膜CVD(2)具体制备方法如下表流程图:§2 薄膜的形成机理1.薄膜材料在现代科学技术中应用十分广泛,制膜技术的发展也十分迅速。

制膜方法—分为物理和化学方法两大类;具体方式上—分为干式、湿式和喷涂三种,而每种方式又可分成多种方法。

2.薄膜的生长过程分为以下三种类型:(1) 核生长型(V olmer Veber型):这种生长的特点是到达衬底上的沉积原子首先凝聚成核,后续的沉积原子不断聚集在核附近,使核在三维方向上不断长大而最终形成薄膜。

核生长型薄膜生长的四个阶段:a. 成核:在此期间形成许多小的晶核,按同济规律分布在基片表面上;b. 晶核长大并形成较大的岛:这些岛常具有小晶体的形状;c. 岛与岛之间聚接形成含有空沟道的网络;d. 沟道被填充:在薄膜的生长过程中,当晶核一旦形成并达到一定尺寸之后,另外再撞击的离子不会形成新的晶核,而是依附在已有的晶核上或已经形成的岛上。

分离的晶核或岛逐渐长大彼此结合便形成薄膜。

这种类型的生长一般在衬底晶格和沉积膜晶格不相匹配时出现。

大部分的薄膜的形成过程属于这种类型。

(2) 层生长型(Frank-Vanber Merwe型):特点:沉积原子在衬底的表面以单原子层的形式均匀地覆盖一层,然后再在三维方向上生长第二层、第三层……。

一般在衬底原子与沉积原子之间的键能接近于沉积原子相互之间键能的情况下(共格)发生这种生长方式的生长。

以这种方式形成的薄膜,一般是单晶膜,并且和衬底有确定的取向关系。

例如在Au衬底上生长Pb单晶膜、在PbS衬底上生长PbSe单晶膜等。

(3) 层核生长型(Straski Krastanov型:特点:生长机制介于核生长型和层生长型的中间状态。

当衬底原子与沉积原子之间的键能大于沉积原子相互之间键能的情况下(准共格)多发生这种生长方式的生长。

在半导体表面形成金属膜时常呈现这种方式的生长。

例如在Ge表面上沉积Cd,在Si表面上沉积Bi、Ag等都属于这种类型。

§3物理气相沉积1、定义:物理气相沉积:(Physical Vapor Deposition,PVD )利用某种物理过程,如物质的热蒸发或受到离子轰击时物质表面原子的溅射现象,实现物质原子从源物质到薄膜的可控转移的过程。

2、特点(相对于化学气相沉积而言):(1)需要使用固态的或熔融态物质作为沉积过程的源物质;(2)源物质经过物理过程而进入气相;(3)需要相对较低的气体压力环境;(4)在气相中及沉底表面并不发生化学反应。

3.下面从真空蒸发法、离子镀和溅射沉积法三个方面进行说明:(1)真空蒸发法:把装有基片的真空室抽成真空,使气体压强达到10-2Pa以下,然后加热镀料,使其原子或分子从表面逸出,形成蒸汽流,入射到基片表面,凝结形成固态薄膜。

具有较高的沉积速率、相对较高的真空度,以及由此导致的较高的薄膜纯度等优点。

要实现蒸发法镀膜,需要三个最基本条件:a加热,使镀料蒸发;b处于真空环境,以便于气相镀料向基片运输;c 采用温度较低的基片,以便于气体镀料凝结成膜。

蒸发材料在真空中被加热时,其原子或分子就会从表面逸出,这种现象叫热蒸发。

蒸发度膜的三个基本过程:加热蒸发、气相原子或分子的输运(源-基距)、蒸发原子或分子在基片表面的淀积。

(2)离子镀:指镀料原子沉积与带能离子轰击同时进行的物理气相沉积技术。

原理及特点:工件为阴极,蒸发源为阳极,进入辉光放电空间的靶材原子离化后,在工件表面沉积成膜,沉积过程中离子对工件表面、膜层和界面以及对膜层本身都发生轰击作用,离子能量决定于阴极上所加的电压。

(3)溅射沉积法:物质的溅射现象:等离子体鞘层电位的建立使得到达电极的离子均要经过相应的加速而获得相应的能量。

其中,阴极鞘层电位占了电极间外加电压的大部分。

因此,轰击阴极的离子具有很高的能量,并使得阴极物质发生溅射现象。

溅射法具有自己的特点,如:a沉积原子的能量较高,因此薄膜的组织更致密、附着力也可以得到显著改善;b制备合金薄膜时,其成分的控制性能好;c溅射的靶材可以是极难熔的材料。

因此溅射法可以方便的用于高熔点物质的溅射和薄膜的制备;d可利用反应溅射技术,从金属元素靶材制备化合物薄膜;e由于被沉积的原子均携带有一定的能量,因而有助于改善薄膜对于复杂形状表面的覆盖能量,降低薄膜表面的粗糙度;f在沉积多元合金薄膜时化学成分容易控制、沉积层对沉底的附着力较好。

§4化学气相沉积(CVD)(1)定义:化学气相沉积是一种化学的气相生长法,它是指把含有构成薄膜元素的一种或几种化合物、单质气体供给基片,借助气相的作用或在基片上发生的化学反应生成所需要的膜,它具有设备简单、绕射性好、膜组成控制性好等特点,比较适合于制备陶瓷薄膜。

这类方法的实质为利用各种反应,选择适当的温度、气相组成、浓度及压强等参数,可得到不同组分及性质的薄膜,理论上可任意控制薄膜的组成,能够实现以前没有的全新的结构与组成。

(2)CVD方法中,常见的反应方式及特点:a热分解:(材料)金属氢化物、金属碳酰化合物、有机金属化合物、金属卤化物。

(反应举例以及CVD生成物)SiH4ySi+2H2——Si、W(CO)6yW+6CO——W、2Al(OR)3yAl2O3+R——Al2O3、SiI4ySi+2I2——Si;b氢还原:(原料)卤化物。

(反应举例以及CVD生成物)SiCl4+2H2ySi+4HCl——Si、SiHCl3+H2ySi+3HCl ——Si、MoCl5+5/2H2yMo+5HCl——Mo;c金属还原:卤化物、单质金属BeCl2+ZnyBe+2ZnCl2——Be;d基片材料还原:金属卤化物、硅基片WF6+3/2SiyW+3/2SiF4——W;e化学输送反应:硅化物等2SiI2ySi+SiI4——Si;f氧化:氢化物SiH4+O2ySiO2+H2——SiO2、卤化物SiCl4+O2ySiO2+Cl2——SiO2、卤氧化合物POCl3+3/4O2y1/2P2O5+3/2Cl2——P2O5、有机金属化合物AlR3+3/4O2y1/2Al2O3+3R——Al2O3;g加水分解:卤化物2AlCl2+3H2OyAl2O3+6HCl——Al2O3;h与氨分解:卤化物SiH2Cl2+4/3NH3y1/3Si3N4+2HCl+2H2——Si3O4、氢化物、SiH4+4/3NH3y1/3Si3N4+4H2——Si3O4。

近些年来,人们为了降低CVD的反应温度,提高反应物的活性及反应的速率,采用了一些物理方法来改善化学反应的性能。

如利用光子对CVD过程进行活化,通过强紫外线光源等激活反应物,产生了光子辅助CVD(photo-CVD)[1,2];采用等离子体激发气体,使气相反应物的粒子变为等离子态,从而具有很高的活性,以达到降低反应温度的目的,由此便产生了等离子体辅助化学气相沉积法)PCVD[3](Plasma CVD);有人采用电子回旋共振过程增强CVD,产生了ECR-CVD[4],从而进一步开发出了ECR-PECVD[5]装置;还有采用激光照射,使反应气体分子吸收光子能量,并分解为激发态的原子或基团,以达到提高反应活性的目的,称之为LCVD(Laser enhanced CVD)[6]。

目前,低压CVD(LPCVD)技术已经广泛应用于半导体工业,还有利用有机金属化合物的热分解进行气相外延生长来制备半导体薄膜,称为MOCVD(Meta-l Organic CVD)即OMVPE[7]。

在各种技术都已产生的条件下,又进一步交叉产生了低压OMVPE(LP-OMVPE)[8],等离子OMVPE(PE-OMVPE)[9],激光OMVPE(laser enhanced organome-tallic vapor phase epitaxy,简称LE-OMVPE)[10],在PE-OMVPE的基础上,引入ECR,便交叉产生了ECR-PEMOCVD[11]。

§5化学溶液镀膜法(1)定义:在溶液中利用化学反应或电化学原理在集体材料表面上沉积成膜的一种技术。

主要方法:化学反应沉积、阳极氧化、电镀和溶胶-凝胶法等。

(2)下面具体介绍溶胶-凝胶法:溶胶-凝胶(Sol-Gel)技术是指金属有机或无机化合物(称前驱物),经溶液、溶胶、凝胶而固化,在溶胶或凝胶状态下成型,再经热处理转化为氧化物或其他化合物固体材料的方法,是应用胶体化学原理制备无机材料的一种湿化学方法。

其优点:a合成温度低;b高集成的材料制备技术;c不需要苛刻的工艺条件和复杂的设备,可以在大面积或任意形状的基体上制得薄膜;d Sol-Gel工艺性在制备复合材料,尤其是纳米复合材料方面有其独到的优势;e设备简单,工艺灵活,制品纯度高。

(3)机理:溶液水解镀膜法:将某些IV族、III族和V族元素合成的烃氧基化合物,以及一些类如氯化物、硝酸盐和乙酸盐的无机盐作为镀膜物质,将其溶于某些有机溶液形成镀液,经水解后在镀件表面形成胶体膜,再经脱水获得该元素的氧化物薄膜。

相关文档
最新文档